]> code.delx.au - gnu-emacs/blob - src/fns.c
(Fset_char_table_range): Fix previous change.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
517
518 val = Fmake_bool_vector (Flength (arg), Qnil);
519 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
520 size_in_chars);
521 return val;
522 }
523
524 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
525 arg = wrong_type_argument (Qsequencep, arg);
526 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
527 }
528
529 /* In string STR of length LEN, see if bytes before STR[I] combine
530 with bytes after STR[I] to form a single character. If so, return
531 the number of bytes after STR[I] which combine in this way.
532 Otherwize, return 0. */
533
534 static int
535 count_combining (str, len, i)
536 unsigned char *str;
537 int len, i;
538 {
539 int j = i - 1, bytes;
540
541 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
542 return 0;
543 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
544 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
545 return 0;
546 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
547 return (bytes <= i - j ? 0 : bytes - (i - j));
548 }
549
550 /* This structure holds information of an argument of `concat' that is
551 a string and has text properties to be copied. */
552 struct textprop_rec
553 {
554 int argnum; /* refer to ARGS (arguments of `concat') */
555 int from; /* refer to ARGS[argnum] (argument string) */
556 int to; /* refer to VAL (the target string) */
557 };
558
559 static Lisp_Object
560 concat (nargs, args, target_type, last_special)
561 int nargs;
562 Lisp_Object *args;
563 enum Lisp_Type target_type;
564 int last_special;
565 {
566 Lisp_Object val;
567 register Lisp_Object tail;
568 register Lisp_Object this;
569 int toindex;
570 int toindex_byte = 0;
571 register int result_len;
572 register int result_len_byte;
573 register int argnum;
574 Lisp_Object last_tail;
575 Lisp_Object prev;
576 int some_multibyte;
577 /* When we make a multibyte string, we can't copy text properties
578 while concatinating each string because the length of resulting
579 string can't be decided until we finish the whole concatination.
580 So, we record strings that have text properties to be copied
581 here, and copy the text properties after the concatination. */
582 struct textprop_rec *textprops = NULL;
583 /* Number of elments in textprops. */
584 int num_textprops = 0;
585
586 tail = Qnil;
587
588 /* In append, the last arg isn't treated like the others */
589 if (last_special && nargs > 0)
590 {
591 nargs--;
592 last_tail = args[nargs];
593 }
594 else
595 last_tail = Qnil;
596
597 /* Canonicalize each argument. */
598 for (argnum = 0; argnum < nargs; argnum++)
599 {
600 this = args[argnum];
601 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
602 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
603 {
604 args[argnum] = wrong_type_argument (Qsequencep, this);
605 }
606 }
607
608 /* Compute total length in chars of arguments in RESULT_LEN.
609 If desired output is a string, also compute length in bytes
610 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
611 whether the result should be a multibyte string. */
612 result_len_byte = 0;
613 result_len = 0;
614 some_multibyte = 0;
615 for (argnum = 0; argnum < nargs; argnum++)
616 {
617 int len;
618 this = args[argnum];
619 len = XFASTINT (Flength (this));
620 if (target_type == Lisp_String)
621 {
622 /* We must count the number of bytes needed in the string
623 as well as the number of characters. */
624 int i;
625 Lisp_Object ch;
626 int this_len_byte;
627
628 if (VECTORP (this))
629 for (i = 0; i < len; i++)
630 {
631 ch = XVECTOR (this)->contents[i];
632 if (! INTEGERP (ch))
633 wrong_type_argument (Qintegerp, ch);
634 this_len_byte = CHAR_BYTES (XINT (ch));
635 result_len_byte += this_len_byte;
636 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
637 some_multibyte = 1;
638 }
639 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
640 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
641 else if (CONSP (this))
642 for (; CONSP (this); this = XCDR (this))
643 {
644 ch = XCAR (this);
645 if (! INTEGERP (ch))
646 wrong_type_argument (Qintegerp, ch);
647 this_len_byte = CHAR_BYTES (XINT (ch));
648 result_len_byte += this_len_byte;
649 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
650 some_multibyte = 1;
651 }
652 else if (STRINGP (this))
653 {
654 if (STRING_MULTIBYTE (this))
655 {
656 some_multibyte = 1;
657 result_len_byte += SBYTES (this);
658 }
659 else
660 result_len_byte += count_size_as_multibyte (SDATA (this),
661 SCHARS (this));
662 }
663 }
664
665 result_len += len;
666 }
667
668 if (! some_multibyte)
669 result_len_byte = result_len;
670
671 /* Create the output object. */
672 if (target_type == Lisp_Cons)
673 val = Fmake_list (make_number (result_len), Qnil);
674 else if (target_type == Lisp_Vectorlike)
675 val = Fmake_vector (make_number (result_len), Qnil);
676 else if (some_multibyte)
677 val = make_uninit_multibyte_string (result_len, result_len_byte);
678 else
679 val = make_uninit_string (result_len);
680
681 /* In `append', if all but last arg are nil, return last arg. */
682 if (target_type == Lisp_Cons && EQ (val, Qnil))
683 return last_tail;
684
685 /* Copy the contents of the args into the result. */
686 if (CONSP (val))
687 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
688 else
689 toindex = 0, toindex_byte = 0;
690
691 prev = Qnil;
692 if (STRINGP (val))
693 textprops
694 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
695
696 for (argnum = 0; argnum < nargs; argnum++)
697 {
698 Lisp_Object thislen;
699 int thisleni = 0;
700 register unsigned int thisindex = 0;
701 register unsigned int thisindex_byte = 0;
702
703 this = args[argnum];
704 if (!CONSP (this))
705 thislen = Flength (this), thisleni = XINT (thislen);
706
707 /* Between strings of the same kind, copy fast. */
708 if (STRINGP (this) && STRINGP (val)
709 && STRING_MULTIBYTE (this) == some_multibyte)
710 {
711 int thislen_byte = SBYTES (this);
712 int combined;
713
714 bcopy (SDATA (this), SDATA (val) + toindex_byte,
715 SBYTES (this));
716 combined = (some_multibyte && toindex_byte > 0
717 ? count_combining (SDATA (val),
718 toindex_byte + thislen_byte,
719 toindex_byte)
720 : 0);
721 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
722 {
723 textprops[num_textprops].argnum = argnum;
724 /* We ignore text properties on characters being combined. */
725 textprops[num_textprops].from = combined;
726 textprops[num_textprops++].to = toindex;
727 }
728 toindex_byte += thislen_byte;
729 toindex += thisleni - combined;
730 STRING_SET_CHARS (val, SCHARS (val) - combined);
731 }
732 /* Copy a single-byte string to a multibyte string. */
733 else if (STRINGP (this) && STRINGP (val))
734 {
735 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
736 {
737 textprops[num_textprops].argnum = argnum;
738 textprops[num_textprops].from = 0;
739 textprops[num_textprops++].to = toindex;
740 }
741 toindex_byte += copy_text (SDATA (this),
742 SDATA (val) + toindex_byte,
743 SCHARS (this), 0, 1);
744 toindex += thisleni;
745 }
746 else
747 /* Copy element by element. */
748 while (1)
749 {
750 register Lisp_Object elt;
751
752 /* Fetch next element of `this' arg into `elt', or break if
753 `this' is exhausted. */
754 if (NILP (this)) break;
755 if (CONSP (this))
756 elt = XCAR (this), this = XCDR (this);
757 else if (thisindex >= thisleni)
758 break;
759 else if (STRINGP (this))
760 {
761 int c;
762 if (STRING_MULTIBYTE (this))
763 {
764 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
765 thisindex,
766 thisindex_byte);
767 XSETFASTINT (elt, c);
768 }
769 else
770 {
771 XSETFASTINT (elt, SREF (this, thisindex++));
772 if (some_multibyte
773 && (XINT (elt) >= 0240
774 || (XINT (elt) >= 0200
775 && ! NILP (Vnonascii_translation_table)))
776 && XINT (elt) < 0400)
777 {
778 c = unibyte_char_to_multibyte (XINT (elt));
779 XSETINT (elt, c);
780 }
781 }
782 }
783 else if (BOOL_VECTOR_P (this))
784 {
785 int byte;
786 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
787 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
788 elt = Qt;
789 else
790 elt = Qnil;
791 thisindex++;
792 }
793 else
794 elt = XVECTOR (this)->contents[thisindex++];
795
796 /* Store this element into the result. */
797 if (toindex < 0)
798 {
799 XSETCAR (tail, elt);
800 prev = tail;
801 tail = XCDR (tail);
802 }
803 else if (VECTORP (val))
804 XVECTOR (val)->contents[toindex++] = elt;
805 else
806 {
807 CHECK_NUMBER (elt);
808 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
809 {
810 if (some_multibyte)
811 toindex_byte
812 += CHAR_STRING (XINT (elt),
813 SDATA (val) + toindex_byte);
814 else
815 SSET (val, toindex_byte++, XINT (elt));
816 if (some_multibyte
817 && toindex_byte > 0
818 && count_combining (SDATA (val),
819 toindex_byte, toindex_byte - 1))
820 STRING_SET_CHARS (val, SCHARS (val) - 1);
821 else
822 toindex++;
823 }
824 else
825 /* If we have any multibyte characters,
826 we already decided to make a multibyte string. */
827 {
828 int c = XINT (elt);
829 /* P exists as a variable
830 to avoid a bug on the Masscomp C compiler. */
831 unsigned char *p = SDATA (val) + toindex_byte;
832
833 toindex_byte += CHAR_STRING (c, p);
834 toindex++;
835 }
836 }
837 }
838 }
839 if (!NILP (prev))
840 XSETCDR (prev, last_tail);
841
842 if (num_textprops > 0)
843 {
844 Lisp_Object props;
845 int last_to_end = -1;
846
847 for (argnum = 0; argnum < num_textprops; argnum++)
848 {
849 this = args[textprops[argnum].argnum];
850 props = text_property_list (this,
851 make_number (0),
852 make_number (SCHARS (this)),
853 Qnil);
854 /* If successive arguments have properites, be sure that the
855 value of `composition' property be the copy. */
856 if (last_to_end == textprops[argnum].to)
857 make_composition_value_copy (props);
858 add_text_properties_from_list (val, props,
859 make_number (textprops[argnum].to));
860 last_to_end = textprops[argnum].to + SCHARS (this);
861 }
862 }
863 return val;
864 }
865 \f
866 static Lisp_Object string_char_byte_cache_string;
867 static int string_char_byte_cache_charpos;
868 static int string_char_byte_cache_bytepos;
869
870 void
871 clear_string_char_byte_cache ()
872 {
873 string_char_byte_cache_string = Qnil;
874 }
875
876 /* Return the character index corresponding to CHAR_INDEX in STRING. */
877
878 int
879 string_char_to_byte (string, char_index)
880 Lisp_Object string;
881 int char_index;
882 {
883 int i, i_byte;
884 int best_below, best_below_byte;
885 int best_above, best_above_byte;
886
887 best_below = best_below_byte = 0;
888 best_above = SCHARS (string);
889 best_above_byte = SBYTES (string);
890 if (best_above == best_above_byte)
891 return char_index;
892
893 if (EQ (string, string_char_byte_cache_string))
894 {
895 if (string_char_byte_cache_charpos < char_index)
896 {
897 best_below = string_char_byte_cache_charpos;
898 best_below_byte = string_char_byte_cache_bytepos;
899 }
900 else
901 {
902 best_above = string_char_byte_cache_charpos;
903 best_above_byte = string_char_byte_cache_bytepos;
904 }
905 }
906
907 if (char_index - best_below < best_above - char_index)
908 {
909 while (best_below < char_index)
910 {
911 int c;
912 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
913 best_below, best_below_byte);
914 }
915 i = best_below;
916 i_byte = best_below_byte;
917 }
918 else
919 {
920 while (best_above > char_index)
921 {
922 unsigned char *pend = SDATA (string) + best_above_byte;
923 unsigned char *pbeg = pend - best_above_byte;
924 unsigned char *p = pend - 1;
925 int bytes;
926
927 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
928 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
929 if (bytes == pend - p)
930 best_above_byte -= bytes;
931 else if (bytes > pend - p)
932 best_above_byte -= (pend - p);
933 else
934 best_above_byte--;
935 best_above--;
936 }
937 i = best_above;
938 i_byte = best_above_byte;
939 }
940
941 string_char_byte_cache_bytepos = i_byte;
942 string_char_byte_cache_charpos = i;
943 string_char_byte_cache_string = string;
944
945 return i_byte;
946 }
947 \f
948 /* Return the character index corresponding to BYTE_INDEX in STRING. */
949
950 int
951 string_byte_to_char (string, byte_index)
952 Lisp_Object string;
953 int byte_index;
954 {
955 int i, i_byte;
956 int best_below, best_below_byte;
957 int best_above, best_above_byte;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962 if (best_above == best_above_byte)
963 return byte_index;
964
965 if (EQ (string, string_char_byte_cache_string))
966 {
967 if (string_char_byte_cache_bytepos < byte_index)
968 {
969 best_below = string_char_byte_cache_charpos;
970 best_below_byte = string_char_byte_cache_bytepos;
971 }
972 else
973 {
974 best_above = string_char_byte_cache_charpos;
975 best_above_byte = string_char_byte_cache_bytepos;
976 }
977 }
978
979 if (byte_index - best_below_byte < best_above_byte - byte_index)
980 {
981 while (best_below_byte < byte_index)
982 {
983 int c;
984 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
985 best_below, best_below_byte);
986 }
987 i = best_below;
988 i_byte = best_below_byte;
989 }
990 else
991 {
992 while (best_above_byte > byte_index)
993 {
994 unsigned char *pend = SDATA (string) + best_above_byte;
995 unsigned char *pbeg = pend - best_above_byte;
996 unsigned char *p = pend - 1;
997 int bytes;
998
999 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
1000 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
1001 if (bytes == pend - p)
1002 best_above_byte -= bytes;
1003 else if (bytes > pend - p)
1004 best_above_byte -= (pend - p);
1005 else
1006 best_above_byte--;
1007 best_above--;
1008 }
1009 i = best_above;
1010 i_byte = best_above_byte;
1011 }
1012
1013 string_char_byte_cache_bytepos = i_byte;
1014 string_char_byte_cache_charpos = i;
1015 string_char_byte_cache_string = string;
1016
1017 return i;
1018 }
1019 \f
1020 /* Convert STRING to a multibyte string.
1021 Single-byte characters 0240 through 0377 are converted
1022 by adding nonascii_insert_offset to each. */
1023
1024 Lisp_Object
1025 string_make_multibyte (string)
1026 Lisp_Object string;
1027 {
1028 unsigned char *buf;
1029 int nbytes;
1030
1031 if (STRING_MULTIBYTE (string))
1032 return string;
1033
1034 nbytes = count_size_as_multibyte (SDATA (string),
1035 SCHARS (string));
1036 /* If all the chars are ASCII, they won't need any more bytes
1037 once converted. In that case, we can return STRING itself. */
1038 if (nbytes == SBYTES (string))
1039 return string;
1040
1041 buf = (unsigned char *) alloca (nbytes);
1042 copy_text (SDATA (string), buf, SBYTES (string),
1043 0, 1);
1044
1045 return make_multibyte_string (buf, SCHARS (string), nbytes);
1046 }
1047
1048
1049 /* Convert STRING to a multibyte string without changing each
1050 character codes. Thus, characters 0200 trough 0237 are converted
1051 to eight-bit-control characters, and characters 0240 through 0377
1052 are converted eight-bit-graphic characters. */
1053
1054 Lisp_Object
1055 string_to_multibyte (string)
1056 Lisp_Object string;
1057 {
1058 unsigned char *buf;
1059 int nbytes;
1060
1061 if (STRING_MULTIBYTE (string))
1062 return string;
1063
1064 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1065 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1066 any more bytes once converted. */
1067 if (nbytes == SBYTES (string))
1068 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1069
1070 buf = (unsigned char *) alloca (nbytes);
1071 bcopy (SDATA (string), buf, SBYTES (string));
1072 str_to_multibyte (buf, nbytes, SBYTES (string));
1073
1074 return make_multibyte_string (buf, SCHARS (string), nbytes);
1075 }
1076
1077
1078 /* Convert STRING to a single-byte string. */
1079
1080 Lisp_Object
1081 string_make_unibyte (string)
1082 Lisp_Object string;
1083 {
1084 unsigned char *buf;
1085
1086 if (! STRING_MULTIBYTE (string))
1087 return string;
1088
1089 buf = (unsigned char *) alloca (SCHARS (string));
1090
1091 copy_text (SDATA (string), buf, SBYTES (string),
1092 1, 0);
1093
1094 return make_unibyte_string (buf, SCHARS (string));
1095 }
1096
1097 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1098 1, 1, 0,
1099 doc: /* Return the multibyte equivalent of STRING.
1100 If STRING is unibyte and contains non-ASCII characters, the function
1101 `unibyte-char-to-multibyte' is used to convert each unibyte character
1102 to a multibyte character. In this case, the returned string is a
1103 newly created string with no text properties. If STRING is multibyte
1104 or entirely ASCII, it is returned unchanged. In particular, when
1105 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1106 \(When the characters are all ASCII, Emacs primitives will treat the
1107 string the same way whether it is unibyte or multibyte.) */)
1108 (string)
1109 Lisp_Object string;
1110 {
1111 CHECK_STRING (string);
1112
1113 return string_make_multibyte (string);
1114 }
1115
1116 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1117 1, 1, 0,
1118 doc: /* Return the unibyte equivalent of STRING.
1119 Multibyte character codes are converted to unibyte according to
1120 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1121 If the lookup in the translation table fails, this function takes just
1122 the low 8 bits of each character. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 return string_make_unibyte (string);
1129 }
1130
1131 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1132 1, 1, 0,
1133 doc: /* Return a unibyte string with the same individual bytes as STRING.
1134 If STRING is unibyte, the result is STRING itself.
1135 Otherwise it is a newly created string, with no text properties.
1136 If STRING is multibyte and contains a character of charset
1137 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1138 corresponding single byte. */)
1139 (string)
1140 Lisp_Object string;
1141 {
1142 CHECK_STRING (string);
1143
1144 if (STRING_MULTIBYTE (string))
1145 {
1146 int bytes = SBYTES (string);
1147 unsigned char *str = (unsigned char *) xmalloc (bytes);
1148
1149 bcopy (SDATA (string), str, bytes);
1150 bytes = str_as_unibyte (str, bytes);
1151 string = make_unibyte_string (str, bytes);
1152 xfree (str);
1153 }
1154 return string;
1155 }
1156
1157 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1158 1, 1, 0,
1159 doc: /* Return a multibyte string with the same individual bytes as STRING.
1160 If STRING is multibyte, the result is STRING itself.
1161 Otherwise it is a newly created string, with no text properties.
1162 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1163 part of a multibyte form), it is converted to the corresponding
1164 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1165 (string)
1166 Lisp_Object string;
1167 {
1168 CHECK_STRING (string);
1169
1170 if (! STRING_MULTIBYTE (string))
1171 {
1172 Lisp_Object new_string;
1173 int nchars, nbytes;
1174
1175 parse_str_as_multibyte (SDATA (string),
1176 SBYTES (string),
1177 &nchars, &nbytes);
1178 new_string = make_uninit_multibyte_string (nchars, nbytes);
1179 bcopy (SDATA (string), SDATA (new_string),
1180 SBYTES (string));
1181 if (nbytes != SBYTES (string))
1182 str_as_multibyte (SDATA (new_string), nbytes,
1183 SBYTES (string), NULL);
1184 string = new_string;
1185 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1186 }
1187 return string;
1188 }
1189
1190 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1191 1, 1, 0,
1192 doc: /* Return a multibyte string with the same individual chars as STRING.
1193 If STRING is multibyte, the result is STRING itself.
1194 Otherwise it is a newly created string, with no text properties.
1195 Characters 0200 through 0237 are converted to eight-bit-control
1196 characters of the same character code. Characters 0240 through 0377
1197 are converted to eight-bit-graphic characters of the same character
1198 codes. */)
1199 (string)
1200 Lisp_Object string;
1201 {
1202 CHECK_STRING (string);
1203
1204 return string_to_multibyte (string);
1205 }
1206
1207 \f
1208 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1209 doc: /* Return a copy of ALIST.
1210 This is an alist which represents the same mapping from objects to objects,
1211 but does not share the alist structure with ALIST.
1212 The objects mapped (cars and cdrs of elements of the alist)
1213 are shared, however.
1214 Elements of ALIST that are not conses are also shared. */)
1215 (alist)
1216 Lisp_Object alist;
1217 {
1218 register Lisp_Object tem;
1219
1220 CHECK_LIST (alist);
1221 if (NILP (alist))
1222 return alist;
1223 alist = concat (1, &alist, Lisp_Cons, 0);
1224 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1225 {
1226 register Lisp_Object car;
1227 car = XCAR (tem);
1228
1229 if (CONSP (car))
1230 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1231 }
1232 return alist;
1233 }
1234
1235 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1236 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1237 TO may be nil or omitted; then the substring runs to the end of STRING.
1238 FROM and TO start at 0. If either is negative, it counts from the end.
1239
1240 This function allows vectors as well as strings. */)
1241 (string, from, to)
1242 Lisp_Object string;
1243 register Lisp_Object from, to;
1244 {
1245 Lisp_Object res;
1246 int size;
1247 int size_byte = 0;
1248 int from_char, to_char;
1249 int from_byte = 0, to_byte = 0;
1250
1251 if (! (STRINGP (string) || VECTORP (string)))
1252 wrong_type_argument (Qarrayp, string);
1253
1254 CHECK_NUMBER (from);
1255
1256 if (STRINGP (string))
1257 {
1258 size = SCHARS (string);
1259 size_byte = SBYTES (string);
1260 }
1261 else
1262 size = XVECTOR (string)->size;
1263
1264 if (NILP (to))
1265 {
1266 to_char = size;
1267 to_byte = size_byte;
1268 }
1269 else
1270 {
1271 CHECK_NUMBER (to);
1272
1273 to_char = XINT (to);
1274 if (to_char < 0)
1275 to_char += size;
1276
1277 if (STRINGP (string))
1278 to_byte = string_char_to_byte (string, to_char);
1279 }
1280
1281 from_char = XINT (from);
1282 if (from_char < 0)
1283 from_char += size;
1284 if (STRINGP (string))
1285 from_byte = string_char_to_byte (string, from_char);
1286
1287 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1288 args_out_of_range_3 (string, make_number (from_char),
1289 make_number (to_char));
1290
1291 if (STRINGP (string))
1292 {
1293 res = make_specified_string (SDATA (string) + from_byte,
1294 to_char - from_char, to_byte - from_byte,
1295 STRING_MULTIBYTE (string));
1296 copy_text_properties (make_number (from_char), make_number (to_char),
1297 string, make_number (0), res, Qnil);
1298 }
1299 else
1300 res = Fvector (to_char - from_char,
1301 XVECTOR (string)->contents + from_char);
1302
1303 return res;
1304 }
1305
1306
1307 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1308 doc: /* Return a substring of STRING, without text properties.
1309 It starts at index FROM and ending before TO.
1310 TO may be nil or omitted; then the substring runs to the end of STRING.
1311 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1312 If FROM or TO is negative, it counts from the end.
1313
1314 With one argument, just copy STRING without its properties. */)
1315 (string, from, to)
1316 Lisp_Object string;
1317 register Lisp_Object from, to;
1318 {
1319 int size, size_byte;
1320 int from_char, to_char;
1321 int from_byte, to_byte;
1322
1323 CHECK_STRING (string);
1324
1325 size = SCHARS (string);
1326 size_byte = SBYTES (string);
1327
1328 if (NILP (from))
1329 from_char = from_byte = 0;
1330 else
1331 {
1332 CHECK_NUMBER (from);
1333 from_char = XINT (from);
1334 if (from_char < 0)
1335 from_char += size;
1336
1337 from_byte = string_char_to_byte (string, from_char);
1338 }
1339
1340 if (NILP (to))
1341 {
1342 to_char = size;
1343 to_byte = size_byte;
1344 }
1345 else
1346 {
1347 CHECK_NUMBER (to);
1348
1349 to_char = XINT (to);
1350 if (to_char < 0)
1351 to_char += size;
1352
1353 to_byte = string_char_to_byte (string, to_char);
1354 }
1355
1356 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1357 args_out_of_range_3 (string, make_number (from_char),
1358 make_number (to_char));
1359
1360 return make_specified_string (SDATA (string) + from_byte,
1361 to_char - from_char, to_byte - from_byte,
1362 STRING_MULTIBYTE (string));
1363 }
1364
1365 /* Extract a substring of STRING, giving start and end positions
1366 both in characters and in bytes. */
1367
1368 Lisp_Object
1369 substring_both (string, from, from_byte, to, to_byte)
1370 Lisp_Object string;
1371 int from, from_byte, to, to_byte;
1372 {
1373 Lisp_Object res;
1374 int size;
1375 int size_byte;
1376
1377 if (! (STRINGP (string) || VECTORP (string)))
1378 wrong_type_argument (Qarrayp, string);
1379
1380 if (STRINGP (string))
1381 {
1382 size = SCHARS (string);
1383 size_byte = SBYTES (string);
1384 }
1385 else
1386 size = XVECTOR (string)->size;
1387
1388 if (!(0 <= from && from <= to && to <= size))
1389 args_out_of_range_3 (string, make_number (from), make_number (to));
1390
1391 if (STRINGP (string))
1392 {
1393 res = make_specified_string (SDATA (string) + from_byte,
1394 to - from, to_byte - from_byte,
1395 STRING_MULTIBYTE (string));
1396 copy_text_properties (make_number (from), make_number (to),
1397 string, make_number (0), res, Qnil);
1398 }
1399 else
1400 res = Fvector (to - from,
1401 XVECTOR (string)->contents + from);
1402
1403 return res;
1404 }
1405 \f
1406 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1407 doc: /* Take cdr N times on LIST, returns the result. */)
1408 (n, list)
1409 Lisp_Object n;
1410 register Lisp_Object list;
1411 {
1412 register int i, num;
1413 CHECK_NUMBER (n);
1414 num = XINT (n);
1415 for (i = 0; i < num && !NILP (list); i++)
1416 {
1417 QUIT;
1418 if (! CONSP (list))
1419 wrong_type_argument (Qlistp, list);
1420 list = XCDR (list);
1421 }
1422 return list;
1423 }
1424
1425 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1426 doc: /* Return the Nth element of LIST.
1427 N counts from zero. If LIST is not that long, nil is returned. */)
1428 (n, list)
1429 Lisp_Object n, list;
1430 {
1431 return Fcar (Fnthcdr (n, list));
1432 }
1433
1434 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1435 doc: /* Return element of SEQUENCE at index N. */)
1436 (sequence, n)
1437 register Lisp_Object sequence, n;
1438 {
1439 CHECK_NUMBER (n);
1440 while (1)
1441 {
1442 if (CONSP (sequence) || NILP (sequence))
1443 return Fcar (Fnthcdr (n, sequence));
1444 else if (STRINGP (sequence) || VECTORP (sequence)
1445 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1446 return Faref (sequence, n);
1447 else
1448 sequence = wrong_type_argument (Qsequencep, sequence);
1449 }
1450 }
1451
1452 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1453 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1454 The value is actually the tail of LIST whose car is ELT. */)
1455 (elt, list)
1456 register Lisp_Object elt;
1457 Lisp_Object list;
1458 {
1459 register Lisp_Object tail;
1460 for (tail = list; !NILP (tail); tail = XCDR (tail))
1461 {
1462 register Lisp_Object tem;
1463 if (! CONSP (tail))
1464 wrong_type_argument (Qlistp, list);
1465 tem = XCAR (tail);
1466 if (! NILP (Fequal (elt, tem)))
1467 return tail;
1468 QUIT;
1469 }
1470 return Qnil;
1471 }
1472
1473 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1474 doc: /* Return non-nil if ELT is an element of LIST.
1475 Comparison done with EQ. The value is actually the tail of LIST
1476 whose car is ELT. */)
1477 (elt, list)
1478 Lisp_Object elt, list;
1479 {
1480 while (1)
1481 {
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 if (!CONSP (list) || EQ (XCAR (list), elt))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list) || EQ (XCAR (list), elt))
1491 break;
1492
1493 list = XCDR (list);
1494 QUIT;
1495 }
1496
1497 if (!CONSP (list) && !NILP (list))
1498 list = wrong_type_argument (Qlistp, list);
1499
1500 return list;
1501 }
1502
1503 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1504 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1505 The value is actually the first element of LIST whose car is KEY.
1506 Elements of LIST that are not conses are ignored. */)
1507 (key, list)
1508 Lisp_Object key, list;
1509 {
1510 Lisp_Object result;
1511
1512 while (1)
1513 {
1514 if (!CONSP (list)
1515 || (CONSP (XCAR (list))
1516 && EQ (XCAR (XCAR (list)), key)))
1517 break;
1518
1519 list = XCDR (list);
1520 if (!CONSP (list)
1521 || (CONSP (XCAR (list))
1522 && EQ (XCAR (XCAR (list)), key)))
1523 break;
1524
1525 list = XCDR (list);
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && EQ (XCAR (XCAR (list)), key)))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 if (CONSP (list))
1536 result = XCAR (list);
1537 else if (NILP (list))
1538 result = Qnil;
1539 else
1540 result = wrong_type_argument (Qlistp, list);
1541
1542 return result;
1543 }
1544
1545 /* Like Fassq but never report an error and do not allow quits.
1546 Use only on lists known never to be circular. */
1547
1548 Lisp_Object
1549 assq_no_quit (key, list)
1550 Lisp_Object key, list;
1551 {
1552 while (CONSP (list)
1553 && (!CONSP (XCAR (list))
1554 || !EQ (XCAR (XCAR (list)), key)))
1555 list = XCDR (list);
1556
1557 return CONSP (list) ? XCAR (list) : Qnil;
1558 }
1559
1560 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1561 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1562 The value is actually the first element of LIST whose car equals KEY. */)
1563 (key, list)
1564 Lisp_Object key, list;
1565 {
1566 Lisp_Object result, car;
1567
1568 while (1)
1569 {
1570 if (!CONSP (list)
1571 || (CONSP (XCAR (list))
1572 && (car = XCAR (XCAR (list)),
1573 EQ (car, key) || !NILP (Fequal (car, key)))))
1574 break;
1575
1576 list = XCDR (list);
1577 if (!CONSP (list)
1578 || (CONSP (XCAR (list))
1579 && (car = XCAR (XCAR (list)),
1580 EQ (car, key) || !NILP (Fequal (car, key)))))
1581 break;
1582
1583 list = XCDR (list);
1584 if (!CONSP (list)
1585 || (CONSP (XCAR (list))
1586 && (car = XCAR (XCAR (list)),
1587 EQ (car, key) || !NILP (Fequal (car, key)))))
1588 break;
1589
1590 list = XCDR (list);
1591 QUIT;
1592 }
1593
1594 if (CONSP (list))
1595 result = XCAR (list);
1596 else if (NILP (list))
1597 result = Qnil;
1598 else
1599 result = wrong_type_argument (Qlistp, list);
1600
1601 return result;
1602 }
1603
1604 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr is KEY. */)
1607 (key, list)
1608 register Lisp_Object key;
1609 Lisp_Object list;
1610 {
1611 Lisp_Object result;
1612
1613 while (1)
1614 {
1615 if (!CONSP (list)
1616 || (CONSP (XCAR (list))
1617 && EQ (XCDR (XCAR (list)), key)))
1618 break;
1619
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && EQ (XCDR (XCAR (list)), key)))
1624 break;
1625
1626 list = XCDR (list);
1627 if (!CONSP (list)
1628 || (CONSP (XCAR (list))
1629 && EQ (XCDR (XCAR (list)), key)))
1630 break;
1631
1632 list = XCDR (list);
1633 QUIT;
1634 }
1635
1636 if (NILP (list))
1637 result = Qnil;
1638 else if (CONSP (list))
1639 result = XCAR (list);
1640 else
1641 result = wrong_type_argument (Qlistp, list);
1642
1643 return result;
1644 }
1645
1646 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1647 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1648 The value is actually the first element of LIST whose cdr equals KEY. */)
1649 (key, list)
1650 Lisp_Object key, list;
1651 {
1652 Lisp_Object result, cdr;
1653
1654 while (1)
1655 {
1656 if (!CONSP (list)
1657 || (CONSP (XCAR (list))
1658 && (cdr = XCDR (XCAR (list)),
1659 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1660 break;
1661
1662 list = XCDR (list);
1663 if (!CONSP (list)
1664 || (CONSP (XCAR (list))
1665 && (cdr = XCDR (XCAR (list)),
1666 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1667 break;
1668
1669 list = XCDR (list);
1670 if (!CONSP (list)
1671 || (CONSP (XCAR (list))
1672 && (cdr = XCDR (XCAR (list)),
1673 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1674 break;
1675
1676 list = XCDR (list);
1677 QUIT;
1678 }
1679
1680 if (CONSP (list))
1681 result = XCAR (list);
1682 else if (NILP (list))
1683 result = Qnil;
1684 else
1685 result = wrong_type_argument (Qlistp, list);
1686
1687 return result;
1688 }
1689 \f
1690 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1691 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1692 The modified LIST is returned. Comparison is done with `eq'.
1693 If the first member of LIST is ELT, there is no way to remove it by side effect;
1694 therefore, write `(setq foo (delq element foo))'
1695 to be sure of changing the value of `foo'. */)
1696 (elt, list)
1697 register Lisp_Object elt;
1698 Lisp_Object list;
1699 {
1700 register Lisp_Object tail, prev;
1701 register Lisp_Object tem;
1702
1703 tail = list;
1704 prev = Qnil;
1705 while (!NILP (tail))
1706 {
1707 if (! CONSP (tail))
1708 wrong_type_argument (Qlistp, list);
1709 tem = XCAR (tail);
1710 if (EQ (elt, tem))
1711 {
1712 if (NILP (prev))
1713 list = XCDR (tail);
1714 else
1715 Fsetcdr (prev, XCDR (tail));
1716 }
1717 else
1718 prev = tail;
1719 tail = XCDR (tail);
1720 QUIT;
1721 }
1722 return list;
1723 }
1724
1725 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1726 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1727 SEQ must be a list, a vector, or a string.
1728 The modified SEQ is returned. Comparison is done with `equal'.
1729 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1730 is not a side effect; it is simply using a different sequence.
1731 Therefore, write `(setq foo (delete element foo))'
1732 to be sure of changing the value of `foo'. */)
1733 (elt, seq)
1734 Lisp_Object elt, seq;
1735 {
1736 if (VECTORP (seq))
1737 {
1738 EMACS_INT i, n;
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 ++n;
1743
1744 if (n != ASIZE (seq))
1745 {
1746 struct Lisp_Vector *p = allocate_vector (n);
1747
1748 for (i = n = 0; i < ASIZE (seq); ++i)
1749 if (NILP (Fequal (AREF (seq, i), elt)))
1750 p->contents[n++] = AREF (seq, i);
1751
1752 XSETVECTOR (seq, p);
1753 }
1754 }
1755 else if (STRINGP (seq))
1756 {
1757 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1758 int c;
1759
1760 for (i = nchars = nbytes = ibyte = 0;
1761 i < SCHARS (seq);
1762 ++i, ibyte += cbytes)
1763 {
1764 if (STRING_MULTIBYTE (seq))
1765 {
1766 c = STRING_CHAR (SDATA (seq) + ibyte,
1767 SBYTES (seq) - ibyte);
1768 cbytes = CHAR_BYTES (c);
1769 }
1770 else
1771 {
1772 c = SREF (seq, i);
1773 cbytes = 1;
1774 }
1775
1776 if (!INTEGERP (elt) || c != XINT (elt))
1777 {
1778 ++nchars;
1779 nbytes += cbytes;
1780 }
1781 }
1782
1783 if (nchars != SCHARS (seq))
1784 {
1785 Lisp_Object tem;
1786
1787 tem = make_uninit_multibyte_string (nchars, nbytes);
1788 if (!STRING_MULTIBYTE (seq))
1789 STRING_SET_UNIBYTE (tem);
1790
1791 for (i = nchars = nbytes = ibyte = 0;
1792 i < SCHARS (seq);
1793 ++i, ibyte += cbytes)
1794 {
1795 if (STRING_MULTIBYTE (seq))
1796 {
1797 c = STRING_CHAR (SDATA (seq) + ibyte,
1798 SBYTES (seq) - ibyte);
1799 cbytes = CHAR_BYTES (c);
1800 }
1801 else
1802 {
1803 c = SREF (seq, i);
1804 cbytes = 1;
1805 }
1806
1807 if (!INTEGERP (elt) || c != XINT (elt))
1808 {
1809 unsigned char *from = SDATA (seq) + ibyte;
1810 unsigned char *to = SDATA (tem) + nbytes;
1811 EMACS_INT n;
1812
1813 ++nchars;
1814 nbytes += cbytes;
1815
1816 for (n = cbytes; n--; )
1817 *to++ = *from++;
1818 }
1819 }
1820
1821 seq = tem;
1822 }
1823 }
1824 else
1825 {
1826 Lisp_Object tail, prev;
1827
1828 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1829 {
1830 if (!CONSP (tail))
1831 wrong_type_argument (Qlistp, seq);
1832
1833 if (!NILP (Fequal (elt, XCAR (tail))))
1834 {
1835 if (NILP (prev))
1836 seq = XCDR (tail);
1837 else
1838 Fsetcdr (prev, XCDR (tail));
1839 }
1840 else
1841 prev = tail;
1842 QUIT;
1843 }
1844 }
1845
1846 return seq;
1847 }
1848
1849 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1850 doc: /* Reverse LIST by modifying cdr pointers.
1851 Return the reversed list. */)
1852 (list)
1853 Lisp_Object list;
1854 {
1855 register Lisp_Object prev, tail, next;
1856
1857 if (NILP (list)) return list;
1858 prev = Qnil;
1859 tail = list;
1860 while (!NILP (tail))
1861 {
1862 QUIT;
1863 if (! CONSP (tail))
1864 wrong_type_argument (Qlistp, list);
1865 next = XCDR (tail);
1866 Fsetcdr (tail, prev);
1867 prev = tail;
1868 tail = next;
1869 }
1870 return prev;
1871 }
1872
1873 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1874 doc: /* Reverse LIST, copying. Return the reversed list.
1875 See also the function `nreverse', which is used more often. */)
1876 (list)
1877 Lisp_Object list;
1878 {
1879 Lisp_Object new;
1880
1881 for (new = Qnil; CONSP (list); list = XCDR (list))
1882 {
1883 QUIT;
1884 new = Fcons (XCAR (list), new);
1885 }
1886 if (!NILP (list))
1887 wrong_type_argument (Qconsp, list);
1888 return new;
1889 }
1890 \f
1891 Lisp_Object merge ();
1892
1893 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1894 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1895 Returns the sorted list. LIST is modified by side effects.
1896 PREDICATE is called with two elements of LIST, and should return t
1897 if the first element is "less" than the second. */)
1898 (list, predicate)
1899 Lisp_Object list, predicate;
1900 {
1901 Lisp_Object front, back;
1902 register Lisp_Object len, tem;
1903 struct gcpro gcpro1, gcpro2;
1904 register int length;
1905
1906 front = list;
1907 len = Flength (list);
1908 length = XINT (len);
1909 if (length < 2)
1910 return list;
1911
1912 XSETINT (len, (length / 2) - 1);
1913 tem = Fnthcdr (len, list);
1914 back = Fcdr (tem);
1915 Fsetcdr (tem, Qnil);
1916
1917 GCPRO2 (front, back);
1918 front = Fsort (front, predicate);
1919 back = Fsort (back, predicate);
1920 UNGCPRO;
1921 return merge (front, back, predicate);
1922 }
1923
1924 Lisp_Object
1925 merge (org_l1, org_l2, pred)
1926 Lisp_Object org_l1, org_l2;
1927 Lisp_Object pred;
1928 {
1929 Lisp_Object value;
1930 register Lisp_Object tail;
1931 Lisp_Object tem;
1932 register Lisp_Object l1, l2;
1933 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1934
1935 l1 = org_l1;
1936 l2 = org_l2;
1937 tail = Qnil;
1938 value = Qnil;
1939
1940 /* It is sufficient to protect org_l1 and org_l2.
1941 When l1 and l2 are updated, we copy the new values
1942 back into the org_ vars. */
1943 GCPRO4 (org_l1, org_l2, pred, value);
1944
1945 while (1)
1946 {
1947 if (NILP (l1))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l2;
1952 Fsetcdr (tail, l2);
1953 return value;
1954 }
1955 if (NILP (l2))
1956 {
1957 UNGCPRO;
1958 if (NILP (tail))
1959 return l1;
1960 Fsetcdr (tail, l1);
1961 return value;
1962 }
1963 tem = call2 (pred, Fcar (l2), Fcar (l1));
1964 if (NILP (tem))
1965 {
1966 tem = l1;
1967 l1 = Fcdr (l1);
1968 org_l1 = l1;
1969 }
1970 else
1971 {
1972 tem = l2;
1973 l2 = Fcdr (l2);
1974 org_l2 = l2;
1975 }
1976 if (NILP (tail))
1977 value = tem;
1978 else
1979 Fsetcdr (tail, tem);
1980 tail = tem;
1981 }
1982 }
1983
1984 \f
1985 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1986 doc: /* Extract a value from a property list.
1987 PLIST is a property list, which is a list of the form
1988 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1989 corresponding to the given PROP, or nil if PROP is not
1990 one of the properties on the list. */)
1991 (plist, prop)
1992 Lisp_Object plist;
1993 Lisp_Object prop;
1994 {
1995 Lisp_Object tail;
1996
1997 for (tail = plist;
1998 CONSP (tail) && CONSP (XCDR (tail));
1999 tail = XCDR (XCDR (tail)))
2000 {
2001 if (EQ (prop, XCAR (tail)))
2002 return XCAR (XCDR (tail));
2003
2004 /* This function can be called asynchronously
2005 (setup_coding_system). Don't QUIT in that case. */
2006 if (!interrupt_input_blocked)
2007 QUIT;
2008 }
2009
2010 if (!NILP (tail))
2011 wrong_type_argument (Qlistp, prop);
2012
2013 return Qnil;
2014 }
2015
2016 DEFUN ("get", Fget, Sget, 2, 2, 0,
2017 doc: /* Return the value of SYMBOL's PROPNAME property.
2018 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2019 (symbol, propname)
2020 Lisp_Object symbol, propname;
2021 {
2022 CHECK_SYMBOL (symbol);
2023 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2024 }
2025
2026 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2027 doc: /* Change value in PLIST of PROP to VAL.
2028 PLIST is a property list, which is a list of the form
2029 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2030 If PROP is already a property on the list, its value is set to VAL,
2031 otherwise the new PROP VAL pair is added. The new plist is returned;
2032 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2033 The PLIST is modified by side effects. */)
2034 (plist, prop, val)
2035 Lisp_Object plist;
2036 register Lisp_Object prop;
2037 Lisp_Object val;
2038 {
2039 register Lisp_Object tail, prev;
2040 Lisp_Object newcell;
2041 prev = Qnil;
2042 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2043 tail = XCDR (XCDR (tail)))
2044 {
2045 if (EQ (prop, XCAR (tail)))
2046 {
2047 Fsetcar (XCDR (tail), val);
2048 return plist;
2049 }
2050
2051 prev = tail;
2052 QUIT;
2053 }
2054 newcell = Fcons (prop, Fcons (val, Qnil));
2055 if (NILP (prev))
2056 return newcell;
2057 else
2058 Fsetcdr (XCDR (prev), newcell);
2059 return plist;
2060 }
2061
2062 DEFUN ("put", Fput, Sput, 3, 3, 0,
2063 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2064 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2065 (symbol, propname, value)
2066 Lisp_Object symbol, propname, value;
2067 {
2068 CHECK_SYMBOL (symbol);
2069 XSYMBOL (symbol)->plist
2070 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2071 return value;
2072 }
2073 \f
2074 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2075 doc: /* Extract a value from a property list, comparing with `equal'.
2076 PLIST is a property list, which is a list of the form
2077 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2078 corresponding to the given PROP, or nil if PROP is not
2079 one of the properties on the list. */)
2080 (plist, prop)
2081 Lisp_Object plist;
2082 Lisp_Object prop;
2083 {
2084 Lisp_Object tail;
2085
2086 for (tail = plist;
2087 CONSP (tail) && CONSP (XCDR (tail));
2088 tail = XCDR (XCDR (tail)))
2089 {
2090 if (! NILP (Fequal (prop, XCAR (tail))))
2091 return XCAR (XCDR (tail));
2092
2093 QUIT;
2094 }
2095
2096 if (!NILP (tail))
2097 wrong_type_argument (Qlistp, prop);
2098
2099 return Qnil;
2100 }
2101
2102 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2103 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2104 PLIST is a property list, which is a list of the form
2105 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2106 If PROP is already a property on the list, its value is set to VAL,
2107 otherwise the new PROP VAL pair is added. The new plist is returned;
2108 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2109 The PLIST is modified by side effects. */)
2110 (plist, prop, val)
2111 Lisp_Object plist;
2112 register Lisp_Object prop;
2113 Lisp_Object val;
2114 {
2115 register Lisp_Object tail, prev;
2116 Lisp_Object newcell;
2117 prev = Qnil;
2118 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2119 tail = XCDR (XCDR (tail)))
2120 {
2121 if (! NILP (Fequal (prop, XCAR (tail))))
2122 {
2123 Fsetcar (XCDR (tail), val);
2124 return plist;
2125 }
2126
2127 prev = tail;
2128 QUIT;
2129 }
2130 newcell = Fcons (prop, Fcons (val, Qnil));
2131 if (NILP (prev))
2132 return newcell;
2133 else
2134 Fsetcdr (XCDR (prev), newcell);
2135 return plist;
2136 }
2137 \f
2138 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2139 doc: /* Return t if two Lisp objects have similar structure and contents.
2140 They must have the same data type.
2141 Conses are compared by comparing the cars and the cdrs.
2142 Vectors and strings are compared element by element.
2143 Numbers are compared by value, but integers cannot equal floats.
2144 (Use `=' if you want integers and floats to be able to be equal.)
2145 Symbols must match exactly. */)
2146 (o1, o2)
2147 register Lisp_Object o1, o2;
2148 {
2149 return internal_equal (o1, o2, 0) ? Qt : Qnil;
2150 }
2151
2152 static int
2153 internal_equal (o1, o2, depth)
2154 register Lisp_Object o1, o2;
2155 int depth;
2156 {
2157 if (depth > 200)
2158 error ("Stack overflow in equal");
2159
2160 tail_recurse:
2161 QUIT;
2162 if (EQ (o1, o2))
2163 return 1;
2164 if (XTYPE (o1) != XTYPE (o2))
2165 return 0;
2166
2167 switch (XTYPE (o1))
2168 {
2169 case Lisp_Float:
2170 {
2171 double d1, d2;
2172
2173 d1 = extract_float (o1);
2174 d2 = extract_float (o2);
2175 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2176 though they are not =. */
2177 return d1 == d2 || (d1 != d1 && d2 != d2);
2178 }
2179
2180 case Lisp_Cons:
2181 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
2182 return 0;
2183 o1 = XCDR (o1);
2184 o2 = XCDR (o2);
2185 goto tail_recurse;
2186
2187 case Lisp_Misc:
2188 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2189 return 0;
2190 if (OVERLAYP (o1))
2191 {
2192 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2193 depth + 1)
2194 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2195 depth + 1))
2196 return 0;
2197 o1 = XOVERLAY (o1)->plist;
2198 o2 = XOVERLAY (o2)->plist;
2199 goto tail_recurse;
2200 }
2201 if (MARKERP (o1))
2202 {
2203 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2204 && (XMARKER (o1)->buffer == 0
2205 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2206 }
2207 break;
2208
2209 case Lisp_Vectorlike:
2210 {
2211 register int i;
2212 EMACS_INT size = XVECTOR (o1)->size;
2213 /* Pseudovectors have the type encoded in the size field, so this test
2214 actually checks that the objects have the same type as well as the
2215 same size. */
2216 if (XVECTOR (o2)->size != size)
2217 return 0;
2218 /* Boolvectors are compared much like strings. */
2219 if (BOOL_VECTOR_P (o1))
2220 {
2221 int size_in_chars
2222 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2223
2224 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2225 return 0;
2226 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2227 size_in_chars))
2228 return 0;
2229 return 1;
2230 }
2231 if (WINDOW_CONFIGURATIONP (o1))
2232 return compare_window_configurations (o1, o2, 0);
2233
2234 /* Aside from them, only true vectors, char-tables, and compiled
2235 functions are sensible to compare, so eliminate the others now. */
2236 if (size & PSEUDOVECTOR_FLAG)
2237 {
2238 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2239 return 0;
2240 size &= PSEUDOVECTOR_SIZE_MASK;
2241 }
2242 for (i = 0; i < size; i++)
2243 {
2244 Lisp_Object v1, v2;
2245 v1 = XVECTOR (o1)->contents [i];
2246 v2 = XVECTOR (o2)->contents [i];
2247 if (!internal_equal (v1, v2, depth + 1))
2248 return 0;
2249 }
2250 return 1;
2251 }
2252 break;
2253
2254 case Lisp_String:
2255 if (SCHARS (o1) != SCHARS (o2))
2256 return 0;
2257 if (SBYTES (o1) != SBYTES (o2))
2258 return 0;
2259 if (bcmp (SDATA (o1), SDATA (o2),
2260 SBYTES (o1)))
2261 return 0;
2262 return 1;
2263
2264 case Lisp_Int:
2265 case Lisp_Symbol:
2266 case Lisp_Type_Limit:
2267 break;
2268 }
2269
2270 return 0;
2271 }
2272 \f
2273 extern Lisp_Object Fmake_char_internal ();
2274
2275 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2276 doc: /* Store each element of ARRAY with ITEM.
2277 ARRAY is a vector, string, char-table, or bool-vector. */)
2278 (array, item)
2279 Lisp_Object array, item;
2280 {
2281 register int size, index, charval;
2282 retry:
2283 if (VECTORP (array))
2284 {
2285 register Lisp_Object *p = XVECTOR (array)->contents;
2286 size = XVECTOR (array)->size;
2287 for (index = 0; index < size; index++)
2288 p[index] = item;
2289 }
2290 else if (CHAR_TABLE_P (array))
2291 {
2292 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2293 size = CHAR_TABLE_ORDINARY_SLOTS;
2294 for (index = 0; index < size; index++)
2295 p[index] = item;
2296 XCHAR_TABLE (array)->defalt = Qnil;
2297 }
2298 else if (STRINGP (array))
2299 {
2300 register unsigned char *p = SDATA (array);
2301 CHECK_NUMBER (item);
2302 charval = XINT (item);
2303 size = SCHARS (array);
2304 if (STRING_MULTIBYTE (array))
2305 {
2306 unsigned char str[MAX_MULTIBYTE_LENGTH];
2307 int len = CHAR_STRING (charval, str);
2308 int size_byte = SBYTES (array);
2309 unsigned char *p1 = p, *endp = p + size_byte;
2310 int i;
2311
2312 if (size != size_byte)
2313 while (p1 < endp)
2314 {
2315 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2316 if (len != this_len)
2317 error ("Attempt to change byte length of a string");
2318 p1 += this_len;
2319 }
2320 for (i = 0; i < size_byte; i++)
2321 *p++ = str[i % len];
2322 }
2323 else
2324 for (index = 0; index < size; index++)
2325 p[index] = charval;
2326 }
2327 else if (BOOL_VECTOR_P (array))
2328 {
2329 register unsigned char *p = XBOOL_VECTOR (array)->data;
2330 int size_in_chars
2331 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2332
2333 charval = (! NILP (item) ? -1 : 0);
2334 for (index = 0; index < size_in_chars - 1; index++)
2335 p[index] = charval;
2336 if (index < size_in_chars)
2337 {
2338 /* Mask out bits beyond the vector size. */
2339 if (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)
2340 charval &= (1 << (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)) - 1;
2341 p[index] = charval;
2342 }
2343 }
2344 else
2345 {
2346 array = wrong_type_argument (Qarrayp, array);
2347 goto retry;
2348 }
2349 return array;
2350 }
2351
2352 DEFUN ("clear-string", Fclear_string, Sclear_string,
2353 1, 1, 0,
2354 doc: /* Clear the contents of STRING.
2355 This makes STRING unibyte and may change its length. */)
2356 (string)
2357 Lisp_Object string;
2358 {
2359 int len = SBYTES (string);
2360 bzero (SDATA (string), len);
2361 STRING_SET_CHARS (string, len);
2362 STRING_SET_UNIBYTE (string);
2363 return Qnil;
2364 }
2365 \f
2366 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2367 1, 1, 0,
2368 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2369 (char_table)
2370 Lisp_Object char_table;
2371 {
2372 CHECK_CHAR_TABLE (char_table);
2373
2374 return XCHAR_TABLE (char_table)->purpose;
2375 }
2376
2377 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2378 1, 1, 0,
2379 doc: /* Return the parent char-table of CHAR-TABLE.
2380 The value is either nil or another char-table.
2381 If CHAR-TABLE holds nil for a given character,
2382 then the actual applicable value is inherited from the parent char-table
2383 \(or from its parents, if necessary). */)
2384 (char_table)
2385 Lisp_Object char_table;
2386 {
2387 CHECK_CHAR_TABLE (char_table);
2388
2389 return XCHAR_TABLE (char_table)->parent;
2390 }
2391
2392 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2393 2, 2, 0,
2394 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2395 Return PARENT. PARENT must be either nil or another char-table. */)
2396 (char_table, parent)
2397 Lisp_Object char_table, parent;
2398 {
2399 Lisp_Object temp;
2400
2401 CHECK_CHAR_TABLE (char_table);
2402
2403 if (!NILP (parent))
2404 {
2405 CHECK_CHAR_TABLE (parent);
2406
2407 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2408 if (EQ (temp, char_table))
2409 error ("Attempt to make a chartable be its own parent");
2410 }
2411
2412 XCHAR_TABLE (char_table)->parent = parent;
2413
2414 return parent;
2415 }
2416
2417 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2418 2, 2, 0,
2419 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2420 (char_table, n)
2421 Lisp_Object char_table, n;
2422 {
2423 CHECK_CHAR_TABLE (char_table);
2424 CHECK_NUMBER (n);
2425 if (XINT (n) < 0
2426 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2427 args_out_of_range (char_table, n);
2428
2429 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2430 }
2431
2432 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2433 Sset_char_table_extra_slot,
2434 3, 3, 0,
2435 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2436 (char_table, n, value)
2437 Lisp_Object char_table, n, value;
2438 {
2439 CHECK_CHAR_TABLE (char_table);
2440 CHECK_NUMBER (n);
2441 if (XINT (n) < 0
2442 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2443 args_out_of_range (char_table, n);
2444
2445 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2446 }
2447 \f
2448 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2449 2, 2, 0,
2450 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2451 RANGE should be nil (for the default value)
2452 a vector which identifies a character set or a row of a character set,
2453 a character set name, or a character code. */)
2454 (char_table, range)
2455 Lisp_Object char_table, range;
2456 {
2457 CHECK_CHAR_TABLE (char_table);
2458
2459 if (EQ (range, Qnil))
2460 return XCHAR_TABLE (char_table)->defalt;
2461 else if (INTEGERP (range))
2462 return Faref (char_table, range);
2463 else if (SYMBOLP (range))
2464 {
2465 Lisp_Object charset_info;
2466
2467 charset_info = Fget (range, Qcharset);
2468 CHECK_VECTOR (charset_info);
2469
2470 return Faref (char_table,
2471 make_number (XINT (XVECTOR (charset_info)->contents[0])
2472 + 128));
2473 }
2474 else if (VECTORP (range))
2475 {
2476 if (XVECTOR (range)->size == 1)
2477 return Faref (char_table,
2478 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2479 else
2480 {
2481 int size = XVECTOR (range)->size;
2482 Lisp_Object *val = XVECTOR (range)->contents;
2483 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2484 size <= 1 ? Qnil : val[1],
2485 size <= 2 ? Qnil : val[2]);
2486 return Faref (char_table, ch);
2487 }
2488 }
2489 else
2490 error ("Invalid RANGE argument to `char-table-range'");
2491 return Qt;
2492 }
2493
2494 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2495 3, 3, 0,
2496 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2497 RANGE should be t (for all characters), nil (for the default value),
2498 a character set, a vector which identifies a character set, a row of a
2499 character set, or a character code. Return VALUE. */)
2500 (char_table, range, value)
2501 Lisp_Object char_table, range, value;
2502 {
2503 int i;
2504
2505 CHECK_CHAR_TABLE (char_table);
2506
2507 if (EQ (range, Qt))
2508 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2509 XCHAR_TABLE (char_table)->contents[i] = value;
2510 else if (EQ (range, Qnil))
2511 XCHAR_TABLE (char_table)->defalt = value;
2512 else if (SYMBOLP (range))
2513 {
2514 Lisp_Object charset_info;
2515 int charset_id;
2516
2517 charset_info = Fget (range, Qcharset);
2518 if (! VECTORP (charset_info)
2519 || ! NATNUMP (AREF (charset_info, 0))
2520 || (charset_id = XINT (AREF (charset_info, 0)),
2521 ! CHARSET_DEFINED_P (charset_id)))
2522 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2523
2524 if (charset_id == CHARSET_ASCII)
2525 for (i = 0; i < 128; i++)
2526 XCHAR_TABLE (char_table)->contents[i] = value;
2527 else if (charset_id == CHARSET_8_BIT_CONTROL)
2528 for (i = 128; i < 160; i++)
2529 XCHAR_TABLE (char_table)->contents[i] = value;
2530 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2531 for (i = 160; i < 256; i++)
2532 XCHAR_TABLE (char_table)->contents[i] = value;
2533 else
2534 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2535 }
2536 else if (INTEGERP (range))
2537 Faset (char_table, range, value);
2538 else if (VECTORP (range))
2539 {
2540 if (XVECTOR (range)->size == 1)
2541 return Faset (char_table,
2542 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2543 value);
2544 else
2545 {
2546 int size = XVECTOR (range)->size;
2547 Lisp_Object *val = XVECTOR (range)->contents;
2548 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2549 size <= 1 ? Qnil : val[1],
2550 size <= 2 ? Qnil : val[2]);
2551 return Faset (char_table, ch, value);
2552 }
2553 }
2554 else
2555 error ("Invalid RANGE argument to `set-char-table-range'");
2556
2557 return value;
2558 }
2559
2560 DEFUN ("set-char-table-default", Fset_char_table_default,
2561 Sset_char_table_default, 3, 3, 0,
2562 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2563 The generic character specifies the group of characters.
2564 See also the documentation of `make-char'. */)
2565 (char_table, ch, value)
2566 Lisp_Object char_table, ch, value;
2567 {
2568 int c, charset, code1, code2;
2569 Lisp_Object temp;
2570
2571 CHECK_CHAR_TABLE (char_table);
2572 CHECK_NUMBER (ch);
2573
2574 c = XINT (ch);
2575 SPLIT_CHAR (c, charset, code1, code2);
2576
2577 /* Since we may want to set the default value for a character set
2578 not yet defined, we check only if the character set is in the
2579 valid range or not, instead of it is already defined or not. */
2580 if (! CHARSET_VALID_P (charset))
2581 invalid_character (c);
2582
2583 if (charset == CHARSET_ASCII)
2584 return (XCHAR_TABLE (char_table)->defalt = value);
2585
2586 /* Even if C is not a generic char, we had better behave as if a
2587 generic char is specified. */
2588 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2589 code1 = 0;
2590 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2591 if (!code1)
2592 {
2593 if (SUB_CHAR_TABLE_P (temp))
2594 XCHAR_TABLE (temp)->defalt = value;
2595 else
2596 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2597 return value;
2598 }
2599 if (SUB_CHAR_TABLE_P (temp))
2600 char_table = temp;
2601 else
2602 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2603 = make_sub_char_table (temp));
2604 temp = XCHAR_TABLE (char_table)->contents[code1];
2605 if (SUB_CHAR_TABLE_P (temp))
2606 XCHAR_TABLE (temp)->defalt = value;
2607 else
2608 XCHAR_TABLE (char_table)->contents[code1] = value;
2609 return value;
2610 }
2611
2612 /* Look up the element in TABLE at index CH,
2613 and return it as an integer.
2614 If the element is nil, return CH itself.
2615 (Actually we do that for any non-integer.) */
2616
2617 int
2618 char_table_translate (table, ch)
2619 Lisp_Object table;
2620 int ch;
2621 {
2622 Lisp_Object value;
2623 value = Faref (table, make_number (ch));
2624 if (! INTEGERP (value))
2625 return ch;
2626 return XINT (value);
2627 }
2628
2629 static void
2630 optimize_sub_char_table (table, chars)
2631 Lisp_Object *table;
2632 int chars;
2633 {
2634 Lisp_Object elt;
2635 int from, to;
2636
2637 if (chars == 94)
2638 from = 33, to = 127;
2639 else
2640 from = 32, to = 128;
2641
2642 if (!SUB_CHAR_TABLE_P (*table))
2643 return;
2644 elt = XCHAR_TABLE (*table)->contents[from++];
2645 for (; from < to; from++)
2646 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2647 return;
2648 *table = elt;
2649 }
2650
2651 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2652 1, 1, 0, doc: /* Optimize char table TABLE. */)
2653 (table)
2654 Lisp_Object table;
2655 {
2656 Lisp_Object elt;
2657 int dim;
2658 int i, j;
2659
2660 CHECK_CHAR_TABLE (table);
2661
2662 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2663 {
2664 elt = XCHAR_TABLE (table)->contents[i];
2665 if (!SUB_CHAR_TABLE_P (elt))
2666 continue;
2667 dim = CHARSET_DIMENSION (i - 128);
2668 if (dim == 2)
2669 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2670 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2671 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2672 }
2673 return Qnil;
2674 }
2675
2676 \f
2677 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2678 character or group of characters that share a value.
2679 DEPTH is the current depth in the originally specified
2680 chartable, and INDICES contains the vector indices
2681 for the levels our callers have descended.
2682
2683 ARG is passed to C_FUNCTION when that is called. */
2684
2685 void
2686 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2687 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2688 Lisp_Object function, table, subtable, arg, *indices;
2689 int depth;
2690 {
2691 int i, to;
2692
2693 if (depth == 0)
2694 {
2695 /* At first, handle ASCII and 8-bit European characters. */
2696 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2697 {
2698 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2699 if (NILP (elt))
2700 elt = XCHAR_TABLE (subtable)->defalt;
2701 if (NILP (elt))
2702 elt = Faref (subtable, make_number (i));
2703 if (c_function)
2704 (*c_function) (arg, make_number (i), elt);
2705 else
2706 call2 (function, make_number (i), elt);
2707 }
2708 #if 0 /* If the char table has entries for higher characters,
2709 we should report them. */
2710 if (NILP (current_buffer->enable_multibyte_characters))
2711 return;
2712 #endif
2713 to = CHAR_TABLE_ORDINARY_SLOTS;
2714 }
2715 else
2716 {
2717 int charset = XFASTINT (indices[0]) - 128;
2718
2719 i = 32;
2720 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2721 if (CHARSET_CHARS (charset) == 94)
2722 i++, to--;
2723 }
2724
2725 for (; i < to; i++)
2726 {
2727 Lisp_Object elt;
2728 int charset;
2729
2730 elt = XCHAR_TABLE (subtable)->contents[i];
2731 XSETFASTINT (indices[depth], i);
2732 charset = XFASTINT (indices[0]) - 128;
2733 if (depth == 0
2734 && (!CHARSET_DEFINED_P (charset)
2735 || charset == CHARSET_8_BIT_CONTROL
2736 || charset == CHARSET_8_BIT_GRAPHIC))
2737 continue;
2738
2739 if (SUB_CHAR_TABLE_P (elt))
2740 {
2741 if (depth >= 3)
2742 error ("Too deep char table");
2743 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2744 }
2745 else
2746 {
2747 int c1, c2, c;
2748
2749 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2750 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2751 c = MAKE_CHAR (charset, c1, c2);
2752
2753 if (NILP (elt))
2754 elt = XCHAR_TABLE (subtable)->defalt;
2755 if (NILP (elt))
2756 elt = Faref (table, make_number (c));
2757
2758 if (c_function)
2759 (*c_function) (arg, make_number (c), elt);
2760 else
2761 call2 (function, make_number (c), elt);
2762 }
2763 }
2764 }
2765
2766 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2767 static void
2768 void_call2 (a, b, c)
2769 Lisp_Object a, b, c;
2770 {
2771 call2 (a, b, c);
2772 }
2773
2774 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2775 2, 2, 0,
2776 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2777 FUNCTION is called with two arguments--a key and a value.
2778 The key is always a possible IDX argument to `aref'. */)
2779 (function, char_table)
2780 Lisp_Object function, char_table;
2781 {
2782 /* The depth of char table is at most 3. */
2783 Lisp_Object indices[3];
2784
2785 CHECK_CHAR_TABLE (char_table);
2786
2787 /* When Lisp_Object is represented as a union, `call2' cannot directly
2788 be passed to map_char_table because it returns a Lisp_Object rather
2789 than returning nothing.
2790 Casting leads to crashes on some architectures. -stef */
2791 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2792 return Qnil;
2793 }
2794
2795 /* Return a value for character C in char-table TABLE. Store the
2796 actual index for that value in *IDX. Ignore the default value of
2797 TABLE. */
2798
2799 Lisp_Object
2800 char_table_ref_and_index (table, c, idx)
2801 Lisp_Object table;
2802 int c, *idx;
2803 {
2804 int charset, c1, c2;
2805 Lisp_Object elt;
2806
2807 if (SINGLE_BYTE_CHAR_P (c))
2808 {
2809 *idx = c;
2810 return XCHAR_TABLE (table)->contents[c];
2811 }
2812 SPLIT_CHAR (c, charset, c1, c2);
2813 elt = XCHAR_TABLE (table)->contents[charset + 128];
2814 *idx = MAKE_CHAR (charset, 0, 0);
2815 if (!SUB_CHAR_TABLE_P (elt))
2816 return elt;
2817 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2818 return XCHAR_TABLE (elt)->defalt;
2819 elt = XCHAR_TABLE (elt)->contents[c1];
2820 *idx = MAKE_CHAR (charset, c1, 0);
2821 if (!SUB_CHAR_TABLE_P (elt))
2822 return elt;
2823 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2824 return XCHAR_TABLE (elt)->defalt;
2825 *idx = c;
2826 return XCHAR_TABLE (elt)->contents[c2];
2827 }
2828
2829 \f
2830 /* ARGSUSED */
2831 Lisp_Object
2832 nconc2 (s1, s2)
2833 Lisp_Object s1, s2;
2834 {
2835 #ifdef NO_ARG_ARRAY
2836 Lisp_Object args[2];
2837 args[0] = s1;
2838 args[1] = s2;
2839 return Fnconc (2, args);
2840 #else
2841 return Fnconc (2, &s1);
2842 #endif /* NO_ARG_ARRAY */
2843 }
2844
2845 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2846 doc: /* Concatenate any number of lists by altering them.
2847 Only the last argument is not altered, and need not be a list.
2848 usage: (nconc &rest LISTS) */)
2849 (nargs, args)
2850 int nargs;
2851 Lisp_Object *args;
2852 {
2853 register int argnum;
2854 register Lisp_Object tail, tem, val;
2855
2856 val = tail = Qnil;
2857
2858 for (argnum = 0; argnum < nargs; argnum++)
2859 {
2860 tem = args[argnum];
2861 if (NILP (tem)) continue;
2862
2863 if (NILP (val))
2864 val = tem;
2865
2866 if (argnum + 1 == nargs) break;
2867
2868 if (!CONSP (tem))
2869 tem = wrong_type_argument (Qlistp, tem);
2870
2871 while (CONSP (tem))
2872 {
2873 tail = tem;
2874 tem = XCDR (tail);
2875 QUIT;
2876 }
2877
2878 tem = args[argnum + 1];
2879 Fsetcdr (tail, tem);
2880 if (NILP (tem))
2881 args[argnum + 1] = tail;
2882 }
2883
2884 return val;
2885 }
2886 \f
2887 /* This is the guts of all mapping functions.
2888 Apply FN to each element of SEQ, one by one,
2889 storing the results into elements of VALS, a C vector of Lisp_Objects.
2890 LENI is the length of VALS, which should also be the length of SEQ. */
2891
2892 static void
2893 mapcar1 (leni, vals, fn, seq)
2894 int leni;
2895 Lisp_Object *vals;
2896 Lisp_Object fn, seq;
2897 {
2898 register Lisp_Object tail;
2899 Lisp_Object dummy;
2900 register int i;
2901 struct gcpro gcpro1, gcpro2, gcpro3;
2902
2903 if (vals)
2904 {
2905 /* Don't let vals contain any garbage when GC happens. */
2906 for (i = 0; i < leni; i++)
2907 vals[i] = Qnil;
2908
2909 GCPRO3 (dummy, fn, seq);
2910 gcpro1.var = vals;
2911 gcpro1.nvars = leni;
2912 }
2913 else
2914 GCPRO2 (fn, seq);
2915 /* We need not explicitly protect `tail' because it is used only on lists, and
2916 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2917
2918 if (VECTORP (seq))
2919 {
2920 for (i = 0; i < leni; i++)
2921 {
2922 dummy = XVECTOR (seq)->contents[i];
2923 dummy = call1 (fn, dummy);
2924 if (vals)
2925 vals[i] = dummy;
2926 }
2927 }
2928 else if (BOOL_VECTOR_P (seq))
2929 {
2930 for (i = 0; i < leni; i++)
2931 {
2932 int byte;
2933 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2934 if (byte & (1 << (i % BITS_PER_CHAR)))
2935 dummy = Qt;
2936 else
2937 dummy = Qnil;
2938
2939 dummy = call1 (fn, dummy);
2940 if (vals)
2941 vals[i] = dummy;
2942 }
2943 }
2944 else if (STRINGP (seq))
2945 {
2946 int i_byte;
2947
2948 for (i = 0, i_byte = 0; i < leni;)
2949 {
2950 int c;
2951 int i_before = i;
2952
2953 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2954 XSETFASTINT (dummy, c);
2955 dummy = call1 (fn, dummy);
2956 if (vals)
2957 vals[i_before] = dummy;
2958 }
2959 }
2960 else /* Must be a list, since Flength did not get an error */
2961 {
2962 tail = seq;
2963 for (i = 0; i < leni; i++)
2964 {
2965 dummy = call1 (fn, Fcar (tail));
2966 if (vals)
2967 vals[i] = dummy;
2968 tail = XCDR (tail);
2969 }
2970 }
2971
2972 UNGCPRO;
2973 }
2974
2975 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2976 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2977 In between each pair of results, stick in SEPARATOR. Thus, " " as
2978 SEPARATOR results in spaces between the values returned by FUNCTION.
2979 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2980 (function, sequence, separator)
2981 Lisp_Object function, sequence, separator;
2982 {
2983 Lisp_Object len;
2984 register int leni;
2985 int nargs;
2986 register Lisp_Object *args;
2987 register int i;
2988 struct gcpro gcpro1;
2989
2990 len = Flength (sequence);
2991 leni = XINT (len);
2992 nargs = leni + leni - 1;
2993 if (nargs < 0) return build_string ("");
2994
2995 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
2996
2997 GCPRO1 (separator);
2998 mapcar1 (leni, args, function, sequence);
2999 UNGCPRO;
3000
3001 for (i = leni - 1; i >= 0; i--)
3002 args[i + i] = args[i];
3003
3004 for (i = 1; i < nargs; i += 2)
3005 args[i] = separator;
3006
3007 return Fconcat (nargs, args);
3008 }
3009
3010 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3011 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3012 The result is a list just as long as SEQUENCE.
3013 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3014 (function, sequence)
3015 Lisp_Object function, sequence;
3016 {
3017 register Lisp_Object len;
3018 register int leni;
3019 register Lisp_Object *args;
3020
3021 len = Flength (sequence);
3022 leni = XFASTINT (len);
3023 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
3024
3025 mapcar1 (leni, args, function, sequence);
3026
3027 return Flist (leni, args);
3028 }
3029
3030 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3031 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3032 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3033 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3034 (function, sequence)
3035 Lisp_Object function, sequence;
3036 {
3037 register int leni;
3038
3039 leni = XFASTINT (Flength (sequence));
3040 mapcar1 (leni, 0, function, sequence);
3041
3042 return sequence;
3043 }
3044 \f
3045 /* Anything that calls this function must protect from GC! */
3046
3047 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3048 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3049 Takes one argument, which is the string to display to ask the question.
3050 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3051 No confirmation of the answer is requested; a single character is enough.
3052 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3053 the bindings in `query-replace-map'; see the documentation of that variable
3054 for more information. In this case, the useful bindings are `act', `skip',
3055 `recenter', and `quit'.\)
3056
3057 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3058 is nil and `use-dialog-box' is non-nil. */)
3059 (prompt)
3060 Lisp_Object prompt;
3061 {
3062 register Lisp_Object obj, key, def, map;
3063 register int answer;
3064 Lisp_Object xprompt;
3065 Lisp_Object args[2];
3066 struct gcpro gcpro1, gcpro2;
3067 int count = SPECPDL_INDEX ();
3068
3069 specbind (Qcursor_in_echo_area, Qt);
3070
3071 map = Fsymbol_value (intern ("query-replace-map"));
3072
3073 CHECK_STRING (prompt);
3074 xprompt = prompt;
3075 GCPRO2 (prompt, xprompt);
3076
3077 #ifdef HAVE_X_WINDOWS
3078 if (display_hourglass_p)
3079 cancel_hourglass ();
3080 #endif
3081
3082 while (1)
3083 {
3084
3085 #ifdef HAVE_MENUS
3086 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3087 && use_dialog_box
3088 && have_menus_p ())
3089 {
3090 Lisp_Object pane, menu;
3091 redisplay_preserve_echo_area (3);
3092 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3093 Fcons (Fcons (build_string ("No"), Qnil),
3094 Qnil));
3095 menu = Fcons (prompt, pane);
3096 obj = Fx_popup_dialog (Qt, menu);
3097 answer = !NILP (obj);
3098 break;
3099 }
3100 #endif /* HAVE_MENUS */
3101 cursor_in_echo_area = 1;
3102 choose_minibuf_frame ();
3103
3104 {
3105 Lisp_Object pargs[3];
3106
3107 /* Colorize prompt according to `minibuffer-prompt' face. */
3108 pargs[0] = build_string ("%s(y or n) ");
3109 pargs[1] = intern ("face");
3110 pargs[2] = intern ("minibuffer-prompt");
3111 args[0] = Fpropertize (3, pargs);
3112 args[1] = xprompt;
3113 Fmessage (2, args);
3114 }
3115
3116 if (minibuffer_auto_raise)
3117 {
3118 Lisp_Object mini_frame;
3119
3120 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3121
3122 Fraise_frame (mini_frame);
3123 }
3124
3125 obj = read_filtered_event (1, 0, 0, 0);
3126 cursor_in_echo_area = 0;
3127 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3128 QUIT;
3129
3130 key = Fmake_vector (make_number (1), obj);
3131 def = Flookup_key (map, key, Qt);
3132
3133 if (EQ (def, intern ("skip")))
3134 {
3135 answer = 0;
3136 break;
3137 }
3138 else if (EQ (def, intern ("act")))
3139 {
3140 answer = 1;
3141 break;
3142 }
3143 else if (EQ (def, intern ("recenter")))
3144 {
3145 Frecenter (Qnil);
3146 xprompt = prompt;
3147 continue;
3148 }
3149 else if (EQ (def, intern ("quit")))
3150 Vquit_flag = Qt;
3151 /* We want to exit this command for exit-prefix,
3152 and this is the only way to do it. */
3153 else if (EQ (def, intern ("exit-prefix")))
3154 Vquit_flag = Qt;
3155
3156 QUIT;
3157
3158 /* If we don't clear this, then the next call to read_char will
3159 return quit_char again, and we'll enter an infinite loop. */
3160 Vquit_flag = Qnil;
3161
3162 Fding (Qnil);
3163 Fdiscard_input ();
3164 if (EQ (xprompt, prompt))
3165 {
3166 args[0] = build_string ("Please answer y or n. ");
3167 args[1] = prompt;
3168 xprompt = Fconcat (2, args);
3169 }
3170 }
3171 UNGCPRO;
3172
3173 if (! noninteractive)
3174 {
3175 cursor_in_echo_area = -1;
3176 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3177 xprompt, 0);
3178 }
3179
3180 unbind_to (count, Qnil);
3181 return answer ? Qt : Qnil;
3182 }
3183 \f
3184 /* This is how C code calls `yes-or-no-p' and allows the user
3185 to redefined it.
3186
3187 Anything that calls this function must protect from GC! */
3188
3189 Lisp_Object
3190 do_yes_or_no_p (prompt)
3191 Lisp_Object prompt;
3192 {
3193 return call1 (intern ("yes-or-no-p"), prompt);
3194 }
3195
3196 /* Anything that calls this function must protect from GC! */
3197
3198 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3199 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3200 Takes one argument, which is the string to display to ask the question.
3201 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3202 The user must confirm the answer with RET,
3203 and can edit it until it has been confirmed.
3204
3205 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3206 is nil, and `use-dialog-box' is non-nil. */)
3207 (prompt)
3208 Lisp_Object prompt;
3209 {
3210 register Lisp_Object ans;
3211 Lisp_Object args[2];
3212 struct gcpro gcpro1;
3213
3214 CHECK_STRING (prompt);
3215
3216 #ifdef HAVE_MENUS
3217 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3218 && use_dialog_box
3219 && have_menus_p ())
3220 {
3221 Lisp_Object pane, menu, obj;
3222 redisplay_preserve_echo_area (4);
3223 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3224 Fcons (Fcons (build_string ("No"), Qnil),
3225 Qnil));
3226 GCPRO1 (pane);
3227 menu = Fcons (prompt, pane);
3228 obj = Fx_popup_dialog (Qt, menu);
3229 UNGCPRO;
3230 return obj;
3231 }
3232 #endif /* HAVE_MENUS */
3233
3234 args[0] = prompt;
3235 args[1] = build_string ("(yes or no) ");
3236 prompt = Fconcat (2, args);
3237
3238 GCPRO1 (prompt);
3239
3240 while (1)
3241 {
3242 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3243 Qyes_or_no_p_history, Qnil,
3244 Qnil));
3245 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3246 {
3247 UNGCPRO;
3248 return Qt;
3249 }
3250 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3251 {
3252 UNGCPRO;
3253 return Qnil;
3254 }
3255
3256 Fding (Qnil);
3257 Fdiscard_input ();
3258 message ("Please answer yes or no.");
3259 Fsleep_for (make_number (2), Qnil);
3260 }
3261 }
3262 \f
3263 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3264 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3265
3266 Each of the three load averages is multiplied by 100, then converted
3267 to integer.
3268
3269 When USE-FLOATS is non-nil, floats will be used instead of integers.
3270 These floats are not multiplied by 100.
3271
3272 If the 5-minute or 15-minute load averages are not available, return a
3273 shortened list, containing only those averages which are available.
3274
3275 An error is thrown if the load average can't be obtained. In some
3276 cases making it work would require Emacs being installed setuid or
3277 setgid so that it can read kernel information, and that usually isn't
3278 advisable. */)
3279 (use_floats)
3280 Lisp_Object use_floats;
3281 {
3282 double load_ave[3];
3283 int loads = getloadavg (load_ave, 3);
3284 Lisp_Object ret = Qnil;
3285
3286 if (loads < 0)
3287 error ("load-average not implemented for this operating system");
3288
3289 while (loads-- > 0)
3290 {
3291 Lisp_Object load = (NILP (use_floats) ?
3292 make_number ((int) (100.0 * load_ave[loads]))
3293 : make_float (load_ave[loads]));
3294 ret = Fcons (load, ret);
3295 }
3296
3297 return ret;
3298 }
3299 \f
3300 Lisp_Object Vfeatures, Qsubfeatures;
3301 extern Lisp_Object Vafter_load_alist;
3302
3303 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3304 doc: /* Returns t if FEATURE is present in this Emacs.
3305
3306 Use this to conditionalize execution of lisp code based on the
3307 presence or absence of emacs or environment extensions.
3308 Use `provide' to declare that a feature is available. This function
3309 looks at the value of the variable `features'. The optional argument
3310 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3311 (feature, subfeature)
3312 Lisp_Object feature, subfeature;
3313 {
3314 register Lisp_Object tem;
3315 CHECK_SYMBOL (feature);
3316 tem = Fmemq (feature, Vfeatures);
3317 if (!NILP (tem) && !NILP (subfeature))
3318 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3319 return (NILP (tem)) ? Qnil : Qt;
3320 }
3321
3322 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3323 doc: /* Announce that FEATURE is a feature of the current Emacs.
3324 The optional argument SUBFEATURES should be a list of symbols listing
3325 particular subfeatures supported in this version of FEATURE. */)
3326 (feature, subfeatures)
3327 Lisp_Object feature, subfeatures;
3328 {
3329 register Lisp_Object tem;
3330 CHECK_SYMBOL (feature);
3331 CHECK_LIST (subfeatures);
3332 if (!NILP (Vautoload_queue))
3333 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3334 tem = Fmemq (feature, Vfeatures);
3335 if (NILP (tem))
3336 Vfeatures = Fcons (feature, Vfeatures);
3337 if (!NILP (subfeatures))
3338 Fput (feature, Qsubfeatures, subfeatures);
3339 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3340
3341 /* Run any load-hooks for this file. */
3342 tem = Fassq (feature, Vafter_load_alist);
3343 if (CONSP (tem))
3344 Fprogn (XCDR (tem));
3345
3346 return feature;
3347 }
3348 \f
3349 /* `require' and its subroutines. */
3350
3351 /* List of features currently being require'd, innermost first. */
3352
3353 Lisp_Object require_nesting_list;
3354
3355 Lisp_Object
3356 require_unwind (old_value)
3357 Lisp_Object old_value;
3358 {
3359 return require_nesting_list = old_value;
3360 }
3361
3362 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3363 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3364 If FEATURE is not a member of the list `features', then the feature
3365 is not loaded; so load the file FILENAME.
3366 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3367 and `load' will try to load this name appended with the suffix `.elc' or
3368 `.el', in that order. The name without appended suffix will not be used.
3369 If the optional third argument NOERROR is non-nil,
3370 then return nil if the file is not found instead of signaling an error.
3371 Normally the return value is FEATURE.
3372 The normal messages at start and end of loading FILENAME are suppressed. */)
3373 (feature, filename, noerror)
3374 Lisp_Object feature, filename, noerror;
3375 {
3376 register Lisp_Object tem;
3377 struct gcpro gcpro1, gcpro2;
3378
3379 CHECK_SYMBOL (feature);
3380
3381 tem = Fmemq (feature, Vfeatures);
3382
3383 if (NILP (tem))
3384 {
3385 int count = SPECPDL_INDEX ();
3386 int nesting = 0;
3387
3388 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3389
3390 /* This is to make sure that loadup.el gives a clear picture
3391 of what files are preloaded and when. */
3392 if (! NILP (Vpurify_flag))
3393 error ("(require %s) while preparing to dump",
3394 SDATA (SYMBOL_NAME (feature)));
3395
3396 /* A certain amount of recursive `require' is legitimate,
3397 but if we require the same feature recursively 3 times,
3398 signal an error. */
3399 tem = require_nesting_list;
3400 while (! NILP (tem))
3401 {
3402 if (! NILP (Fequal (feature, XCAR (tem))))
3403 nesting++;
3404 tem = XCDR (tem);
3405 }
3406 if (nesting > 3)
3407 error ("Recursive `require' for feature `%s'",
3408 SDATA (SYMBOL_NAME (feature)));
3409
3410 /* Update the list for any nested `require's that occur. */
3411 record_unwind_protect (require_unwind, require_nesting_list);
3412 require_nesting_list = Fcons (feature, require_nesting_list);
3413
3414 /* Value saved here is to be restored into Vautoload_queue */
3415 record_unwind_protect (un_autoload, Vautoload_queue);
3416 Vautoload_queue = Qt;
3417
3418 /* Load the file. */
3419 GCPRO2 (feature, filename);
3420 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3421 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3422 UNGCPRO;
3423
3424 /* If load failed entirely, return nil. */
3425 if (NILP (tem))
3426 return unbind_to (count, Qnil);
3427
3428 tem = Fmemq (feature, Vfeatures);
3429 if (NILP (tem))
3430 error ("Required feature `%s' was not provided",
3431 SDATA (SYMBOL_NAME (feature)));
3432
3433 /* Once loading finishes, don't undo it. */
3434 Vautoload_queue = Qt;
3435 feature = unbind_to (count, feature);
3436 }
3437
3438 return feature;
3439 }
3440 \f
3441 /* Primitives for work of the "widget" library.
3442 In an ideal world, this section would not have been necessary.
3443 However, lisp function calls being as slow as they are, it turns
3444 out that some functions in the widget library (wid-edit.el) are the
3445 bottleneck of Widget operation. Here is their translation to C,
3446 for the sole reason of efficiency. */
3447
3448 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3449 doc: /* Return non-nil if PLIST has the property PROP.
3450 PLIST is a property list, which is a list of the form
3451 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3452 Unlike `plist-get', this allows you to distinguish between a missing
3453 property and a property with the value nil.
3454 The value is actually the tail of PLIST whose car is PROP. */)
3455 (plist, prop)
3456 Lisp_Object plist, prop;
3457 {
3458 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3459 {
3460 QUIT;
3461 plist = XCDR (plist);
3462 plist = CDR (plist);
3463 }
3464 return plist;
3465 }
3466
3467 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3468 doc: /* In WIDGET, set PROPERTY to VALUE.
3469 The value can later be retrieved with `widget-get'. */)
3470 (widget, property, value)
3471 Lisp_Object widget, property, value;
3472 {
3473 CHECK_CONS (widget);
3474 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3475 return value;
3476 }
3477
3478 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3479 doc: /* In WIDGET, get the value of PROPERTY.
3480 The value could either be specified when the widget was created, or
3481 later with `widget-put'. */)
3482 (widget, property)
3483 Lisp_Object widget, property;
3484 {
3485 Lisp_Object tmp;
3486
3487 while (1)
3488 {
3489 if (NILP (widget))
3490 return Qnil;
3491 CHECK_CONS (widget);
3492 tmp = Fplist_member (XCDR (widget), property);
3493 if (CONSP (tmp))
3494 {
3495 tmp = XCDR (tmp);
3496 return CAR (tmp);
3497 }
3498 tmp = XCAR (widget);
3499 if (NILP (tmp))
3500 return Qnil;
3501 widget = Fget (tmp, Qwidget_type);
3502 }
3503 }
3504
3505 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3506 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3507 ARGS are passed as extra arguments to the function.
3508 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3509 (nargs, args)
3510 int nargs;
3511 Lisp_Object *args;
3512 {
3513 /* This function can GC. */
3514 Lisp_Object newargs[3];
3515 struct gcpro gcpro1, gcpro2;
3516 Lisp_Object result;
3517
3518 newargs[0] = Fwidget_get (args[0], args[1]);
3519 newargs[1] = args[0];
3520 newargs[2] = Flist (nargs - 2, args + 2);
3521 GCPRO2 (newargs[0], newargs[2]);
3522 result = Fapply (3, newargs);
3523 UNGCPRO;
3524 return result;
3525 }
3526
3527 #ifdef HAVE_LANGINFO_CODESET
3528 #include <langinfo.h>
3529 #endif
3530
3531 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3532 doc: /* Access locale data ITEM for the current C locale, if available.
3533 ITEM should be one of the following:
3534
3535 `codeset', returning the character set as a string (locale item CODESET);
3536
3537 `days', returning a 7-element vector of day names (locale items DAY_n);
3538
3539 `months', returning a 12-element vector of month names (locale items MON_n);
3540
3541 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3542 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3543
3544 If the system can't provide such information through a call to
3545 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3546
3547 See also Info node `(libc)Locales'.
3548
3549 The data read from the system are decoded using `locale-coding-system'. */)
3550 (item)
3551 Lisp_Object item;
3552 {
3553 char *str = NULL;
3554 #ifdef HAVE_LANGINFO_CODESET
3555 Lisp_Object val;
3556 if (EQ (item, Qcodeset))
3557 {
3558 str = nl_langinfo (CODESET);
3559 return build_string (str);
3560 }
3561 #ifdef DAY_1
3562 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3563 {
3564 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3565 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3566 int i;
3567 synchronize_system_time_locale ();
3568 for (i = 0; i < 7; i++)
3569 {
3570 str = nl_langinfo (days[i]);
3571 val = make_unibyte_string (str, strlen (str));
3572 /* Fixme: Is this coding system necessarily right, even if
3573 it is consistent with CODESET? If not, what to do? */
3574 Faset (v, make_number (i),
3575 code_convert_string_norecord (val, Vlocale_coding_system,
3576 0));
3577 }
3578 return v;
3579 }
3580 #endif /* DAY_1 */
3581 #ifdef MON_1
3582 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3583 {
3584 struct Lisp_Vector *p = allocate_vector (12);
3585 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3586 MON_8, MON_9, MON_10, MON_11, MON_12};
3587 int i;
3588 synchronize_system_time_locale ();
3589 for (i = 0; i < 12; i++)
3590 {
3591 str = nl_langinfo (months[i]);
3592 val = make_unibyte_string (str, strlen (str));
3593 p->contents[i] =
3594 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3595 }
3596 XSETVECTOR (val, p);
3597 return val;
3598 }
3599 #endif /* MON_1 */
3600 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3601 but is in the locale files. This could be used by ps-print. */
3602 #ifdef PAPER_WIDTH
3603 else if (EQ (item, Qpaper))
3604 {
3605 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3606 make_number (nl_langinfo (PAPER_HEIGHT)));
3607 }
3608 #endif /* PAPER_WIDTH */
3609 #endif /* HAVE_LANGINFO_CODESET*/
3610 return Qnil;
3611 }
3612 \f
3613 /* base64 encode/decode functions (RFC 2045).
3614 Based on code from GNU recode. */
3615
3616 #define MIME_LINE_LENGTH 76
3617
3618 #define IS_ASCII(Character) \
3619 ((Character) < 128)
3620 #define IS_BASE64(Character) \
3621 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3622 #define IS_BASE64_IGNORABLE(Character) \
3623 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3624 || (Character) == '\f' || (Character) == '\r')
3625
3626 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3627 character or return retval if there are no characters left to
3628 process. */
3629 #define READ_QUADRUPLET_BYTE(retval) \
3630 do \
3631 { \
3632 if (i == length) \
3633 { \
3634 if (nchars_return) \
3635 *nchars_return = nchars; \
3636 return (retval); \
3637 } \
3638 c = from[i++]; \
3639 } \
3640 while (IS_BASE64_IGNORABLE (c))
3641
3642 /* Don't use alloca for regions larger than this, lest we overflow
3643 their stack. */
3644 #define MAX_ALLOCA 16*1024
3645
3646 /* Table of characters coding the 64 values. */
3647 static char base64_value_to_char[64] =
3648 {
3649 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3650 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3651 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3652 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3653 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3654 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3655 '8', '9', '+', '/' /* 60-63 */
3656 };
3657
3658 /* Table of base64 values for first 128 characters. */
3659 static short base64_char_to_value[128] =
3660 {
3661 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3662 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3663 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3664 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3665 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3666 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3667 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3668 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3669 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3670 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3671 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3672 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3673 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3674 };
3675
3676 /* The following diagram shows the logical steps by which three octets
3677 get transformed into four base64 characters.
3678
3679 .--------. .--------. .--------.
3680 |aaaaaabb| |bbbbcccc| |ccdddddd|
3681 `--------' `--------' `--------'
3682 6 2 4 4 2 6
3683 .--------+--------+--------+--------.
3684 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3685 `--------+--------+--------+--------'
3686
3687 .--------+--------+--------+--------.
3688 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3689 `--------+--------+--------+--------'
3690
3691 The octets are divided into 6 bit chunks, which are then encoded into
3692 base64 characters. */
3693
3694
3695 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3696 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3697
3698 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3699 2, 3, "r",
3700 doc: /* Base64-encode the region between BEG and END.
3701 Return the length of the encoded text.
3702 Optional third argument NO-LINE-BREAK means do not break long lines
3703 into shorter lines. */)
3704 (beg, end, no_line_break)
3705 Lisp_Object beg, end, no_line_break;
3706 {
3707 char *encoded;
3708 int allength, length;
3709 int ibeg, iend, encoded_length;
3710 int old_pos = PT;
3711
3712 validate_region (&beg, &end);
3713
3714 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3715 iend = CHAR_TO_BYTE (XFASTINT (end));
3716 move_gap_both (XFASTINT (beg), ibeg);
3717
3718 /* We need to allocate enough room for encoding the text.
3719 We need 33 1/3% more space, plus a newline every 76
3720 characters, and then we round up. */
3721 length = iend - ibeg;
3722 allength = length + length/3 + 1;
3723 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3724
3725 if (allength <= MAX_ALLOCA)
3726 encoded = (char *) alloca (allength);
3727 else
3728 encoded = (char *) xmalloc (allength);
3729 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3730 NILP (no_line_break),
3731 !NILP (current_buffer->enable_multibyte_characters));
3732 if (encoded_length > allength)
3733 abort ();
3734
3735 if (encoded_length < 0)
3736 {
3737 /* The encoding wasn't possible. */
3738 if (length > MAX_ALLOCA)
3739 xfree (encoded);
3740 error ("Multibyte character in data for base64 encoding");
3741 }
3742
3743 /* Now we have encoded the region, so we insert the new contents
3744 and delete the old. (Insert first in order to preserve markers.) */
3745 SET_PT_BOTH (XFASTINT (beg), ibeg);
3746 insert (encoded, encoded_length);
3747 if (allength > MAX_ALLOCA)
3748 xfree (encoded);
3749 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3750
3751 /* If point was outside of the region, restore it exactly; else just
3752 move to the beginning of the region. */
3753 if (old_pos >= XFASTINT (end))
3754 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3755 else if (old_pos > XFASTINT (beg))
3756 old_pos = XFASTINT (beg);
3757 SET_PT (old_pos);
3758
3759 /* We return the length of the encoded text. */
3760 return make_number (encoded_length);
3761 }
3762
3763 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3764 1, 2, 0,
3765 doc: /* Base64-encode STRING and return the result.
3766 Optional second argument NO-LINE-BREAK means do not break long lines
3767 into shorter lines. */)
3768 (string, no_line_break)
3769 Lisp_Object string, no_line_break;
3770 {
3771 int allength, length, encoded_length;
3772 char *encoded;
3773 Lisp_Object encoded_string;
3774
3775 CHECK_STRING (string);
3776
3777 /* We need to allocate enough room for encoding the text.
3778 We need 33 1/3% more space, plus a newline every 76
3779 characters, and then we round up. */
3780 length = SBYTES (string);
3781 allength = length + length/3 + 1;
3782 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3783
3784 /* We need to allocate enough room for decoding the text. */
3785 if (allength <= MAX_ALLOCA)
3786 encoded = (char *) alloca (allength);
3787 else
3788 encoded = (char *) xmalloc (allength);
3789
3790 encoded_length = base64_encode_1 (SDATA (string),
3791 encoded, length, NILP (no_line_break),
3792 STRING_MULTIBYTE (string));
3793 if (encoded_length > allength)
3794 abort ();
3795
3796 if (encoded_length < 0)
3797 {
3798 /* The encoding wasn't possible. */
3799 if (length > MAX_ALLOCA)
3800 xfree (encoded);
3801 error ("Multibyte character in data for base64 encoding");
3802 }
3803
3804 encoded_string = make_unibyte_string (encoded, encoded_length);
3805 if (allength > MAX_ALLOCA)
3806 xfree (encoded);
3807
3808 return encoded_string;
3809 }
3810
3811 static int
3812 base64_encode_1 (from, to, length, line_break, multibyte)
3813 const char *from;
3814 char *to;
3815 int length;
3816 int line_break;
3817 int multibyte;
3818 {
3819 int counter = 0, i = 0;
3820 char *e = to;
3821 int c;
3822 unsigned int value;
3823 int bytes;
3824
3825 while (i < length)
3826 {
3827 if (multibyte)
3828 {
3829 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3830 if (c >= 256)
3831 return -1;
3832 i += bytes;
3833 }
3834 else
3835 c = from[i++];
3836
3837 /* Wrap line every 76 characters. */
3838
3839 if (line_break)
3840 {
3841 if (counter < MIME_LINE_LENGTH / 4)
3842 counter++;
3843 else
3844 {
3845 *e++ = '\n';
3846 counter = 1;
3847 }
3848 }
3849
3850 /* Process first byte of a triplet. */
3851
3852 *e++ = base64_value_to_char[0x3f & c >> 2];
3853 value = (0x03 & c) << 4;
3854
3855 /* Process second byte of a triplet. */
3856
3857 if (i == length)
3858 {
3859 *e++ = base64_value_to_char[value];
3860 *e++ = '=';
3861 *e++ = '=';
3862 break;
3863 }
3864
3865 if (multibyte)
3866 {
3867 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3868 if (c >= 256)
3869 return -1;
3870 i += bytes;
3871 }
3872 else
3873 c = from[i++];
3874
3875 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3876 value = (0x0f & c) << 2;
3877
3878 /* Process third byte of a triplet. */
3879
3880 if (i == length)
3881 {
3882 *e++ = base64_value_to_char[value];
3883 *e++ = '=';
3884 break;
3885 }
3886
3887 if (multibyte)
3888 {
3889 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3890 if (c >= 256)
3891 return -1;
3892 i += bytes;
3893 }
3894 else
3895 c = from[i++];
3896
3897 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3898 *e++ = base64_value_to_char[0x3f & c];
3899 }
3900
3901 return e - to;
3902 }
3903
3904
3905 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3906 2, 2, "r",
3907 doc: /* Base64-decode the region between BEG and END.
3908 Return the length of the decoded text.
3909 If the region can't be decoded, signal an error and don't modify the buffer. */)
3910 (beg, end)
3911 Lisp_Object beg, end;
3912 {
3913 int ibeg, iend, length, allength;
3914 char *decoded;
3915 int old_pos = PT;
3916 int decoded_length;
3917 int inserted_chars;
3918 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3919
3920 validate_region (&beg, &end);
3921
3922 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3923 iend = CHAR_TO_BYTE (XFASTINT (end));
3924
3925 length = iend - ibeg;
3926
3927 /* We need to allocate enough room for decoding the text. If we are
3928 working on a multibyte buffer, each decoded code may occupy at
3929 most two bytes. */
3930 allength = multibyte ? length * 2 : length;
3931 if (allength <= MAX_ALLOCA)
3932 decoded = (char *) alloca (allength);
3933 else
3934 decoded = (char *) xmalloc (allength);
3935
3936 move_gap_both (XFASTINT (beg), ibeg);
3937 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3938 multibyte, &inserted_chars);
3939 if (decoded_length > allength)
3940 abort ();
3941
3942 if (decoded_length < 0)
3943 {
3944 /* The decoding wasn't possible. */
3945 if (allength > MAX_ALLOCA)
3946 xfree (decoded);
3947 error ("Invalid base64 data");
3948 }
3949
3950 /* Now we have decoded the region, so we insert the new contents
3951 and delete the old. (Insert first in order to preserve markers.) */
3952 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3953 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3954 if (allength > MAX_ALLOCA)
3955 xfree (decoded);
3956 /* Delete the original text. */
3957 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3958 iend + decoded_length, 1);
3959
3960 /* If point was outside of the region, restore it exactly; else just
3961 move to the beginning of the region. */
3962 if (old_pos >= XFASTINT (end))
3963 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3964 else if (old_pos > XFASTINT (beg))
3965 old_pos = XFASTINT (beg);
3966 SET_PT (old_pos > ZV ? ZV : old_pos);
3967
3968 return make_number (inserted_chars);
3969 }
3970
3971 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3972 1, 1, 0,
3973 doc: /* Base64-decode STRING and return the result. */)
3974 (string)
3975 Lisp_Object string;
3976 {
3977 char *decoded;
3978 int length, decoded_length;
3979 Lisp_Object decoded_string;
3980
3981 CHECK_STRING (string);
3982
3983 length = SBYTES (string);
3984 /* We need to allocate enough room for decoding the text. */
3985 if (length <= MAX_ALLOCA)
3986 decoded = (char *) alloca (length);
3987 else
3988 decoded = (char *) xmalloc (length);
3989
3990 /* The decoded result should be unibyte. */
3991 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3992 0, NULL);
3993 if (decoded_length > length)
3994 abort ();
3995 else if (decoded_length >= 0)
3996 decoded_string = make_unibyte_string (decoded, decoded_length);
3997 else
3998 decoded_string = Qnil;
3999
4000 if (length > MAX_ALLOCA)
4001 xfree (decoded);
4002 if (!STRINGP (decoded_string))
4003 error ("Invalid base64 data");
4004
4005 return decoded_string;
4006 }
4007
4008 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4009 MULTIBYTE is nonzero, the decoded result should be in multibyte
4010 form. If NCHARS_RETRUN is not NULL, store the number of produced
4011 characters in *NCHARS_RETURN. */
4012
4013 static int
4014 base64_decode_1 (from, to, length, multibyte, nchars_return)
4015 const char *from;
4016 char *to;
4017 int length;
4018 int multibyte;
4019 int *nchars_return;
4020 {
4021 int i = 0;
4022 char *e = to;
4023 unsigned char c;
4024 unsigned long value;
4025 int nchars = 0;
4026
4027 while (1)
4028 {
4029 /* Process first byte of a quadruplet. */
4030
4031 READ_QUADRUPLET_BYTE (e-to);
4032
4033 if (!IS_BASE64 (c))
4034 return -1;
4035 value = base64_char_to_value[c] << 18;
4036
4037 /* Process second byte of a quadruplet. */
4038
4039 READ_QUADRUPLET_BYTE (-1);
4040
4041 if (!IS_BASE64 (c))
4042 return -1;
4043 value |= base64_char_to_value[c] << 12;
4044
4045 c = (unsigned char) (value >> 16);
4046 if (multibyte)
4047 e += CHAR_STRING (c, e);
4048 else
4049 *e++ = c;
4050 nchars++;
4051
4052 /* Process third byte of a quadruplet. */
4053
4054 READ_QUADRUPLET_BYTE (-1);
4055
4056 if (c == '=')
4057 {
4058 READ_QUADRUPLET_BYTE (-1);
4059
4060 if (c != '=')
4061 return -1;
4062 continue;
4063 }
4064
4065 if (!IS_BASE64 (c))
4066 return -1;
4067 value |= base64_char_to_value[c] << 6;
4068
4069 c = (unsigned char) (0xff & value >> 8);
4070 if (multibyte)
4071 e += CHAR_STRING (c, e);
4072 else
4073 *e++ = c;
4074 nchars++;
4075
4076 /* Process fourth byte of a quadruplet. */
4077
4078 READ_QUADRUPLET_BYTE (-1);
4079
4080 if (c == '=')
4081 continue;
4082
4083 if (!IS_BASE64 (c))
4084 return -1;
4085 value |= base64_char_to_value[c];
4086
4087 c = (unsigned char) (0xff & value);
4088 if (multibyte)
4089 e += CHAR_STRING (c, e);
4090 else
4091 *e++ = c;
4092 nchars++;
4093 }
4094 }
4095
4096
4097 \f
4098 /***********************************************************************
4099 ***** *****
4100 ***** Hash Tables *****
4101 ***** *****
4102 ***********************************************************************/
4103
4104 /* Implemented by gerd@gnu.org. This hash table implementation was
4105 inspired by CMUCL hash tables. */
4106
4107 /* Ideas:
4108
4109 1. For small tables, association lists are probably faster than
4110 hash tables because they have lower overhead.
4111
4112 For uses of hash tables where the O(1) behavior of table
4113 operations is not a requirement, it might therefore be a good idea
4114 not to hash. Instead, we could just do a linear search in the
4115 key_and_value vector of the hash table. This could be done
4116 if a `:linear-search t' argument is given to make-hash-table. */
4117
4118
4119 /* The list of all weak hash tables. Don't staticpro this one. */
4120
4121 Lisp_Object Vweak_hash_tables;
4122
4123 /* Various symbols. */
4124
4125 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4126 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4127 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4128
4129 /* Function prototypes. */
4130
4131 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4132 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4133 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4134 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4135 Lisp_Object, unsigned));
4136 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4137 Lisp_Object, unsigned));
4138 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4139 unsigned, Lisp_Object, unsigned));
4140 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4141 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4142 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4143 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4144 Lisp_Object));
4145 static unsigned sxhash_string P_ ((unsigned char *, int));
4146 static unsigned sxhash_list P_ ((Lisp_Object, int));
4147 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4148 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4149 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4150
4151
4152 \f
4153 /***********************************************************************
4154 Utilities
4155 ***********************************************************************/
4156
4157 /* If OBJ is a Lisp hash table, return a pointer to its struct
4158 Lisp_Hash_Table. Otherwise, signal an error. */
4159
4160 static struct Lisp_Hash_Table *
4161 check_hash_table (obj)
4162 Lisp_Object obj;
4163 {
4164 CHECK_HASH_TABLE (obj);
4165 return XHASH_TABLE (obj);
4166 }
4167
4168
4169 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4170 number. */
4171
4172 int
4173 next_almost_prime (n)
4174 int n;
4175 {
4176 if (n % 2 == 0)
4177 n += 1;
4178 if (n % 3 == 0)
4179 n += 2;
4180 if (n % 7 == 0)
4181 n += 4;
4182 return n;
4183 }
4184
4185
4186 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4187 which USED[I] is non-zero. If found at index I in ARGS, set
4188 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4189 -1. This function is used to extract a keyword/argument pair from
4190 a DEFUN parameter list. */
4191
4192 static int
4193 get_key_arg (key, nargs, args, used)
4194 Lisp_Object key;
4195 int nargs;
4196 Lisp_Object *args;
4197 char *used;
4198 {
4199 int i;
4200
4201 for (i = 0; i < nargs - 1; ++i)
4202 if (!used[i] && EQ (args[i], key))
4203 break;
4204
4205 if (i >= nargs - 1)
4206 i = -1;
4207 else
4208 {
4209 used[i++] = 1;
4210 used[i] = 1;
4211 }
4212
4213 return i;
4214 }
4215
4216
4217 /* Return a Lisp vector which has the same contents as VEC but has
4218 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4219 vector that are not copied from VEC are set to INIT. */
4220
4221 Lisp_Object
4222 larger_vector (vec, new_size, init)
4223 Lisp_Object vec;
4224 int new_size;
4225 Lisp_Object init;
4226 {
4227 struct Lisp_Vector *v;
4228 int i, old_size;
4229
4230 xassert (VECTORP (vec));
4231 old_size = XVECTOR (vec)->size;
4232 xassert (new_size >= old_size);
4233
4234 v = allocate_vector (new_size);
4235 bcopy (XVECTOR (vec)->contents, v->contents,
4236 old_size * sizeof *v->contents);
4237 for (i = old_size; i < new_size; ++i)
4238 v->contents[i] = init;
4239 XSETVECTOR (vec, v);
4240 return vec;
4241 }
4242
4243
4244 /***********************************************************************
4245 Low-level Functions
4246 ***********************************************************************/
4247
4248 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4249 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4250 KEY2 are the same. */
4251
4252 static int
4253 cmpfn_eql (h, key1, hash1, key2, hash2)
4254 struct Lisp_Hash_Table *h;
4255 Lisp_Object key1, key2;
4256 unsigned hash1, hash2;
4257 {
4258 return (FLOATP (key1)
4259 && FLOATP (key2)
4260 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4261 }
4262
4263
4264 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4265 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4266 KEY2 are the same. */
4267
4268 static int
4269 cmpfn_equal (h, key1, hash1, key2, hash2)
4270 struct Lisp_Hash_Table *h;
4271 Lisp_Object key1, key2;
4272 unsigned hash1, hash2;
4273 {
4274 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4275 }
4276
4277
4278 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4279 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4280 if KEY1 and KEY2 are the same. */
4281
4282 static int
4283 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4284 struct Lisp_Hash_Table *h;
4285 Lisp_Object key1, key2;
4286 unsigned hash1, hash2;
4287 {
4288 if (hash1 == hash2)
4289 {
4290 Lisp_Object args[3];
4291
4292 args[0] = h->user_cmp_function;
4293 args[1] = key1;
4294 args[2] = key2;
4295 return !NILP (Ffuncall (3, args));
4296 }
4297 else
4298 return 0;
4299 }
4300
4301
4302 /* Value is a hash code for KEY for use in hash table H which uses
4303 `eq' to compare keys. The hash code returned is guaranteed to fit
4304 in a Lisp integer. */
4305
4306 static unsigned
4307 hashfn_eq (h, key)
4308 struct Lisp_Hash_Table *h;
4309 Lisp_Object key;
4310 {
4311 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4312 xassert ((hash & ~INTMASK) == 0);
4313 return hash;
4314 }
4315
4316
4317 /* Value is a hash code for KEY for use in hash table H which uses
4318 `eql' to compare keys. The hash code returned is guaranteed to fit
4319 in a Lisp integer. */
4320
4321 static unsigned
4322 hashfn_eql (h, key)
4323 struct Lisp_Hash_Table *h;
4324 Lisp_Object key;
4325 {
4326 unsigned hash;
4327 if (FLOATP (key))
4328 hash = sxhash (key, 0);
4329 else
4330 hash = XUINT (key) ^ XGCTYPE (key);
4331 xassert ((hash & ~INTMASK) == 0);
4332 return hash;
4333 }
4334
4335
4336 /* Value is a hash code for KEY for use in hash table H which uses
4337 `equal' to compare keys. The hash code returned is guaranteed to fit
4338 in a Lisp integer. */
4339
4340 static unsigned
4341 hashfn_equal (h, key)
4342 struct Lisp_Hash_Table *h;
4343 Lisp_Object key;
4344 {
4345 unsigned hash = sxhash (key, 0);
4346 xassert ((hash & ~INTMASK) == 0);
4347 return hash;
4348 }
4349
4350
4351 /* Value is a hash code for KEY for use in hash table H which uses as
4352 user-defined function to compare keys. The hash code returned is
4353 guaranteed to fit in a Lisp integer. */
4354
4355 static unsigned
4356 hashfn_user_defined (h, key)
4357 struct Lisp_Hash_Table *h;
4358 Lisp_Object key;
4359 {
4360 Lisp_Object args[2], hash;
4361
4362 args[0] = h->user_hash_function;
4363 args[1] = key;
4364 hash = Ffuncall (2, args);
4365 if (!INTEGERP (hash))
4366 Fsignal (Qerror,
4367 list2 (build_string ("Invalid hash code returned from \
4368 user-supplied hash function"),
4369 hash));
4370 return XUINT (hash);
4371 }
4372
4373
4374 /* Create and initialize a new hash table.
4375
4376 TEST specifies the test the hash table will use to compare keys.
4377 It must be either one of the predefined tests `eq', `eql' or
4378 `equal' or a symbol denoting a user-defined test named TEST with
4379 test and hash functions USER_TEST and USER_HASH.
4380
4381 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4382
4383 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4384 new size when it becomes full is computed by adding REHASH_SIZE to
4385 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4386 table's new size is computed by multiplying its old size with
4387 REHASH_SIZE.
4388
4389 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4390 be resized when the ratio of (number of entries in the table) /
4391 (table size) is >= REHASH_THRESHOLD.
4392
4393 WEAK specifies the weakness of the table. If non-nil, it must be
4394 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4395
4396 Lisp_Object
4397 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4398 user_test, user_hash)
4399 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4400 Lisp_Object user_test, user_hash;
4401 {
4402 struct Lisp_Hash_Table *h;
4403 Lisp_Object table;
4404 int index_size, i, sz;
4405
4406 /* Preconditions. */
4407 xassert (SYMBOLP (test));
4408 xassert (INTEGERP (size) && XINT (size) >= 0);
4409 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4410 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4411 xassert (FLOATP (rehash_threshold)
4412 && XFLOATINT (rehash_threshold) > 0
4413 && XFLOATINT (rehash_threshold) <= 1.0);
4414
4415 if (XFASTINT (size) == 0)
4416 size = make_number (1);
4417
4418 /* Allocate a table and initialize it. */
4419 h = allocate_hash_table ();
4420
4421 /* Initialize hash table slots. */
4422 sz = XFASTINT (size);
4423
4424 h->test = test;
4425 if (EQ (test, Qeql))
4426 {
4427 h->cmpfn = cmpfn_eql;
4428 h->hashfn = hashfn_eql;
4429 }
4430 else if (EQ (test, Qeq))
4431 {
4432 h->cmpfn = NULL;
4433 h->hashfn = hashfn_eq;
4434 }
4435 else if (EQ (test, Qequal))
4436 {
4437 h->cmpfn = cmpfn_equal;
4438 h->hashfn = hashfn_equal;
4439 }
4440 else
4441 {
4442 h->user_cmp_function = user_test;
4443 h->user_hash_function = user_hash;
4444 h->cmpfn = cmpfn_user_defined;
4445 h->hashfn = hashfn_user_defined;
4446 }
4447
4448 h->weak = weak;
4449 h->rehash_threshold = rehash_threshold;
4450 h->rehash_size = rehash_size;
4451 h->count = make_number (0);
4452 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4453 h->hash = Fmake_vector (size, Qnil);
4454 h->next = Fmake_vector (size, Qnil);
4455 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4456 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4457 h->index = Fmake_vector (make_number (index_size), Qnil);
4458
4459 /* Set up the free list. */
4460 for (i = 0; i < sz - 1; ++i)
4461 HASH_NEXT (h, i) = make_number (i + 1);
4462 h->next_free = make_number (0);
4463
4464 XSET_HASH_TABLE (table, h);
4465 xassert (HASH_TABLE_P (table));
4466 xassert (XHASH_TABLE (table) == h);
4467
4468 /* Maybe add this hash table to the list of all weak hash tables. */
4469 if (NILP (h->weak))
4470 h->next_weak = Qnil;
4471 else
4472 {
4473 h->next_weak = Vweak_hash_tables;
4474 Vweak_hash_tables = table;
4475 }
4476
4477 return table;
4478 }
4479
4480
4481 /* Return a copy of hash table H1. Keys and values are not copied,
4482 only the table itself is. */
4483
4484 Lisp_Object
4485 copy_hash_table (h1)
4486 struct Lisp_Hash_Table *h1;
4487 {
4488 Lisp_Object table;
4489 struct Lisp_Hash_Table *h2;
4490 struct Lisp_Vector *next;
4491
4492 h2 = allocate_hash_table ();
4493 next = h2->vec_next;
4494 bcopy (h1, h2, sizeof *h2);
4495 h2->vec_next = next;
4496 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4497 h2->hash = Fcopy_sequence (h1->hash);
4498 h2->next = Fcopy_sequence (h1->next);
4499 h2->index = Fcopy_sequence (h1->index);
4500 XSET_HASH_TABLE (table, h2);
4501
4502 /* Maybe add this hash table to the list of all weak hash tables. */
4503 if (!NILP (h2->weak))
4504 {
4505 h2->next_weak = Vweak_hash_tables;
4506 Vweak_hash_tables = table;
4507 }
4508
4509 return table;
4510 }
4511
4512
4513 /* Resize hash table H if it's too full. If H cannot be resized
4514 because it's already too large, throw an error. */
4515
4516 static INLINE void
4517 maybe_resize_hash_table (h)
4518 struct Lisp_Hash_Table *h;
4519 {
4520 if (NILP (h->next_free))
4521 {
4522 int old_size = HASH_TABLE_SIZE (h);
4523 int i, new_size, index_size;
4524
4525 if (INTEGERP (h->rehash_size))
4526 new_size = old_size + XFASTINT (h->rehash_size);
4527 else
4528 new_size = old_size * XFLOATINT (h->rehash_size);
4529 new_size = max (old_size + 1, new_size);
4530 index_size = next_almost_prime ((int)
4531 (new_size
4532 / XFLOATINT (h->rehash_threshold)));
4533 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4534 error ("Hash table too large to resize");
4535
4536 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4537 h->next = larger_vector (h->next, new_size, Qnil);
4538 h->hash = larger_vector (h->hash, new_size, Qnil);
4539 h->index = Fmake_vector (make_number (index_size), Qnil);
4540
4541 /* Update the free list. Do it so that new entries are added at
4542 the end of the free list. This makes some operations like
4543 maphash faster. */
4544 for (i = old_size; i < new_size - 1; ++i)
4545 HASH_NEXT (h, i) = make_number (i + 1);
4546
4547 if (!NILP (h->next_free))
4548 {
4549 Lisp_Object last, next;
4550
4551 last = h->next_free;
4552 while (next = HASH_NEXT (h, XFASTINT (last)),
4553 !NILP (next))
4554 last = next;
4555
4556 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4557 }
4558 else
4559 XSETFASTINT (h->next_free, old_size);
4560
4561 /* Rehash. */
4562 for (i = 0; i < old_size; ++i)
4563 if (!NILP (HASH_HASH (h, i)))
4564 {
4565 unsigned hash_code = XUINT (HASH_HASH (h, i));
4566 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4567 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4568 HASH_INDEX (h, start_of_bucket) = make_number (i);
4569 }
4570 }
4571 }
4572
4573
4574 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4575 the hash code of KEY. Value is the index of the entry in H
4576 matching KEY, or -1 if not found. */
4577
4578 int
4579 hash_lookup (h, key, hash)
4580 struct Lisp_Hash_Table *h;
4581 Lisp_Object key;
4582 unsigned *hash;
4583 {
4584 unsigned hash_code;
4585 int start_of_bucket;
4586 Lisp_Object idx;
4587
4588 hash_code = h->hashfn (h, key);
4589 if (hash)
4590 *hash = hash_code;
4591
4592 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4593 idx = HASH_INDEX (h, start_of_bucket);
4594
4595 /* We need not gcpro idx since it's either an integer or nil. */
4596 while (!NILP (idx))
4597 {
4598 int i = XFASTINT (idx);
4599 if (EQ (key, HASH_KEY (h, i))
4600 || (h->cmpfn
4601 && h->cmpfn (h, key, hash_code,
4602 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4603 break;
4604 idx = HASH_NEXT (h, i);
4605 }
4606
4607 return NILP (idx) ? -1 : XFASTINT (idx);
4608 }
4609
4610
4611 /* Put an entry into hash table H that associates KEY with VALUE.
4612 HASH is a previously computed hash code of KEY.
4613 Value is the index of the entry in H matching KEY. */
4614
4615 int
4616 hash_put (h, key, value, hash)
4617 struct Lisp_Hash_Table *h;
4618 Lisp_Object key, value;
4619 unsigned hash;
4620 {
4621 int start_of_bucket, i;
4622
4623 xassert ((hash & ~INTMASK) == 0);
4624
4625 /* Increment count after resizing because resizing may fail. */
4626 maybe_resize_hash_table (h);
4627 h->count = make_number (XFASTINT (h->count) + 1);
4628
4629 /* Store key/value in the key_and_value vector. */
4630 i = XFASTINT (h->next_free);
4631 h->next_free = HASH_NEXT (h, i);
4632 HASH_KEY (h, i) = key;
4633 HASH_VALUE (h, i) = value;
4634
4635 /* Remember its hash code. */
4636 HASH_HASH (h, i) = make_number (hash);
4637
4638 /* Add new entry to its collision chain. */
4639 start_of_bucket = hash % XVECTOR (h->index)->size;
4640 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4641 HASH_INDEX (h, start_of_bucket) = make_number (i);
4642 return i;
4643 }
4644
4645
4646 /* Remove the entry matching KEY from hash table H, if there is one. */
4647
4648 void
4649 hash_remove (h, key)
4650 struct Lisp_Hash_Table *h;
4651 Lisp_Object key;
4652 {
4653 unsigned hash_code;
4654 int start_of_bucket;
4655 Lisp_Object idx, prev;
4656
4657 hash_code = h->hashfn (h, key);
4658 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4659 idx = HASH_INDEX (h, start_of_bucket);
4660 prev = Qnil;
4661
4662 /* We need not gcpro idx, prev since they're either integers or nil. */
4663 while (!NILP (idx))
4664 {
4665 int i = XFASTINT (idx);
4666
4667 if (EQ (key, HASH_KEY (h, i))
4668 || (h->cmpfn
4669 && h->cmpfn (h, key, hash_code,
4670 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4671 {
4672 /* Take entry out of collision chain. */
4673 if (NILP (prev))
4674 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4675 else
4676 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4677
4678 /* Clear slots in key_and_value and add the slots to
4679 the free list. */
4680 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4681 HASH_NEXT (h, i) = h->next_free;
4682 h->next_free = make_number (i);
4683 h->count = make_number (XFASTINT (h->count) - 1);
4684 xassert (XINT (h->count) >= 0);
4685 break;
4686 }
4687 else
4688 {
4689 prev = idx;
4690 idx = HASH_NEXT (h, i);
4691 }
4692 }
4693 }
4694
4695
4696 /* Clear hash table H. */
4697
4698 void
4699 hash_clear (h)
4700 struct Lisp_Hash_Table *h;
4701 {
4702 if (XFASTINT (h->count) > 0)
4703 {
4704 int i, size = HASH_TABLE_SIZE (h);
4705
4706 for (i = 0; i < size; ++i)
4707 {
4708 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4709 HASH_KEY (h, i) = Qnil;
4710 HASH_VALUE (h, i) = Qnil;
4711 HASH_HASH (h, i) = Qnil;
4712 }
4713
4714 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4715 XVECTOR (h->index)->contents[i] = Qnil;
4716
4717 h->next_free = make_number (0);
4718 h->count = make_number (0);
4719 }
4720 }
4721
4722
4723 \f
4724 /************************************************************************
4725 Weak Hash Tables
4726 ************************************************************************/
4727
4728 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4729 entries from the table that don't survive the current GC.
4730 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4731 non-zero if anything was marked. */
4732
4733 static int
4734 sweep_weak_table (h, remove_entries_p)
4735 struct Lisp_Hash_Table *h;
4736 int remove_entries_p;
4737 {
4738 int bucket, n, marked;
4739
4740 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4741 marked = 0;
4742
4743 for (bucket = 0; bucket < n; ++bucket)
4744 {
4745 Lisp_Object idx, next, prev;
4746
4747 /* Follow collision chain, removing entries that
4748 don't survive this garbage collection. */
4749 prev = Qnil;
4750 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4751 {
4752 int i = XFASTINT (idx);
4753 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4754 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4755 int remove_p;
4756
4757 if (EQ (h->weak, Qkey))
4758 remove_p = !key_known_to_survive_p;
4759 else if (EQ (h->weak, Qvalue))
4760 remove_p = !value_known_to_survive_p;
4761 else if (EQ (h->weak, Qkey_or_value))
4762 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4763 else if (EQ (h->weak, Qkey_and_value))
4764 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4765 else
4766 abort ();
4767
4768 next = HASH_NEXT (h, i);
4769
4770 if (remove_entries_p)
4771 {
4772 if (remove_p)
4773 {
4774 /* Take out of collision chain. */
4775 if (GC_NILP (prev))
4776 HASH_INDEX (h, bucket) = next;
4777 else
4778 HASH_NEXT (h, XFASTINT (prev)) = next;
4779
4780 /* Add to free list. */
4781 HASH_NEXT (h, i) = h->next_free;
4782 h->next_free = idx;
4783
4784 /* Clear key, value, and hash. */
4785 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4786 HASH_HASH (h, i) = Qnil;
4787
4788 h->count = make_number (XFASTINT (h->count) - 1);
4789 }
4790 }
4791 else
4792 {
4793 if (!remove_p)
4794 {
4795 /* Make sure key and value survive. */
4796 if (!key_known_to_survive_p)
4797 {
4798 mark_object (HASH_KEY (h, i));
4799 marked = 1;
4800 }
4801
4802 if (!value_known_to_survive_p)
4803 {
4804 mark_object (HASH_VALUE (h, i));
4805 marked = 1;
4806 }
4807 }
4808 }
4809 }
4810 }
4811
4812 return marked;
4813 }
4814
4815 /* Remove elements from weak hash tables that don't survive the
4816 current garbage collection. Remove weak tables that don't survive
4817 from Vweak_hash_tables. Called from gc_sweep. */
4818
4819 void
4820 sweep_weak_hash_tables ()
4821 {
4822 Lisp_Object table, used, next;
4823 struct Lisp_Hash_Table *h;
4824 int marked;
4825
4826 /* Mark all keys and values that are in use. Keep on marking until
4827 there is no more change. This is necessary for cases like
4828 value-weak table A containing an entry X -> Y, where Y is used in a
4829 key-weak table B, Z -> Y. If B comes after A in the list of weak
4830 tables, X -> Y might be removed from A, although when looking at B
4831 one finds that it shouldn't. */
4832 do
4833 {
4834 marked = 0;
4835 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4836 {
4837 h = XHASH_TABLE (table);
4838 if (h->size & ARRAY_MARK_FLAG)
4839 marked |= sweep_weak_table (h, 0);
4840 }
4841 }
4842 while (marked);
4843
4844 /* Remove tables and entries that aren't used. */
4845 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4846 {
4847 h = XHASH_TABLE (table);
4848 next = h->next_weak;
4849
4850 if (h->size & ARRAY_MARK_FLAG)
4851 {
4852 /* TABLE is marked as used. Sweep its contents. */
4853 if (XFASTINT (h->count) > 0)
4854 sweep_weak_table (h, 1);
4855
4856 /* Add table to the list of used weak hash tables. */
4857 h->next_weak = used;
4858 used = table;
4859 }
4860 }
4861
4862 Vweak_hash_tables = used;
4863 }
4864
4865
4866 \f
4867 /***********************************************************************
4868 Hash Code Computation
4869 ***********************************************************************/
4870
4871 /* Maximum depth up to which to dive into Lisp structures. */
4872
4873 #define SXHASH_MAX_DEPTH 3
4874
4875 /* Maximum length up to which to take list and vector elements into
4876 account. */
4877
4878 #define SXHASH_MAX_LEN 7
4879
4880 /* Combine two integers X and Y for hashing. */
4881
4882 #define SXHASH_COMBINE(X, Y) \
4883 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4884 + (unsigned)(Y))
4885
4886
4887 /* Return a hash for string PTR which has length LEN. The hash
4888 code returned is guaranteed to fit in a Lisp integer. */
4889
4890 static unsigned
4891 sxhash_string (ptr, len)
4892 unsigned char *ptr;
4893 int len;
4894 {
4895 unsigned char *p = ptr;
4896 unsigned char *end = p + len;
4897 unsigned char c;
4898 unsigned hash = 0;
4899
4900 while (p != end)
4901 {
4902 c = *p++;
4903 if (c >= 0140)
4904 c -= 40;
4905 hash = ((hash << 3) + (hash >> 28) + c);
4906 }
4907
4908 return hash & INTMASK;
4909 }
4910
4911
4912 /* Return a hash for list LIST. DEPTH is the current depth in the
4913 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4914
4915 static unsigned
4916 sxhash_list (list, depth)
4917 Lisp_Object list;
4918 int depth;
4919 {
4920 unsigned hash = 0;
4921 int i;
4922
4923 if (depth < SXHASH_MAX_DEPTH)
4924 for (i = 0;
4925 CONSP (list) && i < SXHASH_MAX_LEN;
4926 list = XCDR (list), ++i)
4927 {
4928 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4929 hash = SXHASH_COMBINE (hash, hash2);
4930 }
4931
4932 return hash;
4933 }
4934
4935
4936 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4937 the Lisp structure. */
4938
4939 static unsigned
4940 sxhash_vector (vec, depth)
4941 Lisp_Object vec;
4942 int depth;
4943 {
4944 unsigned hash = XVECTOR (vec)->size;
4945 int i, n;
4946
4947 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4948 for (i = 0; i < n; ++i)
4949 {
4950 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4951 hash = SXHASH_COMBINE (hash, hash2);
4952 }
4953
4954 return hash;
4955 }
4956
4957
4958 /* Return a hash for bool-vector VECTOR. */
4959
4960 static unsigned
4961 sxhash_bool_vector (vec)
4962 Lisp_Object vec;
4963 {
4964 unsigned hash = XBOOL_VECTOR (vec)->size;
4965 int i, n;
4966
4967 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4968 for (i = 0; i < n; ++i)
4969 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4970
4971 return hash;
4972 }
4973
4974
4975 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4976 structure. Value is an unsigned integer clipped to INTMASK. */
4977
4978 unsigned
4979 sxhash (obj, depth)
4980 Lisp_Object obj;
4981 int depth;
4982 {
4983 unsigned hash;
4984
4985 if (depth > SXHASH_MAX_DEPTH)
4986 return 0;
4987
4988 switch (XTYPE (obj))
4989 {
4990 case Lisp_Int:
4991 hash = XUINT (obj);
4992 break;
4993
4994 case Lisp_Symbol:
4995 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
4996 SCHARS (SYMBOL_NAME (obj)));
4997 break;
4998
4999 case Lisp_Misc:
5000 hash = XUINT (obj);
5001 break;
5002
5003 case Lisp_String:
5004 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5005 break;
5006
5007 /* This can be everything from a vector to an overlay. */
5008 case Lisp_Vectorlike:
5009 if (VECTORP (obj))
5010 /* According to the CL HyperSpec, two arrays are equal only if
5011 they are `eq', except for strings and bit-vectors. In
5012 Emacs, this works differently. We have to compare element
5013 by element. */
5014 hash = sxhash_vector (obj, depth);
5015 else if (BOOL_VECTOR_P (obj))
5016 hash = sxhash_bool_vector (obj);
5017 else
5018 /* Others are `equal' if they are `eq', so let's take their
5019 address as hash. */
5020 hash = XUINT (obj);
5021 break;
5022
5023 case Lisp_Cons:
5024 hash = sxhash_list (obj, depth);
5025 break;
5026
5027 case Lisp_Float:
5028 {
5029 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5030 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5031 for (hash = 0; p < e; ++p)
5032 hash = SXHASH_COMBINE (hash, *p);
5033 break;
5034 }
5035
5036 default:
5037 abort ();
5038 }
5039
5040 return hash & INTMASK;
5041 }
5042
5043
5044 \f
5045 /***********************************************************************
5046 Lisp Interface
5047 ***********************************************************************/
5048
5049
5050 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5051 doc: /* Compute a hash code for OBJ and return it as integer. */)
5052 (obj)
5053 Lisp_Object obj;
5054 {
5055 unsigned hash = sxhash (obj, 0);;
5056 return make_number (hash);
5057 }
5058
5059
5060 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5061 doc: /* Create and return a new hash table.
5062
5063 Arguments are specified as keyword/argument pairs. The following
5064 arguments are defined:
5065
5066 :test TEST -- TEST must be a symbol that specifies how to compare
5067 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5068 `equal'. User-supplied test and hash functions can be specified via
5069 `define-hash-table-test'.
5070
5071 :size SIZE -- A hint as to how many elements will be put in the table.
5072 Default is 65.
5073
5074 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5075 fills up. If REHASH-SIZE is an integer, add that many space. If it
5076 is a float, it must be > 1.0, and the new size is computed by
5077 multiplying the old size with that factor. Default is 1.5.
5078
5079 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5080 Resize the hash table when ratio of the number of entries in the
5081 table. Default is 0.8.
5082
5083 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5084 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5085 returned is a weak table. Key/value pairs are removed from a weak
5086 hash table when there are no non-weak references pointing to their
5087 key, value, one of key or value, or both key and value, depending on
5088 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5089 is nil.
5090
5091 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5092 (nargs, args)
5093 int nargs;
5094 Lisp_Object *args;
5095 {
5096 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5097 Lisp_Object user_test, user_hash;
5098 char *used;
5099 int i;
5100
5101 /* The vector `used' is used to keep track of arguments that
5102 have been consumed. */
5103 used = (char *) alloca (nargs * sizeof *used);
5104 bzero (used, nargs * sizeof *used);
5105
5106 /* See if there's a `:test TEST' among the arguments. */
5107 i = get_key_arg (QCtest, nargs, args, used);
5108 test = i < 0 ? Qeql : args[i];
5109 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5110 {
5111 /* See if it is a user-defined test. */
5112 Lisp_Object prop;
5113
5114 prop = Fget (test, Qhash_table_test);
5115 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5116 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5117 test));
5118 user_test = XCAR (prop);
5119 user_hash = XCAR (XCDR (prop));
5120 }
5121 else
5122 user_test = user_hash = Qnil;
5123
5124 /* See if there's a `:size SIZE' argument. */
5125 i = get_key_arg (QCsize, nargs, args, used);
5126 size = i < 0 ? Qnil : args[i];
5127 if (NILP (size))
5128 size = make_number (DEFAULT_HASH_SIZE);
5129 else if (!INTEGERP (size) || XINT (size) < 0)
5130 Fsignal (Qerror,
5131 list2 (build_string ("Invalid hash table size"),
5132 size));
5133
5134 /* Look for `:rehash-size SIZE'. */
5135 i = get_key_arg (QCrehash_size, nargs, args, used);
5136 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5137 if (!NUMBERP (rehash_size)
5138 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5139 || XFLOATINT (rehash_size) <= 1.0)
5140 Fsignal (Qerror,
5141 list2 (build_string ("Invalid hash table rehash size"),
5142 rehash_size));
5143
5144 /* Look for `:rehash-threshold THRESHOLD'. */
5145 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5146 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5147 if (!FLOATP (rehash_threshold)
5148 || XFLOATINT (rehash_threshold) <= 0.0
5149 || XFLOATINT (rehash_threshold) > 1.0)
5150 Fsignal (Qerror,
5151 list2 (build_string ("Invalid hash table rehash threshold"),
5152 rehash_threshold));
5153
5154 /* Look for `:weakness WEAK'. */
5155 i = get_key_arg (QCweakness, nargs, args, used);
5156 weak = i < 0 ? Qnil : args[i];
5157 if (EQ (weak, Qt))
5158 weak = Qkey_and_value;
5159 if (!NILP (weak)
5160 && !EQ (weak, Qkey)
5161 && !EQ (weak, Qvalue)
5162 && !EQ (weak, Qkey_or_value)
5163 && !EQ (weak, Qkey_and_value))
5164 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5165 weak));
5166
5167 /* Now, all args should have been used up, or there's a problem. */
5168 for (i = 0; i < nargs; ++i)
5169 if (!used[i])
5170 Fsignal (Qerror,
5171 list2 (build_string ("Invalid argument list"), args[i]));
5172
5173 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5174 user_test, user_hash);
5175 }
5176
5177
5178 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5179 doc: /* Return a copy of hash table TABLE. */)
5180 (table)
5181 Lisp_Object table;
5182 {
5183 return copy_hash_table (check_hash_table (table));
5184 }
5185
5186
5187 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5188 doc: /* Return the number of elements in TABLE. */)
5189 (table)
5190 Lisp_Object table;
5191 {
5192 return check_hash_table (table)->count;
5193 }
5194
5195
5196 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5197 Shash_table_rehash_size, 1, 1, 0,
5198 doc: /* Return the current rehash size of TABLE. */)
5199 (table)
5200 Lisp_Object table;
5201 {
5202 return check_hash_table (table)->rehash_size;
5203 }
5204
5205
5206 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5207 Shash_table_rehash_threshold, 1, 1, 0,
5208 doc: /* Return the current rehash threshold of TABLE. */)
5209 (table)
5210 Lisp_Object table;
5211 {
5212 return check_hash_table (table)->rehash_threshold;
5213 }
5214
5215
5216 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5217 doc: /* Return the size of TABLE.
5218 The size can be used as an argument to `make-hash-table' to create
5219 a hash table than can hold as many elements of TABLE holds
5220 without need for resizing. */)
5221 (table)
5222 Lisp_Object table;
5223 {
5224 struct Lisp_Hash_Table *h = check_hash_table (table);
5225 return make_number (HASH_TABLE_SIZE (h));
5226 }
5227
5228
5229 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5230 doc: /* Return the test TABLE uses. */)
5231 (table)
5232 Lisp_Object table;
5233 {
5234 return check_hash_table (table)->test;
5235 }
5236
5237
5238 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5239 1, 1, 0,
5240 doc: /* Return the weakness of TABLE. */)
5241 (table)
5242 Lisp_Object table;
5243 {
5244 return check_hash_table (table)->weak;
5245 }
5246
5247
5248 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5249 doc: /* Return t if OBJ is a Lisp hash table object. */)
5250 (obj)
5251 Lisp_Object obj;
5252 {
5253 return HASH_TABLE_P (obj) ? Qt : Qnil;
5254 }
5255
5256
5257 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5258 doc: /* Clear hash table TABLE. */)
5259 (table)
5260 Lisp_Object table;
5261 {
5262 hash_clear (check_hash_table (table));
5263 return Qnil;
5264 }
5265
5266
5267 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5268 doc: /* Look up KEY in TABLE and return its associated value.
5269 If KEY is not found, return DFLT which defaults to nil. */)
5270 (key, table, dflt)
5271 Lisp_Object key, table, dflt;
5272 {
5273 struct Lisp_Hash_Table *h = check_hash_table (table);
5274 int i = hash_lookup (h, key, NULL);
5275 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5276 }
5277
5278
5279 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5280 doc: /* Associate KEY with VALUE in hash table TABLE.
5281 If KEY is already present in table, replace its current value with
5282 VALUE. */)
5283 (key, value, table)
5284 Lisp_Object key, value, table;
5285 {
5286 struct Lisp_Hash_Table *h = check_hash_table (table);
5287 int i;
5288 unsigned hash;
5289
5290 i = hash_lookup (h, key, &hash);
5291 if (i >= 0)
5292 HASH_VALUE (h, i) = value;
5293 else
5294 hash_put (h, key, value, hash);
5295
5296 return value;
5297 }
5298
5299
5300 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5301 doc: /* Remove KEY from TABLE. */)
5302 (key, table)
5303 Lisp_Object key, table;
5304 {
5305 struct Lisp_Hash_Table *h = check_hash_table (table);
5306 hash_remove (h, key);
5307 return Qnil;
5308 }
5309
5310
5311 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5312 doc: /* Call FUNCTION for all entries in hash table TABLE.
5313 FUNCTION is called with 2 arguments KEY and VALUE. */)
5314 (function, table)
5315 Lisp_Object function, table;
5316 {
5317 struct Lisp_Hash_Table *h = check_hash_table (table);
5318 Lisp_Object args[3];
5319 int i;
5320
5321 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5322 if (!NILP (HASH_HASH (h, i)))
5323 {
5324 args[0] = function;
5325 args[1] = HASH_KEY (h, i);
5326 args[2] = HASH_VALUE (h, i);
5327 Ffuncall (3, args);
5328 }
5329
5330 return Qnil;
5331 }
5332
5333
5334 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5335 Sdefine_hash_table_test, 3, 3, 0,
5336 doc: /* Define a new hash table test with name NAME, a symbol.
5337
5338 In hash tables created with NAME specified as test, use TEST to
5339 compare keys, and HASH for computing hash codes of keys.
5340
5341 TEST must be a function taking two arguments and returning non-nil if
5342 both arguments are the same. HASH must be a function taking one
5343 argument and return an integer that is the hash code of the argument.
5344 Hash code computation should use the whole value range of integers,
5345 including negative integers. */)
5346 (name, test, hash)
5347 Lisp_Object name, test, hash;
5348 {
5349 return Fput (name, Qhash_table_test, list2 (test, hash));
5350 }
5351
5352
5353 \f
5354 /************************************************************************
5355 MD5
5356 ************************************************************************/
5357
5358 #include "md5.h"
5359 #include "coding.h"
5360
5361 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5362 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5363
5364 A message digest is a cryptographic checksum of a document, and the
5365 algorithm to calculate it is defined in RFC 1321.
5366
5367 The two optional arguments START and END are character positions
5368 specifying for which part of OBJECT the message digest should be
5369 computed. If nil or omitted, the digest is computed for the whole
5370 OBJECT.
5371
5372 The MD5 message digest is computed from the result of encoding the
5373 text in a coding system, not directly from the internal Emacs form of
5374 the text. The optional fourth argument CODING-SYSTEM specifies which
5375 coding system to encode the text with. It should be the same coding
5376 system that you used or will use when actually writing the text into a
5377 file.
5378
5379 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5380 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5381 system would be chosen by default for writing this text into a file.
5382
5383 If OBJECT is a string, the most preferred coding system (see the
5384 command `prefer-coding-system') is used.
5385
5386 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5387 guesswork fails. Normally, an error is signaled in such case. */)
5388 (object, start, end, coding_system, noerror)
5389 Lisp_Object object, start, end, coding_system, noerror;
5390 {
5391 unsigned char digest[16];
5392 unsigned char value[33];
5393 int i;
5394 int size;
5395 int size_byte = 0;
5396 int start_char = 0, end_char = 0;
5397 int start_byte = 0, end_byte = 0;
5398 register int b, e;
5399 register struct buffer *bp;
5400 int temp;
5401
5402 if (STRINGP (object))
5403 {
5404 if (NILP (coding_system))
5405 {
5406 /* Decide the coding-system to encode the data with. */
5407
5408 if (STRING_MULTIBYTE (object))
5409 /* use default, we can't guess correct value */
5410 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5411 else
5412 coding_system = Qraw_text;
5413 }
5414
5415 if (NILP (Fcoding_system_p (coding_system)))
5416 {
5417 /* Invalid coding system. */
5418
5419 if (!NILP (noerror))
5420 coding_system = Qraw_text;
5421 else
5422 while (1)
5423 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5424 }
5425
5426 if (STRING_MULTIBYTE (object))
5427 object = code_convert_string1 (object, coding_system, Qnil, 1);
5428
5429 size = SCHARS (object);
5430 size_byte = SBYTES (object);
5431
5432 if (!NILP (start))
5433 {
5434 CHECK_NUMBER (start);
5435
5436 start_char = XINT (start);
5437
5438 if (start_char < 0)
5439 start_char += size;
5440
5441 start_byte = string_char_to_byte (object, start_char);
5442 }
5443
5444 if (NILP (end))
5445 {
5446 end_char = size;
5447 end_byte = size_byte;
5448 }
5449 else
5450 {
5451 CHECK_NUMBER (end);
5452
5453 end_char = XINT (end);
5454
5455 if (end_char < 0)
5456 end_char += size;
5457
5458 end_byte = string_char_to_byte (object, end_char);
5459 }
5460
5461 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5462 args_out_of_range_3 (object, make_number (start_char),
5463 make_number (end_char));
5464 }
5465 else
5466 {
5467 struct buffer *prev = current_buffer;
5468
5469 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5470
5471 CHECK_BUFFER (object);
5472
5473 bp = XBUFFER (object);
5474 if (bp != current_buffer)
5475 set_buffer_internal (bp);
5476
5477 if (NILP (start))
5478 b = BEGV;
5479 else
5480 {
5481 CHECK_NUMBER_COERCE_MARKER (start);
5482 b = XINT (start);
5483 }
5484
5485 if (NILP (end))
5486 e = ZV;
5487 else
5488 {
5489 CHECK_NUMBER_COERCE_MARKER (end);
5490 e = XINT (end);
5491 }
5492
5493 if (b > e)
5494 temp = b, b = e, e = temp;
5495
5496 if (!(BEGV <= b && e <= ZV))
5497 args_out_of_range (start, end);
5498
5499 if (NILP (coding_system))
5500 {
5501 /* Decide the coding-system to encode the data with.
5502 See fileio.c:Fwrite-region */
5503
5504 if (!NILP (Vcoding_system_for_write))
5505 coding_system = Vcoding_system_for_write;
5506 else
5507 {
5508 int force_raw_text = 0;
5509
5510 coding_system = XBUFFER (object)->buffer_file_coding_system;
5511 if (NILP (coding_system)
5512 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5513 {
5514 coding_system = Qnil;
5515 if (NILP (current_buffer->enable_multibyte_characters))
5516 force_raw_text = 1;
5517 }
5518
5519 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5520 {
5521 /* Check file-coding-system-alist. */
5522 Lisp_Object args[4], val;
5523
5524 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5525 args[3] = Fbuffer_file_name(object);
5526 val = Ffind_operation_coding_system (4, args);
5527 if (CONSP (val) && !NILP (XCDR (val)))
5528 coding_system = XCDR (val);
5529 }
5530
5531 if (NILP (coding_system)
5532 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5533 {
5534 /* If we still have not decided a coding system, use the
5535 default value of buffer-file-coding-system. */
5536 coding_system = XBUFFER (object)->buffer_file_coding_system;
5537 }
5538
5539 if (!force_raw_text
5540 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5541 /* Confirm that VAL can surely encode the current region. */
5542 coding_system = call4 (Vselect_safe_coding_system_function,
5543 make_number (b), make_number (e),
5544 coding_system, Qnil);
5545
5546 if (force_raw_text)
5547 coding_system = Qraw_text;
5548 }
5549
5550 if (NILP (Fcoding_system_p (coding_system)))
5551 {
5552 /* Invalid coding system. */
5553
5554 if (!NILP (noerror))
5555 coding_system = Qraw_text;
5556 else
5557 while (1)
5558 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5559 }
5560 }
5561
5562 object = make_buffer_string (b, e, 0);
5563 if (prev != current_buffer)
5564 set_buffer_internal (prev);
5565 /* Discard the unwind protect for recovering the current
5566 buffer. */
5567 specpdl_ptr--;
5568
5569 if (STRING_MULTIBYTE (object))
5570 object = code_convert_string1 (object, coding_system, Qnil, 1);
5571 }
5572
5573 md5_buffer (SDATA (object) + start_byte,
5574 SBYTES (object) - (size_byte - end_byte),
5575 digest);
5576
5577 for (i = 0; i < 16; i++)
5578 sprintf (&value[2 * i], "%02x", digest[i]);
5579 value[32] = '\0';
5580
5581 return make_string (value, 32);
5582 }
5583
5584 \f
5585 void
5586 syms_of_fns ()
5587 {
5588 /* Hash table stuff. */
5589 Qhash_table_p = intern ("hash-table-p");
5590 staticpro (&Qhash_table_p);
5591 Qeq = intern ("eq");
5592 staticpro (&Qeq);
5593 Qeql = intern ("eql");
5594 staticpro (&Qeql);
5595 Qequal = intern ("equal");
5596 staticpro (&Qequal);
5597 QCtest = intern (":test");
5598 staticpro (&QCtest);
5599 QCsize = intern (":size");
5600 staticpro (&QCsize);
5601 QCrehash_size = intern (":rehash-size");
5602 staticpro (&QCrehash_size);
5603 QCrehash_threshold = intern (":rehash-threshold");
5604 staticpro (&QCrehash_threshold);
5605 QCweakness = intern (":weakness");
5606 staticpro (&QCweakness);
5607 Qkey = intern ("key");
5608 staticpro (&Qkey);
5609 Qvalue = intern ("value");
5610 staticpro (&Qvalue);
5611 Qhash_table_test = intern ("hash-table-test");
5612 staticpro (&Qhash_table_test);
5613 Qkey_or_value = intern ("key-or-value");
5614 staticpro (&Qkey_or_value);
5615 Qkey_and_value = intern ("key-and-value");
5616 staticpro (&Qkey_and_value);
5617
5618 defsubr (&Ssxhash);
5619 defsubr (&Smake_hash_table);
5620 defsubr (&Scopy_hash_table);
5621 defsubr (&Shash_table_count);
5622 defsubr (&Shash_table_rehash_size);
5623 defsubr (&Shash_table_rehash_threshold);
5624 defsubr (&Shash_table_size);
5625 defsubr (&Shash_table_test);
5626 defsubr (&Shash_table_weakness);
5627 defsubr (&Shash_table_p);
5628 defsubr (&Sclrhash);
5629 defsubr (&Sgethash);
5630 defsubr (&Sputhash);
5631 defsubr (&Sremhash);
5632 defsubr (&Smaphash);
5633 defsubr (&Sdefine_hash_table_test);
5634
5635 Qstring_lessp = intern ("string-lessp");
5636 staticpro (&Qstring_lessp);
5637 Qprovide = intern ("provide");
5638 staticpro (&Qprovide);
5639 Qrequire = intern ("require");
5640 staticpro (&Qrequire);
5641 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5642 staticpro (&Qyes_or_no_p_history);
5643 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5644 staticpro (&Qcursor_in_echo_area);
5645 Qwidget_type = intern ("widget-type");
5646 staticpro (&Qwidget_type);
5647
5648 staticpro (&string_char_byte_cache_string);
5649 string_char_byte_cache_string = Qnil;
5650
5651 require_nesting_list = Qnil;
5652 staticpro (&require_nesting_list);
5653
5654 Fset (Qyes_or_no_p_history, Qnil);
5655
5656 DEFVAR_LISP ("features", &Vfeatures,
5657 doc: /* A list of symbols which are the features of the executing emacs.
5658 Used by `featurep' and `require', and altered by `provide'. */);
5659 Vfeatures = Qnil;
5660 Qsubfeatures = intern ("subfeatures");
5661 staticpro (&Qsubfeatures);
5662
5663 #ifdef HAVE_LANGINFO_CODESET
5664 Qcodeset = intern ("codeset");
5665 staticpro (&Qcodeset);
5666 Qdays = intern ("days");
5667 staticpro (&Qdays);
5668 Qmonths = intern ("months");
5669 staticpro (&Qmonths);
5670 Qpaper = intern ("paper");
5671 staticpro (&Qpaper);
5672 #endif /* HAVE_LANGINFO_CODESET */
5673
5674 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5675 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5676 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5677 invoked by mouse clicks and mouse menu items. */);
5678 use_dialog_box = 1;
5679
5680 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5681 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5682 This applies to commands from menus and tool bar buttons. The value of
5683 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5684 used if both `use-dialog-box' and this variable are non-nil. */);
5685 use_file_dialog = 1;
5686
5687 defsubr (&Sidentity);
5688 defsubr (&Srandom);
5689 defsubr (&Slength);
5690 defsubr (&Ssafe_length);
5691 defsubr (&Sstring_bytes);
5692 defsubr (&Sstring_equal);
5693 defsubr (&Scompare_strings);
5694 defsubr (&Sstring_lessp);
5695 defsubr (&Sappend);
5696 defsubr (&Sconcat);
5697 defsubr (&Svconcat);
5698 defsubr (&Scopy_sequence);
5699 defsubr (&Sstring_make_multibyte);
5700 defsubr (&Sstring_make_unibyte);
5701 defsubr (&Sstring_as_multibyte);
5702 defsubr (&Sstring_as_unibyte);
5703 defsubr (&Sstring_to_multibyte);
5704 defsubr (&Scopy_alist);
5705 defsubr (&Ssubstring);
5706 defsubr (&Ssubstring_no_properties);
5707 defsubr (&Snthcdr);
5708 defsubr (&Snth);
5709 defsubr (&Selt);
5710 defsubr (&Smember);
5711 defsubr (&Smemq);
5712 defsubr (&Sassq);
5713 defsubr (&Sassoc);
5714 defsubr (&Srassq);
5715 defsubr (&Srassoc);
5716 defsubr (&Sdelq);
5717 defsubr (&Sdelete);
5718 defsubr (&Snreverse);
5719 defsubr (&Sreverse);
5720 defsubr (&Ssort);
5721 defsubr (&Splist_get);
5722 defsubr (&Sget);
5723 defsubr (&Splist_put);
5724 defsubr (&Sput);
5725 defsubr (&Slax_plist_get);
5726 defsubr (&Slax_plist_put);
5727 defsubr (&Sequal);
5728 defsubr (&Sfillarray);
5729 defsubr (&Sclear_string);
5730 defsubr (&Schar_table_subtype);
5731 defsubr (&Schar_table_parent);
5732 defsubr (&Sset_char_table_parent);
5733 defsubr (&Schar_table_extra_slot);
5734 defsubr (&Sset_char_table_extra_slot);
5735 defsubr (&Schar_table_range);
5736 defsubr (&Sset_char_table_range);
5737 defsubr (&Sset_char_table_default);
5738 defsubr (&Soptimize_char_table);
5739 defsubr (&Smap_char_table);
5740 defsubr (&Snconc);
5741 defsubr (&Smapcar);
5742 defsubr (&Smapc);
5743 defsubr (&Smapconcat);
5744 defsubr (&Sy_or_n_p);
5745 defsubr (&Syes_or_no_p);
5746 defsubr (&Sload_average);
5747 defsubr (&Sfeaturep);
5748 defsubr (&Srequire);
5749 defsubr (&Sprovide);
5750 defsubr (&Splist_member);
5751 defsubr (&Swidget_put);
5752 defsubr (&Swidget_get);
5753 defsubr (&Swidget_apply);
5754 defsubr (&Sbase64_encode_region);
5755 defsubr (&Sbase64_decode_region);
5756 defsubr (&Sbase64_encode_string);
5757 defsubr (&Sbase64_decode_string);
5758 defsubr (&Smd5);
5759 defsubr (&Slocale_info);
5760 }
5761
5762
5763 void
5764 init_fns ()
5765 {
5766 Vweak_hash_tables = Qnil;
5767 }
5768
5769 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5770 (do not change this comment) */