]> code.delx.au - gnu-emacs/blob - src/keymap.c
(list_processes_1): Set undo_list instead of calling Fbuffer_undo_list.
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 01, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* List of emulation mode keymap alists. */
79 Lisp_Object Vemulation_mode_map_alists;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
96
97 /* Alist of elements like (DEL . "\d"). */
98 static Lisp_Object exclude_keys;
99
100 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
101 static Lisp_Object command_remapping_vector;
102
103 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
104 in a string key sequence is equivalent to prefixing with this
105 character. */
106 extern Lisp_Object meta_prefix_char;
107
108 extern Lisp_Object Voverriding_local_map;
109
110 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
111 static Lisp_Object where_is_cache;
112 /* Which keymaps are reverse-stored in the cache. */
113 static Lisp_Object where_is_cache_keymaps;
114
115 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
116 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
117
118 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
119 static void describe_command P_ ((Lisp_Object, Lisp_Object));
120 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
121 static void describe_map P_ ((Lisp_Object, Lisp_Object,
122 void (*) P_ ((Lisp_Object, Lisp_Object)),
123 int, Lisp_Object, Lisp_Object*, int));
124 static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
125 void (*) (Lisp_Object, Lisp_Object), int,
126 Lisp_Object, Lisp_Object, int *, int, int));
127 static void silly_event_symbol_error P_ ((Lisp_Object));
128 \f
129 /* Keymap object support - constructors and predicates. */
130
131 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
132 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
133 CHARTABLE is a char-table that holds the bindings for all characters
134 without modifiers. All entries in it are initially nil, meaning
135 "command undefined". ALIST is an assoc-list which holds bindings for
136 function keys, mouse events, and any other things that appear in the
137 input stream. Initially, ALIST is nil.
138
139 The optional arg STRING supplies a menu name for the keymap
140 in case you use it as a menu with `x-popup-menu'. */)
141 (string)
142 Lisp_Object string;
143 {
144 Lisp_Object tail;
145 if (!NILP (string))
146 tail = Fcons (string, Qnil);
147 else
148 tail = Qnil;
149 return Fcons (Qkeymap,
150 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
151 }
152
153 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
154 doc: /* Construct and return a new sparse keymap.
155 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
156 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
157 which binds the function key or mouse event SYMBOL to DEFINITION.
158 Initially the alist is nil.
159
160 The optional arg STRING supplies a menu name for the keymap
161 in case you use it as a menu with `x-popup-menu'. */)
162 (string)
163 Lisp_Object string;
164 {
165 if (!NILP (string))
166 return Fcons (Qkeymap, Fcons (string, Qnil));
167 return Fcons (Qkeymap, Qnil);
168 }
169
170 /* This function is used for installing the standard key bindings
171 at initialization time.
172
173 For example:
174
175 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
176
177 void
178 initial_define_key (keymap, key, defname)
179 Lisp_Object keymap;
180 int key;
181 char *defname;
182 {
183 store_in_keymap (keymap, make_number (key), intern (defname));
184 }
185
186 void
187 initial_define_lispy_key (keymap, keyname, defname)
188 Lisp_Object keymap;
189 char *keyname;
190 char *defname;
191 {
192 store_in_keymap (keymap, intern (keyname), intern (defname));
193 }
194
195 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
196 doc: /* Return t if OBJECT is a keymap.
197
198 A keymap is a list (keymap . ALIST),
199 or a symbol whose function definition is itself a keymap.
200 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
201 a vector of densely packed bindings for small character codes
202 is also allowed as an element. */)
203 (object)
204 Lisp_Object object;
205 {
206 return (KEYMAPP (object) ? Qt : Qnil);
207 }
208
209 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
210 doc: /* Return the prompt-string of a keymap MAP.
211 If non-nil, the prompt is shown in the echo-area
212 when reading a key-sequence to be looked-up in this keymap. */)
213 (map)
214 Lisp_Object map;
215 {
216 map = get_keymap (map, 0, 0);
217 while (CONSP (map))
218 {
219 Lisp_Object tem = XCAR (map);
220 if (STRINGP (tem))
221 return tem;
222 map = XCDR (map);
223 }
224 return Qnil;
225 }
226
227 /* Check that OBJECT is a keymap (after dereferencing through any
228 symbols). If it is, return it.
229
230 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
231 is an autoload form, do the autoload and try again.
232 If AUTOLOAD is nonzero, callers must assume GC is possible.
233
234 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
235 is zero as well), return Qt.
236
237 ERROR controls how we respond if OBJECT isn't a keymap.
238 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
239
240 Note that most of the time, we don't want to pursue autoloads.
241 Functions like Faccessible_keymaps which scan entire keymap trees
242 shouldn't load every autoloaded keymap. I'm not sure about this,
243 but it seems to me that only read_key_sequence, Flookup_key, and
244 Fdefine_key should cause keymaps to be autoloaded.
245
246 This function can GC when AUTOLOAD is non-zero, because it calls
247 do_autoload which can GC. */
248
249 Lisp_Object
250 get_keymap (object, error, autoload)
251 Lisp_Object object;
252 int error, autoload;
253 {
254 Lisp_Object tem;
255
256 autoload_retry:
257 if (NILP (object))
258 goto end;
259 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
260 return object;
261
262 tem = indirect_function (object);
263 if (CONSP (tem))
264 {
265 if (EQ (XCAR (tem), Qkeymap))
266 return tem;
267
268 /* Should we do an autoload? Autoload forms for keymaps have
269 Qkeymap as their fifth element. */
270 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
271 && SYMBOLP (object))
272 {
273 Lisp_Object tail;
274
275 tail = Fnth (make_number (4), tem);
276 if (EQ (tail, Qkeymap))
277 {
278 if (autoload)
279 {
280 struct gcpro gcpro1, gcpro2;
281
282 GCPRO2 (tem, object);
283 do_autoload (tem, object);
284 UNGCPRO;
285
286 goto autoload_retry;
287 }
288 else
289 return Qt;
290 }
291 }
292 }
293
294 end:
295 if (error)
296 wrong_type_argument (Qkeymapp, object);
297 return Qnil;
298 }
299 \f
300 /* Return the parent map of KEYMAP, or nil if it has none.
301 We assume that KEYMAP is a valid keymap. */
302
303 Lisp_Object
304 keymap_parent (keymap, autoload)
305 Lisp_Object keymap;
306 int autoload;
307 {
308 Lisp_Object list;
309
310 keymap = get_keymap (keymap, 1, autoload);
311
312 /* Skip past the initial element `keymap'. */
313 list = XCDR (keymap);
314 for (; CONSP (list); list = XCDR (list))
315 {
316 /* See if there is another `keymap'. */
317 if (KEYMAPP (list))
318 return list;
319 }
320
321 return get_keymap (list, 0, autoload);
322 }
323
324 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
325 doc: /* Return the parent keymap of KEYMAP. */)
326 (keymap)
327 Lisp_Object keymap;
328 {
329 return keymap_parent (keymap, 1);
330 }
331
332 /* Check whether MAP is one of MAPS parents. */
333 int
334 keymap_memberp (map, maps)
335 Lisp_Object map, maps;
336 {
337 if (NILP (map)) return 0;
338 while (KEYMAPP (maps) && !EQ (map, maps))
339 maps = keymap_parent (maps, 0);
340 return (EQ (map, maps));
341 }
342
343 /* Set the parent keymap of MAP to PARENT. */
344
345 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
346 doc: /* Modify KEYMAP to set its parent map to PARENT.
347 Return PARENT. PARENT should be nil or another keymap. */)
348 (keymap, parent)
349 Lisp_Object keymap, parent;
350 {
351 Lisp_Object list, prev;
352 struct gcpro gcpro1, gcpro2;
353 int i;
354
355 /* Force a keymap flush for the next call to where-is.
356 Since this can be called from within where-is, we don't set where_is_cache
357 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
358 be changed during where-is, while where_is_cache_keymaps is only used at
359 the very beginning of where-is and can thus be changed here without any
360 adverse effect.
361 This is a very minor correctness (rather than safety) issue. */
362 where_is_cache_keymaps = Qt;
363
364 GCPRO2 (keymap, parent);
365 keymap = get_keymap (keymap, 1, 1);
366
367 if (!NILP (parent))
368 {
369 parent = get_keymap (parent, 1, 1);
370
371 /* Check for cycles. */
372 if (keymap_memberp (keymap, parent))
373 error ("Cyclic keymap inheritance");
374 }
375
376 /* Skip past the initial element `keymap'. */
377 prev = keymap;
378 while (1)
379 {
380 list = XCDR (prev);
381 /* If there is a parent keymap here, replace it.
382 If we came to the end, add the parent in PREV. */
383 if (!CONSP (list) || KEYMAPP (list))
384 {
385 /* If we already have the right parent, return now
386 so that we avoid the loops below. */
387 if (EQ (XCDR (prev), parent))
388 RETURN_UNGCPRO (parent);
389
390 XSETCDR (prev, parent);
391 break;
392 }
393 prev = list;
394 }
395
396 /* Scan through for submaps, and set their parents too. */
397
398 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
399 {
400 /* Stop the scan when we come to the parent. */
401 if (EQ (XCAR (list), Qkeymap))
402 break;
403
404 /* If this element holds a prefix map, deal with it. */
405 if (CONSP (XCAR (list))
406 && CONSP (XCDR (XCAR (list))))
407 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
408 XCDR (XCAR (list)));
409
410 if (VECTORP (XCAR (list)))
411 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
412 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
413 fix_submap_inheritance (keymap, make_number (i),
414 XVECTOR (XCAR (list))->contents[i]);
415
416 if (CHAR_TABLE_P (XCAR (list)))
417 {
418 Lisp_Object indices[3];
419
420 map_char_table (fix_submap_inheritance, Qnil,
421 XCAR (list), XCAR (list),
422 keymap, 0, indices);
423 }
424 }
425
426 RETURN_UNGCPRO (parent);
427 }
428
429 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
430 if EVENT is also a prefix in MAP's parent,
431 make sure that SUBMAP inherits that definition as its own parent. */
432
433 static void
434 fix_submap_inheritance (map, event, submap)
435 Lisp_Object map, event, submap;
436 {
437 Lisp_Object map_parent, parent_entry;
438
439 /* SUBMAP is a cons that we found as a key binding.
440 Discard the other things found in a menu key binding. */
441
442 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
443
444 /* If it isn't a keymap now, there's no work to do. */
445 if (!CONSP (submap))
446 return;
447
448 map_parent = keymap_parent (map, 0);
449 if (!NILP (map_parent))
450 parent_entry =
451 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
452 else
453 parent_entry = Qnil;
454
455 /* If MAP's parent has something other than a keymap,
456 our own submap shadows it completely. */
457 if (!CONSP (parent_entry))
458 return;
459
460 if (! EQ (parent_entry, submap))
461 {
462 Lisp_Object submap_parent;
463 submap_parent = submap;
464 while (1)
465 {
466 Lisp_Object tem;
467
468 tem = keymap_parent (submap_parent, 0);
469
470 if (KEYMAPP (tem))
471 {
472 if (keymap_memberp (tem, parent_entry))
473 /* Fset_keymap_parent could create a cycle. */
474 return;
475 submap_parent = tem;
476 }
477 else
478 break;
479 }
480 Fset_keymap_parent (submap_parent, parent_entry);
481 }
482 }
483 \f
484 /* Look up IDX in MAP. IDX may be any sort of event.
485 Note that this does only one level of lookup; IDX must be a single
486 event, not a sequence.
487
488 If T_OK is non-zero, bindings for Qt are treated as default
489 bindings; any key left unmentioned by other tables and bindings is
490 given the binding of Qt.
491
492 If T_OK is zero, bindings for Qt are not treated specially.
493
494 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
495
496 Lisp_Object
497 access_keymap (map, idx, t_ok, noinherit, autoload)
498 Lisp_Object map;
499 Lisp_Object idx;
500 int t_ok;
501 int noinherit;
502 int autoload;
503 {
504 Lisp_Object val;
505
506 /* Qunbound in VAL means we have found no binding yet. */
507 val = Qunbound;
508
509 /* If idx is a list (some sort of mouse click, perhaps?),
510 the index we want to use is the car of the list, which
511 ought to be a symbol. */
512 idx = EVENT_HEAD (idx);
513
514 /* If idx is a symbol, it might have modifiers, which need to
515 be put in the canonical order. */
516 if (SYMBOLP (idx))
517 idx = reorder_modifiers (idx);
518 else if (INTEGERP (idx))
519 /* Clobber the high bits that can be present on a machine
520 with more than 24 bits of integer. */
521 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
522
523 /* Handle the special meta -> esc mapping. */
524 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
525 {
526 /* See if there is a meta-map. If there's none, there is
527 no binding for IDX, unless a default binding exists in MAP. */
528 struct gcpro gcpro1;
529 Lisp_Object meta_map;
530 GCPRO1 (map);
531 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
532 t_ok, noinherit, autoload),
533 0, autoload);
534 UNGCPRO;
535 if (CONSP (meta_map))
536 {
537 map = meta_map;
538 idx = make_number (XUINT (idx) & ~meta_modifier);
539 }
540 else if (t_ok)
541 /* Set IDX to t, so that we only find a default binding. */
542 idx = Qt;
543 else
544 /* We know there is no binding. */
545 return Qnil;
546 }
547
548 /* t_binding is where we put a default binding that applies,
549 to use in case we do not find a binding specifically
550 for this key sequence. */
551 {
552 Lisp_Object tail;
553 Lisp_Object t_binding = Qnil;
554 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
555
556 GCPRO4 (map, tail, idx, t_binding);
557
558 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
559 If it is 1, only generic-char bindings are accepted.
560 Otherwise, neither are. */
561 t_ok = t_ok ? 2 : 0;
562
563 for (tail = XCDR (map);
564 (CONSP (tail)
565 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
566 tail = XCDR (tail))
567 {
568 Lisp_Object binding;
569
570 binding = XCAR (tail);
571 if (SYMBOLP (binding))
572 {
573 /* If NOINHERIT, stop finding prefix definitions
574 after we pass a second occurrence of the `keymap' symbol. */
575 if (noinherit && EQ (binding, Qkeymap))
576 RETURN_UNGCPRO (Qnil);
577 }
578 else if (CONSP (binding))
579 {
580 Lisp_Object key = XCAR (binding);
581
582 if (EQ (key, idx))
583 val = XCDR (binding);
584 else if (t_ok
585 && INTEGERP (idx)
586 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
587 && INTEGERP (key)
588 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
589 && !SINGLE_BYTE_CHAR_P (XINT (idx))
590 && !SINGLE_BYTE_CHAR_P (XINT (key))
591 && CHAR_VALID_P (XINT (key), 1)
592 && !CHAR_VALID_P (XINT (key), 0)
593 && (CHAR_CHARSET (XINT (key))
594 == CHAR_CHARSET (XINT (idx))))
595 {
596 /* KEY is the generic character of the charset of IDX.
597 Use KEY's binding if there isn't a binding for IDX
598 itself. */
599 t_binding = XCDR (binding);
600 t_ok = 0;
601 }
602 else if (t_ok > 1 && EQ (key, Qt))
603 {
604 t_binding = XCDR (binding);
605 t_ok = 1;
606 }
607 }
608 else if (VECTORP (binding))
609 {
610 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
611 val = AREF (binding, XFASTINT (idx));
612 }
613 else if (CHAR_TABLE_P (binding))
614 {
615 /* Character codes with modifiers
616 are not included in a char-table.
617 All character codes without modifiers are included. */
618 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
619 {
620 val = Faref (binding, idx);
621 /* `nil' has a special meaning for char-tables, so
622 we use something else to record an explicitly
623 unbound entry. */
624 if (NILP (val))
625 val = Qunbound;
626 }
627 }
628
629 /* If we found a binding, clean it up and return it. */
630 if (!EQ (val, Qunbound))
631 {
632 if (EQ (val, Qt))
633 /* A Qt binding is just like an explicit nil binding
634 (i.e. it shadows any parent binding but not bindings in
635 keymaps of lower precedence). */
636 val = Qnil;
637 val = get_keyelt (val, autoload);
638 if (KEYMAPP (val))
639 fix_submap_inheritance (map, idx, val);
640 RETURN_UNGCPRO (val);
641 }
642 QUIT;
643 }
644 UNGCPRO;
645 return get_keyelt (t_binding, autoload);
646 }
647 }
648
649 static void
650 map_keymap_item (fun, args, key, val, data)
651 map_keymap_function_t fun;
652 Lisp_Object args, key, val;
653 void *data;
654 {
655 /* We should maybe try to detect bindings shadowed by previous
656 ones and things like that. */
657 if (EQ (val, Qt))
658 val = Qnil;
659 (*fun) (key, val, args, data);
660 }
661
662 static void
663 map_keymap_char_table_item (args, key, val)
664 Lisp_Object args, key, val;
665 {
666 if (!NILP (val))
667 {
668 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
669 args = XCDR (args);
670 map_keymap_item (fun, XCDR (args), key, val,
671 XSAVE_VALUE (XCAR (args))->pointer);
672 }
673 }
674
675 /* Call FUN for every binding in MAP.
676 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
677 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
678 void
679 map_keymap (map, fun, args, data, autoload)
680 map_keymap_function_t fun;
681 Lisp_Object map, args;
682 void *data;
683 int autoload;
684 {
685 struct gcpro gcpro1, gcpro2, gcpro3;
686 Lisp_Object tail;
687
688 GCPRO3 (map, args, tail);
689 map = get_keymap (map, 1, autoload);
690 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
691 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
692 tail = XCDR (tail))
693 {
694 Lisp_Object binding = XCAR (tail);
695
696 if (CONSP (binding))
697 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
698 else if (VECTORP (binding))
699 {
700 /* Loop over the char values represented in the vector. */
701 int len = ASIZE (binding);
702 int c;
703 for (c = 0; c < len; c++)
704 {
705 Lisp_Object character;
706 XSETFASTINT (character, c);
707 map_keymap_item (fun, args, character, AREF (binding, c), data);
708 }
709 }
710 else if (CHAR_TABLE_P (binding))
711 {
712 Lisp_Object indices[3];
713 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
714 Fcons (make_save_value (fun, 0),
715 Fcons (make_save_value (data, 0),
716 args)),
717 0, indices);
718 }
719 }
720 UNGCPRO;
721 }
722
723 static void
724 map_keymap_call (key, val, fun, dummy)
725 Lisp_Object key, val, fun;
726 void *dummy;
727 {
728 call2 (fun, key, val);
729 }
730
731 DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
732 doc: /* Call FUNCTION for every binding in KEYMAP.
733 FUNCTION is called with two arguments: the event and its binding.
734 If KEYMAP has a parent, the parent's bindings are included as well.
735 This works recursively: if the parent has itself a parent, then the
736 grandparent's bindings are also included and so on.
737 usage: (map-keymap FUNCTION KEYMAP) */)
738 (function, keymap, sort_first)
739 Lisp_Object function, keymap, sort_first;
740 {
741 if (INTEGERP (function))
742 /* We have to stop integers early since map_keymap gives them special
743 significance. */
744 Fsignal (Qinvalid_function, Fcons (function, Qnil));
745 if (! NILP (sort_first))
746 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
747
748 map_keymap (keymap, map_keymap_call, function, NULL, 1);
749 return Qnil;
750 }
751
752 /* Given OBJECT which was found in a slot in a keymap,
753 trace indirect definitions to get the actual definition of that slot.
754 An indirect definition is a list of the form
755 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
756 and INDEX is the object to look up in KEYMAP to yield the definition.
757
758 Also if OBJECT has a menu string as the first element,
759 remove that. Also remove a menu help string as second element.
760
761 If AUTOLOAD is nonzero, load autoloadable keymaps
762 that are referred to with indirection. */
763
764 Lisp_Object
765 get_keyelt (object, autoload)
766 Lisp_Object object;
767 int autoload;
768 {
769 while (1)
770 {
771 if (!(CONSP (object)))
772 /* This is really the value. */
773 return object;
774
775 /* If the keymap contents looks like (keymap ...) or (lambda ...)
776 then use itself. */
777 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
778 return object;
779
780 /* If the keymap contents looks like (menu-item name . DEFN)
781 or (menu-item name DEFN ...) then use DEFN.
782 This is a new format menu item. */
783 else if (EQ (XCAR (object), Qmenu_item))
784 {
785 if (CONSP (XCDR (object)))
786 {
787 Lisp_Object tem;
788
789 object = XCDR (XCDR (object));
790 tem = object;
791 if (CONSP (object))
792 object = XCAR (object);
793
794 /* If there's a `:filter FILTER', apply FILTER to the
795 menu-item's definition to get the real definition to
796 use. */
797 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
798 if (EQ (XCAR (tem), QCfilter) && autoload)
799 {
800 Lisp_Object filter;
801 filter = XCAR (XCDR (tem));
802 filter = list2 (filter, list2 (Qquote, object));
803 object = menu_item_eval_property (filter);
804 break;
805 }
806 }
807 else
808 /* Invalid keymap. */
809 return object;
810 }
811
812 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
813 Keymap alist elements like (CHAR MENUSTRING . DEFN)
814 will be used by HierarKey menus. */
815 else if (STRINGP (XCAR (object)))
816 {
817 object = XCDR (object);
818 /* Also remove a menu help string, if any,
819 following the menu item name. */
820 if (CONSP (object) && STRINGP (XCAR (object)))
821 object = XCDR (object);
822 /* Also remove the sublist that caches key equivalences, if any. */
823 if (CONSP (object) && CONSP (XCAR (object)))
824 {
825 Lisp_Object carcar;
826 carcar = XCAR (XCAR (object));
827 if (NILP (carcar) || VECTORP (carcar))
828 object = XCDR (object);
829 }
830 }
831
832 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
833 else
834 {
835 struct gcpro gcpro1;
836 Lisp_Object map;
837 GCPRO1 (object);
838 map = get_keymap (Fcar_safe (object), 0, autoload);
839 UNGCPRO;
840 return (!CONSP (map) ? object /* Invalid keymap */
841 : access_keymap (map, Fcdr (object), 0, 0, autoload));
842 }
843 }
844 }
845
846 static Lisp_Object
847 store_in_keymap (keymap, idx, def)
848 Lisp_Object keymap;
849 register Lisp_Object idx;
850 register Lisp_Object def;
851 {
852 /* Flush any reverse-map cache. */
853 where_is_cache = Qnil;
854 where_is_cache_keymaps = Qt;
855
856 /* If we are preparing to dump, and DEF is a menu element
857 with a menu item indicator, copy it to ensure it is not pure. */
858 if (CONSP (def) && PURE_P (def)
859 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
860 def = Fcons (XCAR (def), XCDR (def));
861
862 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
863 error ("attempt to define a key in a non-keymap");
864
865 /* If idx is a list (some sort of mouse click, perhaps?),
866 the index we want to use is the car of the list, which
867 ought to be a symbol. */
868 idx = EVENT_HEAD (idx);
869
870 /* If idx is a symbol, it might have modifiers, which need to
871 be put in the canonical order. */
872 if (SYMBOLP (idx))
873 idx = reorder_modifiers (idx);
874 else if (INTEGERP (idx))
875 /* Clobber the high bits that can be present on a machine
876 with more than 24 bits of integer. */
877 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
878
879 /* Scan the keymap for a binding of idx. */
880 {
881 Lisp_Object tail;
882
883 /* The cons after which we should insert new bindings. If the
884 keymap has a table element, we record its position here, so new
885 bindings will go after it; this way, the table will stay
886 towards the front of the alist and character lookups in dense
887 keymaps will remain fast. Otherwise, this just points at the
888 front of the keymap. */
889 Lisp_Object insertion_point;
890
891 insertion_point = keymap;
892 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
893 {
894 Lisp_Object elt;
895
896 elt = XCAR (tail);
897 if (VECTORP (elt))
898 {
899 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
900 {
901 ASET (elt, XFASTINT (idx), def);
902 return def;
903 }
904 insertion_point = tail;
905 }
906 else if (CHAR_TABLE_P (elt))
907 {
908 /* Character codes with modifiers
909 are not included in a char-table.
910 All character codes without modifiers are included. */
911 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
912 {
913 Faset (elt, idx,
914 /* `nil' has a special meaning for char-tables, so
915 we use something else to record an explicitly
916 unbound entry. */
917 NILP (def) ? Qt : def);
918 return def;
919 }
920 insertion_point = tail;
921 }
922 else if (CONSP (elt))
923 {
924 if (EQ (idx, XCAR (elt)))
925 {
926 XSETCDR (elt, def);
927 return def;
928 }
929 }
930 else if (EQ (elt, Qkeymap))
931 /* If we find a 'keymap' symbol in the spine of KEYMAP,
932 then we must have found the start of a second keymap
933 being used as the tail of KEYMAP, and a binding for IDX
934 should be inserted before it. */
935 goto keymap_end;
936
937 QUIT;
938 }
939
940 keymap_end:
941 /* We have scanned the entire keymap, and not found a binding for
942 IDX. Let's add one. */
943 XSETCDR (insertion_point,
944 Fcons (Fcons (idx, def), XCDR (insertion_point)));
945 }
946
947 return def;
948 }
949
950 EXFUN (Fcopy_keymap, 1);
951
952 Lisp_Object
953 copy_keymap_item (elt)
954 Lisp_Object elt;
955 {
956 Lisp_Object res, tem;
957
958 if (!CONSP (elt))
959 return elt;
960
961 res = tem = elt;
962
963 /* Is this a new format menu item. */
964 if (EQ (XCAR (tem), Qmenu_item))
965 {
966 /* Copy cell with menu-item marker. */
967 res = elt = Fcons (XCAR (tem), XCDR (tem));
968 tem = XCDR (elt);
969 if (CONSP (tem))
970 {
971 /* Copy cell with menu-item name. */
972 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
973 elt = XCDR (elt);
974 tem = XCDR (elt);
975 }
976 if (CONSP (tem))
977 {
978 /* Copy cell with binding and if the binding is a keymap,
979 copy that. */
980 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
981 elt = XCDR (elt);
982 tem = XCAR (elt);
983 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
984 XSETCAR (elt, Fcopy_keymap (tem));
985 tem = XCDR (elt);
986 if (CONSP (tem) && CONSP (XCAR (tem)))
987 /* Delete cache for key equivalences. */
988 XSETCDR (elt, XCDR (tem));
989 }
990 }
991 else
992 {
993 /* It may be an old fomat menu item.
994 Skip the optional menu string. */
995 if (STRINGP (XCAR (tem)))
996 {
997 /* Copy the cell, since copy-alist didn't go this deep. */
998 res = elt = Fcons (XCAR (tem), XCDR (tem));
999 tem = XCDR (elt);
1000 /* Also skip the optional menu help string. */
1001 if (CONSP (tem) && STRINGP (XCAR (tem)))
1002 {
1003 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1004 elt = XCDR (elt);
1005 tem = XCDR (elt);
1006 }
1007 /* There may also be a list that caches key equivalences.
1008 Just delete it for the new keymap. */
1009 if (CONSP (tem)
1010 && CONSP (XCAR (tem))
1011 && (NILP (XCAR (XCAR (tem)))
1012 || VECTORP (XCAR (XCAR (tem)))))
1013 {
1014 XSETCDR (elt, XCDR (tem));
1015 tem = XCDR (tem);
1016 }
1017 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1018 XSETCDR (elt, Fcopy_keymap (tem));
1019 }
1020 else if (EQ (XCAR (tem), Qkeymap))
1021 res = Fcopy_keymap (elt);
1022 }
1023 return res;
1024 }
1025
1026 static void
1027 copy_keymap_1 (chartable, idx, elt)
1028 Lisp_Object chartable, idx, elt;
1029 {
1030 Faset (chartable, idx, copy_keymap_item (elt));
1031 }
1032
1033 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1034 doc: /* Return a copy of the keymap KEYMAP.
1035 The copy starts out with the same definitions of KEYMAP,
1036 but changing either the copy or KEYMAP does not affect the other.
1037 Any key definitions that are subkeymaps are recursively copied.
1038 However, a key definition which is a symbol whose definition is a keymap
1039 is not copied. */)
1040 (keymap)
1041 Lisp_Object keymap;
1042 {
1043 register Lisp_Object copy, tail;
1044 keymap = get_keymap (keymap, 1, 0);
1045 copy = tail = Fcons (Qkeymap, Qnil);
1046 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1047
1048 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1049 {
1050 Lisp_Object elt = XCAR (keymap);
1051 if (CHAR_TABLE_P (elt))
1052 {
1053 Lisp_Object indices[3];
1054 elt = Fcopy_sequence (elt);
1055 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1056 }
1057 else if (VECTORP (elt))
1058 {
1059 int i;
1060 elt = Fcopy_sequence (elt);
1061 for (i = 0; i < ASIZE (elt); i++)
1062 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1063 }
1064 else if (CONSP (elt))
1065 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1066 XSETCDR (tail, Fcons (elt, Qnil));
1067 tail = XCDR (tail);
1068 keymap = XCDR (keymap);
1069 }
1070 XSETCDR (tail, keymap);
1071 return copy;
1072 }
1073 \f
1074 /* Simple Keymap mutators and accessors. */
1075
1076 /* GC is possible in this function if it autoloads a keymap. */
1077
1078 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1079 doc: /* In KEYMAP, define key sequence KEY as DEF.
1080 KEYMAP is a keymap.
1081
1082 KEY is a string or a vector of symbols and characters meaning a
1083 sequence of keystrokes and events. Non-ASCII characters with codes
1084 above 127 (such as ISO Latin-1) can be included if you use a vector.
1085 Using [t] for KEY creates a default definition, which applies to any
1086 event type that has no other definition in this keymap.
1087
1088 DEF is anything that can be a key's definition:
1089 nil (means key is undefined in this keymap),
1090 a command (a Lisp function suitable for interactive calling),
1091 a string (treated as a keyboard macro),
1092 a keymap (to define a prefix key),
1093 a symbol (when the key is looked up, the symbol will stand for its
1094 function definition, which should at that time be one of the above,
1095 or another symbol whose function definition is used, etc.),
1096 a cons (STRING . DEFN), meaning that DEFN is the definition
1097 (DEFN should be a valid definition in its own right),
1098 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP.
1099
1100 If KEYMAP is a sparse keymap with a binding for KEY, the existing
1101 binding is altered. If there is no binding for KEY, the new pair
1102 binding KEY to DEF is added at the front of KEYMAP. */)
1103 (keymap, key, def)
1104 Lisp_Object keymap;
1105 Lisp_Object key;
1106 Lisp_Object def;
1107 {
1108 register int idx;
1109 register Lisp_Object c;
1110 register Lisp_Object cmd;
1111 int metized = 0;
1112 int meta_bit;
1113 int length;
1114 struct gcpro gcpro1, gcpro2, gcpro3;
1115
1116 GCPRO3 (keymap, key, def);
1117 keymap = get_keymap (keymap, 1, 1);
1118
1119 if (!VECTORP (key) && !STRINGP (key))
1120 key = wrong_type_argument (Qarrayp, key);
1121
1122 length = XFASTINT (Flength (key));
1123 if (length == 0)
1124 RETURN_UNGCPRO (Qnil);
1125
1126 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1127 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1128
1129 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1130
1131 idx = 0;
1132 while (1)
1133 {
1134 c = Faref (key, make_number (idx));
1135
1136 if (CONSP (c) && lucid_event_type_list_p (c))
1137 c = Fevent_convert_list (c);
1138
1139 if (SYMBOLP (c))
1140 silly_event_symbol_error (c);
1141
1142 if (INTEGERP (c)
1143 && (XINT (c) & meta_bit)
1144 && !metized)
1145 {
1146 c = meta_prefix_char;
1147 metized = 1;
1148 }
1149 else
1150 {
1151 if (INTEGERP (c))
1152 XSETINT (c, XINT (c) & ~meta_bit);
1153
1154 metized = 0;
1155 idx++;
1156 }
1157
1158 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1159 error ("Key sequence contains invalid event");
1160
1161 if (idx == length)
1162 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1163
1164 cmd = access_keymap (keymap, c, 0, 1, 1);
1165
1166 /* If this key is undefined, make it a prefix. */
1167 if (NILP (cmd))
1168 cmd = define_as_prefix (keymap, c);
1169
1170 keymap = get_keymap (cmd, 0, 1);
1171 if (!CONSP (keymap))
1172 /* We must use Fkey_description rather than just passing key to
1173 error; key might be a vector, not a string. */
1174 error ("Key sequence %s uses invalid prefix characters",
1175 SDATA (Fkey_description (key, Qnil)));
1176 }
1177 }
1178
1179 /* This function may GC (it calls Fkey_binding). */
1180
1181 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1182 doc: /* Return the remapping for command COMMAND in current keymaps.
1183 Returns nil if COMMAND is not remapped (or not a symbol). */)
1184 (command)
1185 Lisp_Object command;
1186 {
1187 if (!SYMBOLP (command))
1188 return Qnil;
1189
1190 ASET (command_remapping_vector, 1, command);
1191 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1192 }
1193
1194 /* Value is number if KEY is too long; nil if valid but has no definition. */
1195 /* GC is possible in this function if it autoloads a keymap. */
1196
1197 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1198 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1199 nil means undefined. See doc of `define-key' for kinds of definitions.
1200
1201 A number as value means KEY is "too long";
1202 that is, characters or symbols in it except for the last one
1203 fail to be a valid sequence of prefix characters in KEYMAP.
1204 The number is how many characters at the front of KEY
1205 it takes to reach a non-prefix command.
1206
1207 Normally, `lookup-key' ignores bindings for t, which act as default
1208 bindings, used when nothing else in the keymap applies; this makes it
1209 usable as a general function for probing keymaps. However, if the
1210 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1211 recognize the default bindings, just as `read-key-sequence' does. */)
1212 (keymap, key, accept_default)
1213 Lisp_Object keymap;
1214 Lisp_Object key;
1215 Lisp_Object accept_default;
1216 {
1217 register int idx;
1218 register Lisp_Object cmd;
1219 register Lisp_Object c;
1220 int length;
1221 int t_ok = !NILP (accept_default);
1222 struct gcpro gcpro1, gcpro2;
1223
1224 GCPRO2 (keymap, key);
1225 keymap = get_keymap (keymap, 1, 1);
1226
1227 if (!VECTORP (key) && !STRINGP (key))
1228 key = wrong_type_argument (Qarrayp, key);
1229
1230 length = XFASTINT (Flength (key));
1231 if (length == 0)
1232 RETURN_UNGCPRO (keymap);
1233
1234 idx = 0;
1235 while (1)
1236 {
1237 c = Faref (key, make_number (idx++));
1238
1239 if (CONSP (c) && lucid_event_type_list_p (c))
1240 c = Fevent_convert_list (c);
1241
1242 /* Turn the 8th bit of string chars into a meta modifier. */
1243 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1244 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1245
1246 /* Allow string since binding for `menu-bar-select-buffer'
1247 includes the buffer name in the key sequence. */
1248 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1249 error ("Key sequence contains invalid event");
1250
1251 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1252 if (idx == length)
1253 RETURN_UNGCPRO (cmd);
1254
1255 keymap = get_keymap (cmd, 0, 1);
1256 if (!CONSP (keymap))
1257 RETURN_UNGCPRO (make_number (idx));
1258
1259 QUIT;
1260 }
1261 }
1262
1263 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1264 Assume that currently it does not define C at all.
1265 Return the keymap. */
1266
1267 static Lisp_Object
1268 define_as_prefix (keymap, c)
1269 Lisp_Object keymap, c;
1270 {
1271 Lisp_Object cmd;
1272
1273 cmd = Fmake_sparse_keymap (Qnil);
1274 /* If this key is defined as a prefix in an inherited keymap,
1275 make it a prefix in this map, and make its definition
1276 inherit the other prefix definition. */
1277 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1278 store_in_keymap (keymap, c, cmd);
1279
1280 return cmd;
1281 }
1282
1283 /* Append a key to the end of a key sequence. We always make a vector. */
1284
1285 Lisp_Object
1286 append_key (key_sequence, key)
1287 Lisp_Object key_sequence, key;
1288 {
1289 Lisp_Object args[2];
1290
1291 args[0] = key_sequence;
1292
1293 args[1] = Fcons (key, Qnil);
1294 return Fvconcat (2, args);
1295 }
1296
1297 /* Given a event type C which is a symbol,
1298 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1299
1300 static void
1301 silly_event_symbol_error (c)
1302 Lisp_Object c;
1303 {
1304 Lisp_Object parsed, base, name, assoc;
1305 int modifiers;
1306
1307 parsed = parse_modifiers (c);
1308 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1309 base = XCAR (parsed);
1310 name = Fsymbol_name (base);
1311 /* This alist includes elements such as ("RET" . "\\r"). */
1312 assoc = Fassoc (name, exclude_keys);
1313
1314 if (! NILP (assoc))
1315 {
1316 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1317 char *p = new_mods;
1318 Lisp_Object keystring;
1319 if (modifiers & alt_modifier)
1320 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1321 if (modifiers & ctrl_modifier)
1322 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1323 if (modifiers & hyper_modifier)
1324 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1325 if (modifiers & meta_modifier)
1326 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1327 if (modifiers & shift_modifier)
1328 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1329 if (modifiers & super_modifier)
1330 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1331 *p = 0;
1332
1333 c = reorder_modifiers (c);
1334 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1335
1336 error ((modifiers & ~meta_modifier
1337 ? "To bind the key %s, use [?%s], not [%s]"
1338 : "To bind the key %s, use \"%s\", not [%s]"),
1339 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1340 SDATA (SYMBOL_NAME (c)));
1341 }
1342 }
1343 \f
1344 /* Global, local, and minor mode keymap stuff. */
1345
1346 /* We can't put these variables inside current_minor_maps, since under
1347 some systems, static gets macro-defined to be the empty string.
1348 Ickypoo. */
1349 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1350 static int cmm_size = 0;
1351
1352 /* Error handler used in current_minor_maps. */
1353 static Lisp_Object
1354 current_minor_maps_error ()
1355 {
1356 return Qnil;
1357 }
1358
1359 /* Store a pointer to an array of the keymaps of the currently active
1360 minor modes in *buf, and return the number of maps it contains.
1361
1362 This function always returns a pointer to the same buffer, and may
1363 free or reallocate it, so if you want to keep it for a long time or
1364 hand it out to lisp code, copy it. This procedure will be called
1365 for every key sequence read, so the nice lispy approach (return a
1366 new assoclist, list, what have you) for each invocation would
1367 result in a lot of consing over time.
1368
1369 If we used xrealloc/xmalloc and ran out of memory, they would throw
1370 back to the command loop, which would try to read a key sequence,
1371 which would call this function again, resulting in an infinite
1372 loop. Instead, we'll use realloc/malloc and silently truncate the
1373 list, let the key sequence be read, and hope some other piece of
1374 code signals the error. */
1375 int
1376 current_minor_maps (modeptr, mapptr)
1377 Lisp_Object **modeptr, **mapptr;
1378 {
1379 int i = 0;
1380 int list_number = 0;
1381 Lisp_Object alist, assoc, var, val;
1382 Lisp_Object emulation_alists;
1383 Lisp_Object lists[2];
1384
1385 emulation_alists = Vemulation_mode_map_alists;
1386 lists[0] = Vminor_mode_overriding_map_alist;
1387 lists[1] = Vminor_mode_map_alist;
1388
1389 for (list_number = 0; list_number < 2; list_number++)
1390 {
1391 if (CONSP (emulation_alists))
1392 {
1393 alist = XCAR (emulation_alists);
1394 emulation_alists = XCDR (emulation_alists);
1395 if (SYMBOLP (alist))
1396 alist = find_symbol_value (alist);
1397 list_number = -1;
1398 }
1399 else
1400 alist = lists[list_number];
1401
1402 for ( ; CONSP (alist); alist = XCDR (alist))
1403 if ((assoc = XCAR (alist), CONSP (assoc))
1404 && (var = XCAR (assoc), SYMBOLP (var))
1405 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1406 && !NILP (val))
1407 {
1408 Lisp_Object temp;
1409
1410 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1411 and also an entry in Vminor_mode_map_alist,
1412 ignore the latter. */
1413 if (list_number == 1)
1414 {
1415 val = assq_no_quit (var, lists[0]);
1416 if (!NILP (val))
1417 continue;
1418 }
1419
1420 if (i >= cmm_size)
1421 {
1422 int newsize, allocsize;
1423 Lisp_Object *newmodes, *newmaps;
1424
1425 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1426 allocsize = newsize * sizeof *newmodes;
1427
1428 /* Use malloc here. See the comment above this function.
1429 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1430 BLOCK_INPUT;
1431 newmodes = (Lisp_Object *) malloc (allocsize);
1432 if (newmodes)
1433 {
1434 if (cmm_modes)
1435 {
1436 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1437 free (cmm_modes);
1438 }
1439 cmm_modes = newmodes;
1440 }
1441
1442 newmaps = (Lisp_Object *) malloc (allocsize);
1443 if (newmaps)
1444 {
1445 if (cmm_maps)
1446 {
1447 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1448 free (cmm_maps);
1449 }
1450 cmm_maps = newmaps;
1451 }
1452 UNBLOCK_INPUT;
1453
1454 if (newmodes == NULL || newmaps == NULL)
1455 break;
1456 cmm_size = newsize;
1457 }
1458
1459 /* Get the keymap definition--or nil if it is not defined. */
1460 temp = internal_condition_case_1 (Findirect_function,
1461 XCDR (assoc),
1462 Qerror, current_minor_maps_error);
1463 if (!NILP (temp))
1464 {
1465 cmm_modes[i] = var;
1466 cmm_maps [i] = temp;
1467 i++;
1468 }
1469 }
1470 }
1471
1472 if (modeptr) *modeptr = cmm_modes;
1473 if (mapptr) *mapptr = cmm_maps;
1474 return i;
1475 }
1476
1477 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1478 0, 1, 0,
1479 doc: /* Return a list of the currently active keymaps.
1480 OLP if non-nil indicates that we should obey `overriding-local-map' and
1481 `overriding-terminal-local-map'. */)
1482 (olp)
1483 Lisp_Object olp;
1484 {
1485 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1486
1487 if (!NILP (olp))
1488 {
1489 if (!NILP (Voverriding_local_map))
1490 keymaps = Fcons (Voverriding_local_map, keymaps);
1491 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1492 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1493 }
1494 if (NILP (XCDR (keymaps)))
1495 {
1496 Lisp_Object local;
1497 Lisp_Object *maps;
1498 int nmaps, i;
1499
1500 local = get_local_map (PT, current_buffer, Qlocal_map);
1501 if (!NILP (local))
1502 keymaps = Fcons (local, keymaps);
1503
1504 nmaps = current_minor_maps (0, &maps);
1505
1506 for (i = --nmaps; i >= 0; i--)
1507 if (!NILP (maps[i]))
1508 keymaps = Fcons (maps[i], keymaps);
1509
1510 local = get_local_map (PT, current_buffer, Qkeymap);
1511 if (!NILP (local))
1512 keymaps = Fcons (local, keymaps);
1513 }
1514
1515 return keymaps;
1516 }
1517
1518 /* GC is possible in this function if it autoloads a keymap. */
1519
1520 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1521 doc: /* Return the binding for command KEY in current keymaps.
1522 KEY is a string or vector, a sequence of keystrokes.
1523 The binding is probably a symbol with a function definition.
1524
1525 Normally, `key-binding' ignores bindings for t, which act as default
1526 bindings, used when nothing else in the keymap applies; this makes it
1527 usable as a general function for probing keymaps. However, if the
1528 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1529 recognize the default bindings, just as `read-key-sequence' does.
1530
1531 Like the normal command loop, `key-binding' will remap the command
1532 resulting from looking up KEY by looking up the command in the
1533 current keymaps. However, if the optional third argument NO-REMAP
1534 is non-nil, `key-binding' returns the unmapped command. */)
1535 (key, accept_default, no_remap)
1536 Lisp_Object key, accept_default, no_remap;
1537 {
1538 Lisp_Object *maps, value;
1539 int nmaps, i;
1540 struct gcpro gcpro1;
1541
1542 GCPRO1 (key);
1543
1544 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1545 {
1546 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1547 key, accept_default);
1548 if (! NILP (value) && !INTEGERP (value))
1549 goto done;
1550 }
1551 else if (!NILP (Voverriding_local_map))
1552 {
1553 value = Flookup_key (Voverriding_local_map, key, accept_default);
1554 if (! NILP (value) && !INTEGERP (value))
1555 goto done;
1556 }
1557 else
1558 {
1559 Lisp_Object local;
1560
1561 local = get_local_map (PT, current_buffer, Qkeymap);
1562 if (! NILP (local))
1563 {
1564 value = Flookup_key (local, key, accept_default);
1565 if (! NILP (value) && !INTEGERP (value))
1566 goto done;
1567 }
1568
1569 nmaps = current_minor_maps (0, &maps);
1570 /* Note that all these maps are GCPRO'd
1571 in the places where we found them. */
1572
1573 for (i = 0; i < nmaps; i++)
1574 if (! NILP (maps[i]))
1575 {
1576 value = Flookup_key (maps[i], key, accept_default);
1577 if (! NILP (value) && !INTEGERP (value))
1578 goto done;
1579 }
1580
1581 local = get_local_map (PT, current_buffer, Qlocal_map);
1582 if (! NILP (local))
1583 {
1584 value = Flookup_key (local, key, accept_default);
1585 if (! NILP (value) && !INTEGERP (value))
1586 goto done;
1587 }
1588 }
1589
1590 value = Flookup_key (current_global_map, key, accept_default);
1591
1592 done:
1593 UNGCPRO;
1594 if (NILP (value) || INTEGERP (value))
1595 return Qnil;
1596
1597 /* If the result of the ordinary keymap lookup is an interactive
1598 command, look for a key binding (ie. remapping) for that command. */
1599
1600 if (NILP (no_remap) && SYMBOLP (value))
1601 {
1602 Lisp_Object value1;
1603 if (value1 = Fcommand_remapping (value), !NILP (value1))
1604 value = value1;
1605 }
1606
1607 return value;
1608 }
1609
1610 /* GC is possible in this function if it autoloads a keymap. */
1611
1612 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1613 doc: /* Return the binding for command KEYS in current local keymap only.
1614 KEYS is a string or vector, a sequence of keystrokes.
1615 The binding is probably a symbol with a function definition.
1616
1617 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1618 bindings; see the description of `lookup-key' for more details about this. */)
1619 (keys, accept_default)
1620 Lisp_Object keys, accept_default;
1621 {
1622 register Lisp_Object map;
1623 map = current_buffer->keymap;
1624 if (NILP (map))
1625 return Qnil;
1626 return Flookup_key (map, keys, accept_default);
1627 }
1628
1629 /* GC is possible in this function if it autoloads a keymap. */
1630
1631 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1632 doc: /* Return the binding for command KEYS in current global keymap only.
1633 KEYS is a string or vector, a sequence of keystrokes.
1634 The binding is probably a symbol with a function definition.
1635 This function's return values are the same as those of `lookup-key'
1636 \(which see).
1637
1638 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1639 bindings; see the description of `lookup-key' for more details about this. */)
1640 (keys, accept_default)
1641 Lisp_Object keys, accept_default;
1642 {
1643 return Flookup_key (current_global_map, keys, accept_default);
1644 }
1645
1646 /* GC is possible in this function if it autoloads a keymap. */
1647
1648 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1649 doc: /* Find the visible minor mode bindings of KEY.
1650 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1651 the symbol which names the minor mode binding KEY, and BINDING is
1652 KEY's definition in that mode. In particular, if KEY has no
1653 minor-mode bindings, return nil. If the first binding is a
1654 non-prefix, all subsequent bindings will be omitted, since they would
1655 be ignored. Similarly, the list doesn't include non-prefix bindings
1656 that come after prefix bindings.
1657
1658 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1659 bindings; see the description of `lookup-key' for more details about this. */)
1660 (key, accept_default)
1661 Lisp_Object key, accept_default;
1662 {
1663 Lisp_Object *modes, *maps;
1664 int nmaps;
1665 Lisp_Object binding;
1666 int i, j;
1667 struct gcpro gcpro1, gcpro2;
1668
1669 nmaps = current_minor_maps (&modes, &maps);
1670 /* Note that all these maps are GCPRO'd
1671 in the places where we found them. */
1672
1673 binding = Qnil;
1674 GCPRO2 (key, binding);
1675
1676 for (i = j = 0; i < nmaps; i++)
1677 if (!NILP (maps[i])
1678 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1679 && !INTEGERP (binding))
1680 {
1681 if (KEYMAPP (binding))
1682 maps[j++] = Fcons (modes[i], binding);
1683 else if (j == 0)
1684 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1685 }
1686
1687 UNGCPRO;
1688 return Flist (j, maps);
1689 }
1690
1691 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1692 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1693 A new sparse keymap is stored as COMMAND's function definition and its value.
1694 If a second optional argument MAPVAR is given, the map is stored as
1695 its value instead of as COMMAND's value; but COMMAND is still defined
1696 as a function.
1697 The third optional argument NAME, if given, supplies a menu name
1698 string for the map. This is required to use the keymap as a menu.
1699 This function returns COMMAND. */)
1700 (command, mapvar, name)
1701 Lisp_Object command, mapvar, name;
1702 {
1703 Lisp_Object map;
1704 map = Fmake_sparse_keymap (name);
1705 Ffset (command, map);
1706 if (!NILP (mapvar))
1707 Fset (mapvar, map);
1708 else
1709 Fset (command, map);
1710 return command;
1711 }
1712
1713 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1714 doc: /* Select KEYMAP as the global keymap. */)
1715 (keymap)
1716 Lisp_Object keymap;
1717 {
1718 keymap = get_keymap (keymap, 1, 1);
1719 current_global_map = keymap;
1720
1721 return Qnil;
1722 }
1723
1724 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1725 doc: /* Select KEYMAP as the local keymap.
1726 If KEYMAP is nil, that means no local keymap. */)
1727 (keymap)
1728 Lisp_Object keymap;
1729 {
1730 if (!NILP (keymap))
1731 keymap = get_keymap (keymap, 1, 1);
1732
1733 current_buffer->keymap = keymap;
1734
1735 return Qnil;
1736 }
1737
1738 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1739 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1740 ()
1741 {
1742 return current_buffer->keymap;
1743 }
1744
1745 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1746 doc: /* Return the current global keymap. */)
1747 ()
1748 {
1749 return current_global_map;
1750 }
1751
1752 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1753 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1754 ()
1755 {
1756 Lisp_Object *maps;
1757 int nmaps = current_minor_maps (0, &maps);
1758
1759 return Flist (nmaps, maps);
1760 }
1761 \f
1762 /* Help functions for describing and documenting keymaps. */
1763
1764
1765 static void
1766 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1767 Lisp_Object maps, tail, thisseq, key, cmd;
1768 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1769 {
1770 Lisp_Object tem;
1771
1772 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1773 if (NILP (cmd))
1774 return;
1775
1776 /* Look for and break cycles. */
1777 while (!NILP (tem = Frassq (cmd, maps)))
1778 {
1779 Lisp_Object prefix = XCAR (tem);
1780 int lim = XINT (Flength (XCAR (tem)));
1781 if (lim <= XINT (Flength (thisseq)))
1782 { /* This keymap was already seen with a smaller prefix. */
1783 int i = 0;
1784 while (i < lim && EQ (Faref (prefix, make_number (i)),
1785 Faref (thisseq, make_number (i))))
1786 i++;
1787 if (i >= lim)
1788 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1789 return;
1790 }
1791 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1792 but maybe `cmd' occurs again further down in `maps', so keep
1793 looking. */
1794 maps = XCDR (Fmemq (tem, maps));
1795 }
1796
1797 /* If the last key in thisseq is meta-prefix-char,
1798 turn it into a meta-ized keystroke. We know
1799 that the event we're about to append is an
1800 ascii keystroke since we're processing a
1801 keymap table. */
1802 if (is_metized)
1803 {
1804 int meta_bit = meta_modifier;
1805 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1806 tem = Fcopy_sequence (thisseq);
1807
1808 Faset (tem, last, make_number (XINT (key) | meta_bit));
1809
1810 /* This new sequence is the same length as
1811 thisseq, so stick it in the list right
1812 after this one. */
1813 XSETCDR (tail,
1814 Fcons (Fcons (tem, cmd), XCDR (tail)));
1815 }
1816 else
1817 {
1818 tem = append_key (thisseq, key);
1819 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1820 }
1821 }
1822
1823 static void
1824 accessible_keymaps_char_table (args, index, cmd)
1825 Lisp_Object args, index, cmd;
1826 {
1827 accessible_keymaps_1 (index, cmd,
1828 XCAR (XCAR (args)),
1829 XCAR (XCDR (args)),
1830 XCDR (XCDR (args)),
1831 XINT (XCDR (XCAR (args))));
1832 }
1833
1834 /* This function cannot GC. */
1835
1836 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1837 1, 2, 0,
1838 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1839 Returns a list of elements of the form (KEYS . MAP), where the sequence
1840 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1841 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1842 An optional argument PREFIX, if non-nil, should be a key sequence;
1843 then the value includes only maps for prefixes that start with PREFIX. */)
1844 (keymap, prefix)
1845 Lisp_Object keymap, prefix;
1846 {
1847 Lisp_Object maps, tail;
1848 int prefixlen = 0;
1849
1850 /* no need for gcpro because we don't autoload any keymaps. */
1851
1852 if (!NILP (prefix))
1853 prefixlen = XINT (Flength (prefix));
1854
1855 if (!NILP (prefix))
1856 {
1857 /* If a prefix was specified, start with the keymap (if any) for
1858 that prefix, so we don't waste time considering other prefixes. */
1859 Lisp_Object tem;
1860 tem = Flookup_key (keymap, prefix, Qt);
1861 /* Flookup_key may give us nil, or a number,
1862 if the prefix is not defined in this particular map.
1863 It might even give us a list that isn't a keymap. */
1864 tem = get_keymap (tem, 0, 0);
1865 if (CONSP (tem))
1866 {
1867 /* Convert PREFIX to a vector now, so that later on
1868 we don't have to deal with the possibility of a string. */
1869 if (STRINGP (prefix))
1870 {
1871 int i, i_byte, c;
1872 Lisp_Object copy;
1873
1874 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1875 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1876 {
1877 int i_before = i;
1878
1879 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1880 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1881 c ^= 0200 | meta_modifier;
1882 ASET (copy, i_before, make_number (c));
1883 }
1884 prefix = copy;
1885 }
1886 maps = Fcons (Fcons (prefix, tem), Qnil);
1887 }
1888 else
1889 return Qnil;
1890 }
1891 else
1892 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1893 get_keymap (keymap, 1, 0)),
1894 Qnil);
1895
1896 /* For each map in the list maps,
1897 look at any other maps it points to,
1898 and stick them at the end if they are not already in the list.
1899
1900 This is a breadth-first traversal, where tail is the queue of
1901 nodes, and maps accumulates a list of all nodes visited. */
1902
1903 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1904 {
1905 register Lisp_Object thisseq, thismap;
1906 Lisp_Object last;
1907 /* Does the current sequence end in the meta-prefix-char? */
1908 int is_metized;
1909
1910 thisseq = Fcar (Fcar (tail));
1911 thismap = Fcdr (Fcar (tail));
1912 last = make_number (XINT (Flength (thisseq)) - 1);
1913 is_metized = (XINT (last) >= 0
1914 /* Don't metize the last char of PREFIX. */
1915 && XINT (last) >= prefixlen
1916 && EQ (Faref (thisseq, last), meta_prefix_char));
1917
1918 for (; CONSP (thismap); thismap = XCDR (thismap))
1919 {
1920 Lisp_Object elt;
1921
1922 elt = XCAR (thismap);
1923
1924 QUIT;
1925
1926 if (CHAR_TABLE_P (elt))
1927 {
1928 Lisp_Object indices[3];
1929
1930 map_char_table (accessible_keymaps_char_table, Qnil, elt,
1931 elt, Fcons (Fcons (maps, make_number (is_metized)),
1932 Fcons (tail, thisseq)),
1933 0, indices);
1934 }
1935 else if (VECTORP (elt))
1936 {
1937 register int i;
1938
1939 /* Vector keymap. Scan all the elements. */
1940 for (i = 0; i < ASIZE (elt); i++)
1941 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1942 maps, tail, thisseq, is_metized);
1943
1944 }
1945 else if (CONSP (elt))
1946 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1947 maps, tail, thisseq,
1948 is_metized && INTEGERP (XCAR (elt)));
1949
1950 }
1951 }
1952
1953 return maps;
1954 }
1955 \f
1956 Lisp_Object Qsingle_key_description, Qkey_description;
1957
1958 /* This function cannot GC. */
1959
1960 DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
1961 doc: /* Return a pretty description of key-sequence KEYS.
1962 Optional arg PREFIX is the sequence of keys leading up to KEYS.
1963 Control characters turn into "C-foo" sequences, meta into "M-foo",
1964 spaces are put between sequence elements, etc. */)
1965 (keys, prefix)
1966 Lisp_Object keys, prefix;
1967 {
1968 int len = 0;
1969 int i, i_byte;
1970 Lisp_Object *args;
1971 int size = XINT (Flength (keys));
1972 Lisp_Object list;
1973 Lisp_Object sep = build_string (" ");
1974 Lisp_Object key;
1975 int add_meta = 0;
1976
1977 if (!NILP (prefix))
1978 size += XINT (Flength (prefix));
1979
1980 /* This has one extra element at the end that we don't pass to Fconcat. */
1981 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
1982
1983 /* In effect, this computes
1984 (mapconcat 'single-key-description keys " ")
1985 but we shouldn't use mapconcat because it can do GC. */
1986
1987 next_list:
1988 if (!NILP (prefix))
1989 list = prefix, prefix = Qnil;
1990 else if (!NILP (keys))
1991 list = keys, keys = Qnil;
1992 else
1993 {
1994 if (add_meta)
1995 {
1996 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
1997 len += 2;
1998 }
1999 else if (len == 0)
2000 return empty_string;
2001 return Fconcat (len - 1, args);
2002 }
2003
2004 if (STRINGP (list))
2005 size = SCHARS (list);
2006 else if (VECTORP (list))
2007 size = XVECTOR (list)->size;
2008 else if (CONSP (list))
2009 size = XINT (Flength (list));
2010 else
2011 wrong_type_argument (Qarrayp, list);
2012
2013 i = i_byte = 0;
2014
2015 while (i < size)
2016 {
2017 if (STRINGP (list))
2018 {
2019 int c;
2020 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2021 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2022 c ^= 0200 | meta_modifier;
2023 XSETFASTINT (key, c);
2024 }
2025 else if (VECTORP (list))
2026 {
2027 key = AREF (list, i++);
2028 }
2029 else
2030 {
2031 key = XCAR (list);
2032 list = XCDR (list);
2033 i++;
2034 }
2035
2036 if (add_meta)
2037 {
2038 if (!INTEGERP (key)
2039 || EQ (key, meta_prefix_char)
2040 || (XINT (key) & meta_modifier))
2041 {
2042 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2043 args[len++] = sep;
2044 if (EQ (key, meta_prefix_char))
2045 continue;
2046 }
2047 else
2048 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2049 add_meta = 0;
2050 }
2051 else if (EQ (key, meta_prefix_char))
2052 {
2053 add_meta = 1;
2054 continue;
2055 }
2056 args[len++] = Fsingle_key_description (key, Qnil);
2057 args[len++] = sep;
2058 }
2059 goto next_list;
2060 }
2061
2062
2063 char *
2064 push_key_description (c, p, force_multibyte)
2065 register unsigned int c;
2066 register char *p;
2067 int force_multibyte;
2068 {
2069 unsigned c2;
2070
2071 /* Clear all the meaningless bits above the meta bit. */
2072 c &= meta_modifier | ~ - meta_modifier;
2073 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2074 | meta_modifier | shift_modifier | super_modifier);
2075
2076 if (c & alt_modifier)
2077 {
2078 *p++ = 'A';
2079 *p++ = '-';
2080 c -= alt_modifier;
2081 }
2082 if ((c & ctrl_modifier) != 0
2083 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2084 {
2085 *p++ = 'C';
2086 *p++ = '-';
2087 c &= ~ctrl_modifier;
2088 }
2089 if (c & hyper_modifier)
2090 {
2091 *p++ = 'H';
2092 *p++ = '-';
2093 c -= hyper_modifier;
2094 }
2095 if (c & meta_modifier)
2096 {
2097 *p++ = 'M';
2098 *p++ = '-';
2099 c -= meta_modifier;
2100 }
2101 if (c & shift_modifier)
2102 {
2103 *p++ = 'S';
2104 *p++ = '-';
2105 c -= shift_modifier;
2106 }
2107 if (c & super_modifier)
2108 {
2109 *p++ = 's';
2110 *p++ = '-';
2111 c -= super_modifier;
2112 }
2113 if (c < 040)
2114 {
2115 if (c == 033)
2116 {
2117 *p++ = 'E';
2118 *p++ = 'S';
2119 *p++ = 'C';
2120 }
2121 else if (c == '\t')
2122 {
2123 *p++ = 'T';
2124 *p++ = 'A';
2125 *p++ = 'B';
2126 }
2127 else if (c == Ctl ('M'))
2128 {
2129 *p++ = 'R';
2130 *p++ = 'E';
2131 *p++ = 'T';
2132 }
2133 else
2134 {
2135 /* `C-' already added above. */
2136 if (c > 0 && c <= Ctl ('Z'))
2137 *p++ = c + 0140;
2138 else
2139 *p++ = c + 0100;
2140 }
2141 }
2142 else if (c == 0177)
2143 {
2144 *p++ = 'D';
2145 *p++ = 'E';
2146 *p++ = 'L';
2147 }
2148 else if (c == ' ')
2149 {
2150 *p++ = 'S';
2151 *p++ = 'P';
2152 *p++ = 'C';
2153 }
2154 else if (c < 128
2155 || (NILP (current_buffer->enable_multibyte_characters)
2156 && SINGLE_BYTE_CHAR_P (c)
2157 && !force_multibyte))
2158 {
2159 *p++ = c;
2160 }
2161 else
2162 {
2163 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2164
2165 if (force_multibyte && valid_p)
2166 {
2167 if (SINGLE_BYTE_CHAR_P (c))
2168 c = unibyte_char_to_multibyte (c);
2169 p += CHAR_STRING (c, p);
2170 }
2171 else if (NILP (current_buffer->enable_multibyte_characters)
2172 || valid_p)
2173 {
2174 int bit_offset;
2175 *p++ = '\\';
2176 /* The biggest character code uses 19 bits. */
2177 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2178 {
2179 if (c >= (1 << bit_offset))
2180 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2181 }
2182 }
2183 else
2184 p += CHAR_STRING (c, p);
2185 }
2186
2187 return p;
2188 }
2189
2190 /* This function cannot GC. */
2191
2192 DEFUN ("single-key-description", Fsingle_key_description,
2193 Ssingle_key_description, 1, 2, 0,
2194 doc: /* Return a pretty description of command character KEY.
2195 Control characters turn into C-whatever, etc.
2196 Optional argument NO-ANGLES non-nil means don't put angle brackets
2197 around function keys and event symbols. */)
2198 (key, no_angles)
2199 Lisp_Object key, no_angles;
2200 {
2201 if (CONSP (key) && lucid_event_type_list_p (key))
2202 key = Fevent_convert_list (key);
2203
2204 key = EVENT_HEAD (key);
2205
2206 if (INTEGERP (key)) /* Normal character */
2207 {
2208 unsigned int charset, c1, c2;
2209 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2210
2211 if (SINGLE_BYTE_CHAR_P (without_bits))
2212 charset = 0;
2213 else
2214 SPLIT_CHAR (without_bits, charset, c1, c2);
2215
2216 if (charset
2217 && CHARSET_DEFINED_P (charset)
2218 && ((c1 >= 0 && c1 < 32)
2219 || (c2 >= 0 && c2 < 32)))
2220 {
2221 /* Handle a generic character. */
2222 Lisp_Object name;
2223 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2224 CHECK_STRING (name);
2225 return concat2 (build_string ("Character set "), name);
2226 }
2227 else
2228 {
2229 char tem[KEY_DESCRIPTION_SIZE], *end;
2230 int nbytes, nchars;
2231 Lisp_Object string;
2232
2233 end = push_key_description (XUINT (key), tem, 1);
2234 nbytes = end - tem;
2235 nchars = multibyte_chars_in_text (tem, nbytes);
2236 if (nchars == nbytes)
2237 {
2238 *end = '\0';
2239 string = build_string (tem);
2240 }
2241 else
2242 string = make_multibyte_string (tem, nchars, nbytes);
2243 return string;
2244 }
2245 }
2246 else if (SYMBOLP (key)) /* Function key or event-symbol */
2247 {
2248 if (NILP (no_angles))
2249 {
2250 char *buffer
2251 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2252 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2253 return build_string (buffer);
2254 }
2255 else
2256 return Fsymbol_name (key);
2257 }
2258 else if (STRINGP (key)) /* Buffer names in the menubar. */
2259 return Fcopy_sequence (key);
2260 else
2261 error ("KEY must be an integer, cons, symbol, or string");
2262 return Qnil;
2263 }
2264
2265 char *
2266 push_text_char_description (c, p)
2267 register unsigned int c;
2268 register char *p;
2269 {
2270 if (c >= 0200)
2271 {
2272 *p++ = 'M';
2273 *p++ = '-';
2274 c -= 0200;
2275 }
2276 if (c < 040)
2277 {
2278 *p++ = '^';
2279 *p++ = c + 64; /* 'A' - 1 */
2280 }
2281 else if (c == 0177)
2282 {
2283 *p++ = '^';
2284 *p++ = '?';
2285 }
2286 else
2287 *p++ = c;
2288 return p;
2289 }
2290
2291 /* This function cannot GC. */
2292
2293 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2294 doc: /* Return a pretty description of file-character CHARACTER.
2295 Control characters turn into "^char", etc. This differs from
2296 `single-key-description' which turns them into "C-char".
2297 Also, this function recognizes the 2**7 bit as the Meta character,
2298 whereas `single-key-description' uses the 2**27 bit for Meta.
2299 See Info node `(elisp)Describing Characters' for examples. */)
2300 (character)
2301 Lisp_Object character;
2302 {
2303 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2304 unsigned char str[6];
2305 int c;
2306
2307 CHECK_NUMBER (character);
2308
2309 c = XINT (character);
2310 if (!SINGLE_BYTE_CHAR_P (c))
2311 {
2312 int len = CHAR_STRING (c, str);
2313
2314 return make_multibyte_string (str, 1, len);
2315 }
2316
2317 *push_text_char_description (c & 0377, str) = 0;
2318
2319 return build_string (str);
2320 }
2321
2322 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2323 a meta bit. */
2324 static int
2325 ascii_sequence_p (seq)
2326 Lisp_Object seq;
2327 {
2328 int i;
2329 int len = XINT (Flength (seq));
2330
2331 for (i = 0; i < len; i++)
2332 {
2333 Lisp_Object ii, elt;
2334
2335 XSETFASTINT (ii, i);
2336 elt = Faref (seq, ii);
2337
2338 if (!INTEGERP (elt)
2339 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2340 return 0;
2341 }
2342
2343 return 1;
2344 }
2345
2346 \f
2347 /* where-is - finding a command in a set of keymaps. */
2348
2349 static Lisp_Object where_is_internal ();
2350 static Lisp_Object where_is_internal_1 ();
2351 static void where_is_internal_2 ();
2352
2353 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2354 Returns the first non-nil binding found in any of those maps. */
2355
2356 static Lisp_Object
2357 shadow_lookup (shadow, key, flag)
2358 Lisp_Object shadow, key, flag;
2359 {
2360 Lisp_Object tail, value;
2361
2362 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2363 {
2364 value = Flookup_key (XCAR (tail), key, flag);
2365 if (!NILP (value) && !NATNUMP (value))
2366 return value;
2367 }
2368 return Qnil;
2369 }
2370
2371 static Lisp_Object Vmouse_events;
2372
2373 /* This function can GC if Flookup_key autoloads any keymaps. */
2374
2375 static Lisp_Object
2376 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2377 Lisp_Object definition, keymaps;
2378 Lisp_Object firstonly, noindirect, no_remap;
2379 {
2380 Lisp_Object maps = Qnil;
2381 Lisp_Object found, sequences;
2382 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2383 /* 1 means ignore all menu bindings entirely. */
2384 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2385
2386 /* If this command is remapped, then it has no key bindings
2387 of its own. */
2388 if (NILP (no_remap) && SYMBOLP (definition))
2389 {
2390 Lisp_Object tem;
2391 if (tem = Fcommand_remapping (definition), !NILP (tem))
2392 return Qnil;
2393 }
2394
2395 found = keymaps;
2396 while (CONSP (found))
2397 {
2398 maps =
2399 nconc2 (maps,
2400 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2401 found = XCDR (found);
2402 }
2403
2404 GCPRO5 (definition, keymaps, maps, found, sequences);
2405 found = Qnil;
2406 sequences = Qnil;
2407
2408 for (; !NILP (maps); maps = Fcdr (maps))
2409 {
2410 /* Key sequence to reach map, and the map that it reaches */
2411 register Lisp_Object this, map, tem;
2412
2413 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2414 [M-CHAR] sequences, check if last character of the sequence
2415 is the meta-prefix char. */
2416 Lisp_Object last;
2417 int last_is_meta;
2418
2419 this = Fcar (Fcar (maps));
2420 map = Fcdr (Fcar (maps));
2421 last = make_number (XINT (Flength (this)) - 1);
2422 last_is_meta = (XINT (last) >= 0
2423 && EQ (Faref (this, last), meta_prefix_char));
2424
2425 /* if (nomenus && !ascii_sequence_p (this)) */
2426 if (nomenus && XINT (last) >= 0
2427 && SYMBOLP (tem = Faref (this, make_number (0)))
2428 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2429 /* If no menu entries should be returned, skip over the
2430 keymaps bound to `menu-bar' and `tool-bar' and other
2431 non-ascii prefixes like `C-down-mouse-2'. */
2432 continue;
2433
2434 QUIT;
2435
2436 while (CONSP (map))
2437 {
2438 /* Because the code we want to run on each binding is rather
2439 large, we don't want to have two separate loop bodies for
2440 sparse keymap bindings and tables; we want to iterate one
2441 loop body over both keymap and vector bindings.
2442
2443 For this reason, if Fcar (map) is a vector, we don't
2444 advance map to the next element until i indicates that we
2445 have finished off the vector. */
2446 Lisp_Object elt, key, binding;
2447 elt = XCAR (map);
2448 map = XCDR (map);
2449
2450 sequences = Qnil;
2451
2452 QUIT;
2453
2454 /* Set key and binding to the current key and binding, and
2455 advance map and i to the next binding. */
2456 if (VECTORP (elt))
2457 {
2458 Lisp_Object sequence;
2459 int i;
2460 /* In a vector, look at each element. */
2461 for (i = 0; i < XVECTOR (elt)->size; i++)
2462 {
2463 binding = AREF (elt, i);
2464 XSETFASTINT (key, i);
2465 sequence = where_is_internal_1 (binding, key, definition,
2466 noindirect, this,
2467 last, nomenus, last_is_meta);
2468 if (!NILP (sequence))
2469 sequences = Fcons (sequence, sequences);
2470 }
2471 }
2472 else if (CHAR_TABLE_P (elt))
2473 {
2474 Lisp_Object indices[3];
2475 Lisp_Object args;
2476
2477 args = Fcons (Fcons (Fcons (definition, noindirect),
2478 Qnil), /* Result accumulator. */
2479 Fcons (Fcons (this, last),
2480 Fcons (make_number (nomenus),
2481 make_number (last_is_meta))));
2482 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2483 0, indices);
2484 sequences = XCDR (XCAR (args));
2485 }
2486 else if (CONSP (elt))
2487 {
2488 Lisp_Object sequence;
2489
2490 key = XCAR (elt);
2491 binding = XCDR (elt);
2492
2493 sequence = where_is_internal_1 (binding, key, definition,
2494 noindirect, this,
2495 last, nomenus, last_is_meta);
2496 if (!NILP (sequence))
2497 sequences = Fcons (sequence, sequences);
2498 }
2499
2500
2501 while (!NILP (sequences))
2502 {
2503 Lisp_Object sequence, remapped, function;
2504
2505 sequence = XCAR (sequences);
2506 sequences = XCDR (sequences);
2507
2508 /* If the current sequence is a command remapping with
2509 format [remap COMMAND], find the key sequences
2510 which run COMMAND, and use those sequences instead. */
2511 remapped = Qnil;
2512 if (NILP (no_remap)
2513 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2514 && EQ (AREF (sequence, 0), Qremap)
2515 && (function = AREF (sequence, 1), SYMBOLP (function)))
2516 {
2517 Lisp_Object remapped1;
2518
2519 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2520 if (CONSP (remapped1))
2521 {
2522 /* Verify that this key binding actually maps to the
2523 remapped command (see below). */
2524 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2525 continue;
2526 sequence = XCAR (remapped1);
2527 remapped = XCDR (remapped1);
2528 goto record_sequence;
2529 }
2530 }
2531
2532 /* Verify that this key binding is not shadowed by another
2533 binding for the same key, before we say it exists.
2534
2535 Mechanism: look for local definition of this key and if
2536 it is defined and does not match what we found then
2537 ignore this key.
2538
2539 Either nil or number as value from Flookup_key
2540 means undefined. */
2541 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2542 continue;
2543
2544 record_sequence:
2545 /* It is a true unshadowed match. Record it, unless it's already
2546 been seen (as could happen when inheriting keymaps). */
2547 if (NILP (Fmember (sequence, found)))
2548 found = Fcons (sequence, found);
2549
2550 /* If firstonly is Qnon_ascii, then we can return the first
2551 binding we find. If firstonly is not Qnon_ascii but not
2552 nil, then we should return the first ascii-only binding
2553 we find. */
2554 if (EQ (firstonly, Qnon_ascii))
2555 RETURN_UNGCPRO (sequence);
2556 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2557 RETURN_UNGCPRO (sequence);
2558
2559 if (CONSP (remapped))
2560 {
2561 sequence = XCAR (remapped);
2562 remapped = XCDR (remapped);
2563 goto record_sequence;
2564 }
2565 }
2566 }
2567 }
2568
2569 UNGCPRO;
2570
2571 found = Fnreverse (found);
2572
2573 /* firstonly may have been t, but we may have gone all the way through
2574 the keymaps without finding an all-ASCII key sequence. So just
2575 return the best we could find. */
2576 if (!NILP (firstonly))
2577 return Fcar (found);
2578
2579 return found;
2580 }
2581
2582 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2583 doc: /* Return list of keys that invoke DEFINITION.
2584 If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2585 If KEYMAP is nil, search all the currently active keymaps.
2586 If KEYMAP is a list of keymaps, search only those keymaps.
2587
2588 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2589 rather than a list of all possible key sequences.
2590 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2591 no matter what it is.
2592 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2593 \(or their meta variants) and entirely reject menu bindings.
2594
2595 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2596 to other keymaps or slots. This makes it possible to search for an
2597 indirect definition itself.
2598
2599 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2600 that invoke a command which is remapped to DEFINITION, but include the
2601 remapped command in the returned list. */)
2602 (definition, keymap, firstonly, noindirect, no_remap)
2603 Lisp_Object definition, keymap;
2604 Lisp_Object firstonly, noindirect, no_remap;
2605 {
2606 Lisp_Object sequences, keymaps;
2607 /* 1 means ignore all menu bindings entirely. */
2608 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2609 Lisp_Object result;
2610
2611 /* Find the relevant keymaps. */
2612 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2613 keymaps = keymap;
2614 else if (!NILP (keymap))
2615 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2616 else
2617 keymaps = Fcurrent_active_maps (Qnil);
2618
2619 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2620 We don't really need to check `keymap'. */
2621 if (nomenus && NILP (noindirect) && NILP (keymap))
2622 {
2623 Lisp_Object *defns;
2624 int i, j, n;
2625 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2626
2627 /* Check heuristic-consistency of the cache. */
2628 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2629 where_is_cache = Qnil;
2630
2631 if (NILP (where_is_cache))
2632 {
2633 /* We need to create the cache. */
2634 Lisp_Object args[2];
2635 where_is_cache = Fmake_hash_table (0, args);
2636 where_is_cache_keymaps = Qt;
2637
2638 /* Fill in the cache. */
2639 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2640 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2641 UNGCPRO;
2642
2643 where_is_cache_keymaps = keymaps;
2644 }
2645
2646 /* We want to process definitions from the last to the first.
2647 Instead of consing, copy definitions to a vector and step
2648 over that vector. */
2649 sequences = Fgethash (definition, where_is_cache, Qnil);
2650 n = XINT (Flength (sequences));
2651 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2652 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2653 defns[i++] = XCAR (sequences);
2654
2655 /* Verify that the key bindings are not shadowed. Note that
2656 the following can GC. */
2657 GCPRO2 (definition, keymaps);
2658 result = Qnil;
2659 j = -1;
2660 for (i = n - 1; i >= 0; --i)
2661 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2662 {
2663 if (ascii_sequence_p (defns[i]))
2664 break;
2665 else if (j < 0)
2666 j = i;
2667 }
2668
2669 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2670 UNGCPRO;
2671 }
2672 else
2673 {
2674 /* Kill the cache so that where_is_internal_1 doesn't think
2675 we're filling it up. */
2676 where_is_cache = Qnil;
2677 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2678 }
2679
2680 return result;
2681 }
2682
2683 /* This is the function that Fwhere_is_internal calls using map_char_table.
2684 ARGS has the form
2685 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2686 .
2687 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2688 Since map_char_table doesn't really use the return value from this function,
2689 we the result append to RESULT, the slot in ARGS.
2690
2691 This function can GC because it calls where_is_internal_1 which can
2692 GC. */
2693
2694 static void
2695 where_is_internal_2 (args, key, binding)
2696 Lisp_Object args, key, binding;
2697 {
2698 Lisp_Object definition, noindirect, this, last;
2699 Lisp_Object result, sequence;
2700 int nomenus, last_is_meta;
2701 struct gcpro gcpro1, gcpro2, gcpro3;
2702
2703 GCPRO3 (args, key, binding);
2704 result = XCDR (XCAR (args));
2705 definition = XCAR (XCAR (XCAR (args)));
2706 noindirect = XCDR (XCAR (XCAR (args)));
2707 this = XCAR (XCAR (XCDR (args)));
2708 last = XCDR (XCAR (XCDR (args)));
2709 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2710 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2711
2712 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2713 this, last, nomenus, last_is_meta);
2714
2715 if (!NILP (sequence))
2716 XSETCDR (XCAR (args), Fcons (sequence, result));
2717
2718 UNGCPRO;
2719 }
2720
2721
2722 /* This function cannot GC. */
2723
2724 static Lisp_Object
2725 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2726 nomenus, last_is_meta)
2727 Lisp_Object binding, key, definition, noindirect, this, last;
2728 int nomenus, last_is_meta;
2729 {
2730 Lisp_Object sequence;
2731
2732 /* Search through indirections unless that's not wanted. */
2733 if (NILP (noindirect))
2734 binding = get_keyelt (binding, 0);
2735
2736 /* End this iteration if this element does not match
2737 the target. */
2738
2739 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2740 || EQ (binding, definition)
2741 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2742 /* Doesn't match. */
2743 return Qnil;
2744
2745 /* We have found a match. Construct the key sequence where we found it. */
2746 if (INTEGERP (key) && last_is_meta)
2747 {
2748 sequence = Fcopy_sequence (this);
2749 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2750 }
2751 else
2752 sequence = append_key (this, key);
2753
2754 if (!NILP (where_is_cache))
2755 {
2756 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2757 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2758 return Qnil;
2759 }
2760 else
2761 return sequence;
2762 }
2763 \f
2764 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2765
2766 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2767 doc: /* Insert the list of all defined keys and their definitions.
2768 The list is inserted in the current buffer, while the bindings are
2769 looked up in BUFFER.
2770 The optional argument PREFIX, if non-nil, should be a key sequence;
2771 then we display only bindings that start with that prefix.
2772 The optional argument MENUS, if non-nil, says to mention menu bindings.
2773 \(Ordinarily these are omitted from the output.) */)
2774 (buffer, prefix, menus)
2775 Lisp_Object buffer, prefix, menus;
2776 {
2777 Lisp_Object outbuf, shadow;
2778 int nomenu = NILP (menus);
2779 register Lisp_Object start1;
2780 struct gcpro gcpro1;
2781
2782 char *alternate_heading
2783 = "\
2784 Keyboard translations:\n\n\
2785 You type Translation\n\
2786 -------- -----------\n";
2787
2788 shadow = Qnil;
2789 GCPRO1 (shadow);
2790
2791 outbuf = Fcurrent_buffer ();
2792
2793 /* Report on alternates for keys. */
2794 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2795 {
2796 int c;
2797 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2798 int translate_len = SCHARS (Vkeyboard_translate_table);
2799
2800 for (c = 0; c < translate_len; c++)
2801 if (translate[c] != c)
2802 {
2803 char buf[KEY_DESCRIPTION_SIZE];
2804 char *bufend;
2805
2806 if (alternate_heading)
2807 {
2808 insert_string (alternate_heading);
2809 alternate_heading = 0;
2810 }
2811
2812 bufend = push_key_description (translate[c], buf, 1);
2813 insert (buf, bufend - buf);
2814 Findent_to (make_number (16), make_number (1));
2815 bufend = push_key_description (c, buf, 1);
2816 insert (buf, bufend - buf);
2817
2818 insert ("\n", 1);
2819 }
2820
2821 insert ("\n", 1);
2822 }
2823
2824 if (!NILP (Vkey_translation_map))
2825 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2826 "Key translations", nomenu, 1, 0);
2827
2828
2829 /* Print the (major mode) local map. */
2830 start1 = Qnil;
2831 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2832 start1 = current_kboard->Voverriding_terminal_local_map;
2833 else if (!NILP (Voverriding_local_map))
2834 start1 = Voverriding_local_map;
2835
2836 if (!NILP (start1))
2837 {
2838 describe_map_tree (start1, 1, shadow, prefix,
2839 "\f\nOverriding Bindings", nomenu, 0, 0);
2840 shadow = Fcons (start1, shadow);
2841 }
2842 else
2843 {
2844 /* Print the minor mode and major mode keymaps. */
2845 int i, nmaps;
2846 Lisp_Object *modes, *maps;
2847
2848 /* Temporarily switch to `buffer', so that we can get that buffer's
2849 minor modes correctly. */
2850 Fset_buffer (buffer);
2851
2852 nmaps = current_minor_maps (&modes, &maps);
2853 Fset_buffer (outbuf);
2854
2855 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2856 XBUFFER (buffer), Qkeymap);
2857 if (!NILP (start1))
2858 {
2859 describe_map_tree (start1, 1, shadow, prefix,
2860 "\f\n`keymap' Property Bindings", nomenu, 0, 0);
2861 shadow = Fcons (start1, shadow);
2862 }
2863
2864 /* Print the minor mode maps. */
2865 for (i = 0; i < nmaps; i++)
2866 {
2867 /* The title for a minor mode keymap
2868 is constructed at run time.
2869 We let describe_map_tree do the actual insertion
2870 because it takes care of other features when doing so. */
2871 char *title, *p;
2872
2873 if (!SYMBOLP (modes[i]))
2874 abort();
2875
2876 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2877 *p++ = '\f';
2878 *p++ = '\n';
2879 *p++ = '`';
2880 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2881 SCHARS (SYMBOL_NAME (modes[i])));
2882 p += SCHARS (SYMBOL_NAME (modes[i]));
2883 *p++ = '\'';
2884 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2885 p += sizeof (" Minor Mode Bindings") - 1;
2886 *p = 0;
2887
2888 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2889 shadow = Fcons (maps[i], shadow);
2890 }
2891
2892 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2893 XBUFFER (buffer), Qlocal_map);
2894 if (!NILP (start1))
2895 {
2896 if (EQ (start1, XBUFFER (buffer)->keymap))
2897 describe_map_tree (start1, 1, shadow, prefix,
2898 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2899 else
2900 describe_map_tree (start1, 1, shadow, prefix,
2901 "\f\n`local-map' Property Bindings",
2902 nomenu, 0, 0);
2903
2904 shadow = Fcons (start1, shadow);
2905 }
2906 }
2907
2908 describe_map_tree (current_global_map, 1, shadow, prefix,
2909 "\f\nGlobal Bindings", nomenu, 0, 1);
2910
2911 /* Print the function-key-map translations under this prefix. */
2912 if (!NILP (Vfunction_key_map))
2913 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2914 "\f\nFunction key map translations", nomenu, 1, 0);
2915
2916 UNGCPRO;
2917 return Qnil;
2918 }
2919
2920 /* Insert a description of the key bindings in STARTMAP,
2921 followed by those of all maps reachable through STARTMAP.
2922 If PARTIAL is nonzero, omit certain "uninteresting" commands
2923 (such as `undefined').
2924 If SHADOW is non-nil, it is a list of maps;
2925 don't mention keys which would be shadowed by any of them.
2926 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2927 TITLE, if not 0, is a string to insert at the beginning.
2928 TITLE should not end with a colon or a newline; we supply that.
2929 If NOMENU is not 0, then omit menu-bar commands.
2930
2931 If TRANSL is nonzero, the definitions are actually key translations
2932 so print strings and vectors differently.
2933
2934 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2935 to look through. */
2936
2937 void
2938 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2939 always_title)
2940 Lisp_Object startmap, shadow, prefix;
2941 int partial;
2942 char *title;
2943 int nomenu;
2944 int transl;
2945 int always_title;
2946 {
2947 Lisp_Object maps, orig_maps, seen, sub_shadows;
2948 struct gcpro gcpro1, gcpro2, gcpro3;
2949 int something = 0;
2950 char *key_heading
2951 = "\
2952 key binding\n\
2953 --- -------\n";
2954
2955 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2956 seen = Qnil;
2957 sub_shadows = Qnil;
2958 GCPRO3 (maps, seen, sub_shadows);
2959
2960 if (nomenu)
2961 {
2962 Lisp_Object list;
2963
2964 /* Delete from MAPS each element that is for the menu bar. */
2965 for (list = maps; !NILP (list); list = XCDR (list))
2966 {
2967 Lisp_Object elt, prefix, tem;
2968
2969 elt = Fcar (list);
2970 prefix = Fcar (elt);
2971 if (XVECTOR (prefix)->size >= 1)
2972 {
2973 tem = Faref (prefix, make_number (0));
2974 if (EQ (tem, Qmenu_bar))
2975 maps = Fdelq (elt, maps);
2976 }
2977 }
2978 }
2979
2980 if (!NILP (maps) || always_title)
2981 {
2982 if (title)
2983 {
2984 insert_string (title);
2985 if (!NILP (prefix))
2986 {
2987 insert_string (" Starting With ");
2988 insert1 (Fkey_description (prefix, Qnil));
2989 }
2990 insert_string (":\n");
2991 }
2992 insert_string (key_heading);
2993 something = 1;
2994 }
2995
2996 for (; !NILP (maps); maps = Fcdr (maps))
2997 {
2998 register Lisp_Object elt, prefix, tail;
2999
3000 elt = Fcar (maps);
3001 prefix = Fcar (elt);
3002
3003 sub_shadows = Qnil;
3004
3005 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3006 {
3007 Lisp_Object shmap;
3008
3009 shmap = XCAR (tail);
3010
3011 /* If the sequence by which we reach this keymap is zero-length,
3012 then the shadow map for this keymap is just SHADOW. */
3013 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3014 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3015 ;
3016 /* If the sequence by which we reach this keymap actually has
3017 some elements, then the sequence's definition in SHADOW is
3018 what we should use. */
3019 else
3020 {
3021 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3022 if (INTEGERP (shmap))
3023 shmap = Qnil;
3024 }
3025
3026 /* If shmap is not nil and not a keymap,
3027 it completely shadows this map, so don't
3028 describe this map at all. */
3029 if (!NILP (shmap) && !KEYMAPP (shmap))
3030 goto skip;
3031
3032 if (!NILP (shmap))
3033 sub_shadows = Fcons (shmap, sub_shadows);
3034 }
3035
3036 /* Maps we have already listed in this loop shadow this map. */
3037 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3038 {
3039 Lisp_Object tem;
3040 tem = Fequal (Fcar (XCAR (tail)), prefix);
3041 if (!NILP (tem))
3042 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3043 }
3044
3045 describe_map (Fcdr (elt), prefix,
3046 transl ? describe_translation : describe_command,
3047 partial, sub_shadows, &seen, nomenu);
3048
3049 skip: ;
3050 }
3051
3052 if (something)
3053 insert_string ("\n");
3054
3055 UNGCPRO;
3056 }
3057
3058 static int previous_description_column;
3059
3060 static void
3061 describe_command (definition, args)
3062 Lisp_Object definition, args;
3063 {
3064 register Lisp_Object tem1;
3065 int column = (int) current_column (); /* iftc */
3066 int description_column;
3067
3068 /* If column 16 is no good, go to col 32;
3069 but don't push beyond that--go to next line instead. */
3070 if (column > 30)
3071 {
3072 insert_char ('\n');
3073 description_column = 32;
3074 }
3075 else if (column > 14 || (column > 10 && previous_description_column == 32))
3076 description_column = 32;
3077 else
3078 description_column = 16;
3079
3080 Findent_to (make_number (description_column), make_number (1));
3081 previous_description_column = description_column;
3082
3083 if (SYMBOLP (definition))
3084 {
3085 tem1 = SYMBOL_NAME (definition);
3086 insert1 (tem1);
3087 insert_string ("\n");
3088 }
3089 else if (STRINGP (definition) || VECTORP (definition))
3090 insert_string ("Keyboard Macro\n");
3091 else if (KEYMAPP (definition))
3092 insert_string ("Prefix Command\n");
3093 else
3094 insert_string ("??\n");
3095 }
3096
3097 static void
3098 describe_translation (definition, args)
3099 Lisp_Object definition, args;
3100 {
3101 register Lisp_Object tem1;
3102
3103 Findent_to (make_number (16), make_number (1));
3104
3105 if (SYMBOLP (definition))
3106 {
3107 tem1 = SYMBOL_NAME (definition);
3108 insert1 (tem1);
3109 insert_string ("\n");
3110 }
3111 else if (STRINGP (definition) || VECTORP (definition))
3112 {
3113 insert1 (Fkey_description (definition, Qnil));
3114 insert_string ("\n");
3115 }
3116 else if (KEYMAPP (definition))
3117 insert_string ("Prefix Command\n");
3118 else
3119 insert_string ("??\n");
3120 }
3121
3122 /* Describe the contents of map MAP, assuming that this map itself is
3123 reached by the sequence of prefix keys PREFIX (a string or vector).
3124 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3125
3126 static void
3127 describe_map (map, prefix, elt_describer, partial, shadow, seen, nomenu)
3128 register Lisp_Object map;
3129 Lisp_Object prefix;
3130 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3131 int partial;
3132 Lisp_Object shadow;
3133 Lisp_Object *seen;
3134 int nomenu;
3135 {
3136 Lisp_Object tail, definition, event;
3137 Lisp_Object tem;
3138 Lisp_Object suppress;
3139 Lisp_Object kludge;
3140 int first = 1;
3141 struct gcpro gcpro1, gcpro2, gcpro3;
3142
3143 suppress = Qnil;
3144
3145 if (partial)
3146 suppress = intern ("suppress-keymap");
3147
3148 /* This vector gets used to present single keys to Flookup_key. Since
3149 that is done once per keymap element, we don't want to cons up a
3150 fresh vector every time. */
3151 kludge = Fmake_vector (make_number (1), Qnil);
3152 definition = Qnil;
3153
3154 GCPRO3 (prefix, definition, kludge);
3155
3156 for (tail = map; CONSP (tail); tail = XCDR (tail))
3157 {
3158 QUIT;
3159
3160 if (VECTORP (XCAR (tail))
3161 || CHAR_TABLE_P (XCAR (tail)))
3162 describe_vector (XCAR (tail),
3163 prefix, Qnil, elt_describer, partial, shadow, map,
3164 (int *)0, 0, 1);
3165 else if (CONSP (XCAR (tail)))
3166 {
3167 event = XCAR (XCAR (tail));
3168
3169 /* Ignore bindings whose "prefix" are not really valid events.
3170 (We get these in the frames and buffers menu.) */
3171 if (!(SYMBOLP (event) || INTEGERP (event)))
3172 continue;
3173
3174 if (nomenu && EQ (event, Qmenu_bar))
3175 continue;
3176
3177 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3178
3179 /* Don't show undefined commands or suppressed commands. */
3180 if (NILP (definition)) continue;
3181 if (SYMBOLP (definition) && partial)
3182 {
3183 tem = Fget (definition, suppress);
3184 if (!NILP (tem))
3185 continue;
3186 }
3187
3188 /* Don't show a command that isn't really visible
3189 because a local definition of the same key shadows it. */
3190
3191 ASET (kludge, 0, event);
3192 if (!NILP (shadow))
3193 {
3194 tem = shadow_lookup (shadow, kludge, Qt);
3195 if (!NILP (tem)) continue;
3196 }
3197
3198 tem = Flookup_key (map, kludge, Qt);
3199 if (!EQ (tem, definition)) continue;
3200
3201 if (first)
3202 {
3203 previous_description_column = 0;
3204 insert ("\n", 1);
3205 first = 0;
3206 }
3207
3208 /* THIS gets the string to describe the character EVENT. */
3209 insert1 (Fkey_description (kludge, prefix));
3210
3211 /* Print a description of the definition of this character.
3212 elt_describer will take care of spacing out far enough
3213 for alignment purposes. */
3214 (*elt_describer) (definition, Qnil);
3215 }
3216 else if (EQ (XCAR (tail), Qkeymap))
3217 {
3218 /* The same keymap might be in the structure twice, if we're
3219 using an inherited keymap. So skip anything we've already
3220 encountered. */
3221 tem = Fassq (tail, *seen);
3222 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3223 break;
3224 *seen = Fcons (Fcons (tail, prefix), *seen);
3225 }
3226 }
3227
3228 UNGCPRO;
3229 }
3230
3231 static void
3232 describe_vector_princ (elt, fun)
3233 Lisp_Object elt, fun;
3234 {
3235 Findent_to (make_number (16), make_number (1));
3236 call1 (fun, elt);
3237 Fterpri (Qnil);
3238 }
3239
3240 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3241 doc: /* Insert a description of contents of VECTOR.
3242 This is text showing the elements of vector matched against indices.
3243 DESCRIBER is the output function used; nil means use `princ'. */)
3244 (vector, describer)
3245 Lisp_Object vector, describer;
3246 {
3247 int count = SPECPDL_INDEX ();
3248 if (NILP (describer))
3249 describer = intern ("princ");
3250 specbind (Qstandard_output, Fcurrent_buffer ());
3251 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3252 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3253 Qnil, Qnil, (int *)0, 0, 0);
3254
3255 return unbind_to (count, Qnil);
3256 }
3257
3258 /* Insert in the current buffer a description of the contents of VECTOR.
3259 We call ELT_DESCRIBER to insert the description of one value found
3260 in VECTOR.
3261
3262 ELT_PREFIX describes what "comes before" the keys or indices defined
3263 by this vector. This is a human-readable string whose size
3264 is not necessarily related to the situation.
3265
3266 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3267 leads to this keymap.
3268
3269 If the vector is a chartable, ELT_PREFIX is the vector
3270 of bytes that lead to the character set or portion of a character
3271 set described by this chartable.
3272
3273 If PARTIAL is nonzero, it means do not mention suppressed commands
3274 (that assumes the vector is in a keymap).
3275
3276 SHADOW is a list of keymaps that shadow this map.
3277 If it is non-nil, then we look up the key in those maps
3278 and we don't mention it now if it is defined by any of them.
3279
3280 ENTIRE_MAP is the keymap in which this vector appears.
3281 If the definition in effect in the whole map does not match
3282 the one in this vector, we ignore this one.
3283
3284 When describing a sub-char-table, INDICES is a list of
3285 indices at higher levels in this char-table,
3286 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3287
3288 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3289
3290 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3291
3292 static void
3293 describe_vector (vector, prefix, args, elt_describer,
3294 partial, shadow, entire_map,
3295 indices, char_table_depth, keymap_p)
3296 register Lisp_Object vector;
3297 Lisp_Object prefix, args;
3298 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3299 int partial;
3300 Lisp_Object shadow;
3301 Lisp_Object entire_map;
3302 int *indices;
3303 int char_table_depth;
3304 int keymap_p;
3305 {
3306 Lisp_Object definition;
3307 Lisp_Object tem2;
3308 Lisp_Object elt_prefix = Qnil;
3309 register int i;
3310 Lisp_Object suppress;
3311 Lisp_Object kludge;
3312 int first = 1;
3313 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3314 /* Range of elements to be handled. */
3315 int from, to;
3316 /* A flag to tell if a leaf in this level of char-table is not a
3317 generic character (i.e. a complete multibyte character). */
3318 int complete_char;
3319 int character;
3320 int starting_i;
3321
3322 suppress = Qnil;
3323
3324 if (indices == 0)
3325 indices = (int *) alloca (3 * sizeof (int));
3326
3327 definition = Qnil;
3328
3329 if (!keymap_p)
3330 {
3331 /* Call Fkey_description first, to avoid GC bug for the other string. */
3332 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3333 {
3334 Lisp_Object tem;
3335 tem = Fkey_description (prefix, Qnil);
3336 elt_prefix = concat2 (tem, build_string (" "));
3337 }
3338 prefix = Qnil;
3339 }
3340
3341 /* This vector gets used to present single keys to Flookup_key. Since
3342 that is done once per vector element, we don't want to cons up a
3343 fresh vector every time. */
3344 kludge = Fmake_vector (make_number (1), Qnil);
3345 GCPRO4 (elt_prefix, prefix, definition, kludge);
3346
3347 if (partial)
3348 suppress = intern ("suppress-keymap");
3349
3350 if (CHAR_TABLE_P (vector))
3351 {
3352 if (char_table_depth == 0)
3353 {
3354 /* VECTOR is a top level char-table. */
3355 complete_char = 1;
3356 from = 0;
3357 to = CHAR_TABLE_ORDINARY_SLOTS;
3358 }
3359 else
3360 {
3361 /* VECTOR is a sub char-table. */
3362 if (char_table_depth >= 3)
3363 /* A char-table is never that deep. */
3364 error ("Too deep char table");
3365
3366 complete_char
3367 = (CHARSET_VALID_P (indices[0])
3368 && ((CHARSET_DIMENSION (indices[0]) == 1
3369 && char_table_depth == 1)
3370 || char_table_depth == 2));
3371
3372 /* Meaningful elements are from 32th to 127th. */
3373 from = 32;
3374 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3375 }
3376 }
3377 else
3378 {
3379 /* This does the right thing for ordinary vectors. */
3380
3381 complete_char = 1;
3382 from = 0;
3383 to = XVECTOR (vector)->size;
3384 }
3385
3386 for (i = from; i < to; i++)
3387 {
3388 QUIT;
3389
3390 if (CHAR_TABLE_P (vector))
3391 {
3392 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3393 complete_char = 0;
3394
3395 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3396 && !CHARSET_DEFINED_P (i - 128))
3397 continue;
3398
3399 definition
3400 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3401 }
3402 else
3403 definition = get_keyelt (AREF (vector, i), 0);
3404
3405 if (NILP (definition)) continue;
3406
3407 /* Don't mention suppressed commands. */
3408 if (SYMBOLP (definition) && partial)
3409 {
3410 Lisp_Object tem;
3411
3412 tem = Fget (definition, suppress);
3413
3414 if (!NILP (tem)) continue;
3415 }
3416
3417 /* Set CHARACTER to the character this entry describes, if any.
3418 Also update *INDICES. */
3419 if (CHAR_TABLE_P (vector))
3420 {
3421 indices[char_table_depth] = i;
3422
3423 if (char_table_depth == 0)
3424 {
3425 character = i;
3426 indices[0] = i - 128;
3427 }
3428 else if (complete_char)
3429 {
3430 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3431 }
3432 else
3433 character = 0;
3434 }
3435 else
3436 character = i;
3437
3438 ASET (kludge, 0, make_number (character));
3439
3440 /* If this binding is shadowed by some other map, ignore it. */
3441 if (!NILP (shadow) && complete_char)
3442 {
3443 Lisp_Object tem;
3444
3445 tem = shadow_lookup (shadow, kludge, Qt);
3446
3447 if (!NILP (tem)) continue;
3448 }
3449
3450 /* Ignore this definition if it is shadowed by an earlier
3451 one in the same keymap. */
3452 if (!NILP (entire_map) && complete_char)
3453 {
3454 Lisp_Object tem;
3455
3456 tem = Flookup_key (entire_map, kludge, Qt);
3457
3458 if (!EQ (tem, definition))
3459 continue;
3460 }
3461
3462 if (first)
3463 {
3464 if (char_table_depth == 0)
3465 insert ("\n", 1);
3466 first = 0;
3467 }
3468
3469 /* For a sub char-table, show the depth by indentation.
3470 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3471 if (char_table_depth > 0)
3472 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3473
3474 /* Output the prefix that applies to every entry in this map. */
3475 if (!NILP (elt_prefix))
3476 insert1 (elt_prefix);
3477
3478 /* Insert or describe the character this slot is for,
3479 or a description of what it is for. */
3480 if (SUB_CHAR_TABLE_P (vector))
3481 {
3482 if (complete_char)
3483 insert_char (character);
3484 else
3485 {
3486 /* We need an octal representation for this block of
3487 characters. */
3488 char work[16];
3489 sprintf (work, "(row %d)", i);
3490 insert (work, strlen (work));
3491 }
3492 }
3493 else if (CHAR_TABLE_P (vector))
3494 {
3495 if (complete_char)
3496 insert1 (Fkey_description (kludge, prefix));
3497 else
3498 {
3499 /* Print the information for this character set. */
3500 insert_string ("<");
3501 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3502 if (STRINGP (tem2))
3503 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3504 SBYTES (tem2), 0);
3505 else
3506 insert ("?", 1);
3507 insert (">", 1);
3508 }
3509 }
3510 else
3511 {
3512 insert1 (Fkey_description (kludge, prefix));
3513 }
3514
3515 /* If we find a sub char-table within a char-table,
3516 scan it recursively; it defines the details for
3517 a character set or a portion of a character set. */
3518 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3519 {
3520 insert ("\n", 1);
3521 describe_vector (definition, prefix, args, elt_describer,
3522 partial, shadow, entire_map,
3523 indices, char_table_depth + 1, keymap_p);
3524 continue;
3525 }
3526
3527 starting_i = i;
3528
3529 /* Find all consecutive characters or rows that have the same
3530 definition. But, for elements of a top level char table, if
3531 they are for charsets, we had better describe one by one even
3532 if they have the same definition. */
3533 if (CHAR_TABLE_P (vector))
3534 {
3535 int limit = to;
3536
3537 if (char_table_depth == 0)
3538 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3539
3540 while (i + 1 < limit
3541 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3542 !NILP (tem2))
3543 && !NILP (Fequal (tem2, definition)))
3544 i++;
3545 }
3546 else
3547 while (i + 1 < to
3548 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3549 !NILP (tem2))
3550 && !NILP (Fequal (tem2, definition)))
3551 i++;
3552
3553
3554 /* If we have a range of more than one character,
3555 print where the range reaches to. */
3556
3557 if (i != starting_i)
3558 {
3559 insert (" .. ", 4);
3560
3561 ASET (kludge, 0, make_number (i));
3562
3563 if (!NILP (elt_prefix))
3564 insert1 (elt_prefix);
3565
3566 if (CHAR_TABLE_P (vector))
3567 {
3568 if (char_table_depth == 0)
3569 {
3570 insert1 (Fkey_description (kludge, prefix));
3571 }
3572 else if (complete_char)
3573 {
3574 indices[char_table_depth] = i;
3575 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3576 insert_char (character);
3577 }
3578 else
3579 {
3580 /* We need an octal representation for this block of
3581 characters. */
3582 char work[16];
3583 sprintf (work, "(row %d)", i);
3584 insert (work, strlen (work));
3585 }
3586 }
3587 else
3588 {
3589 insert1 (Fkey_description (kludge, prefix));
3590 }
3591 }
3592
3593 /* Print a description of the definition of this character.
3594 elt_describer will take care of spacing out far enough
3595 for alignment purposes. */
3596 (*elt_describer) (definition, args);
3597 }
3598
3599 /* For (sub) char-table, print `defalt' slot at last. */
3600 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3601 {
3602 insert (" ", char_table_depth * 2);
3603 insert_string ("<<default>>");
3604 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3605 }
3606
3607 UNGCPRO;
3608 }
3609 \f
3610 /* Apropos - finding all symbols whose names match a regexp. */
3611 static Lisp_Object apropos_predicate;
3612 static Lisp_Object apropos_accumulate;
3613
3614 static void
3615 apropos_accum (symbol, string)
3616 Lisp_Object symbol, string;
3617 {
3618 register Lisp_Object tem;
3619
3620 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3621 if (!NILP (tem) && !NILP (apropos_predicate))
3622 tem = call1 (apropos_predicate, symbol);
3623 if (!NILP (tem))
3624 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3625 }
3626
3627 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3628 doc: /* Show all symbols whose names contain match for REGEXP.
3629 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3630 for each symbol and a symbol is mentioned only if that returns non-nil.
3631 Return list of symbols found. */)
3632 (regexp, predicate)
3633 Lisp_Object regexp, predicate;
3634 {
3635 Lisp_Object tem;
3636 CHECK_STRING (regexp);
3637 apropos_predicate = predicate;
3638 apropos_accumulate = Qnil;
3639 map_obarray (Vobarray, apropos_accum, regexp);
3640 tem = Fsort (apropos_accumulate, Qstring_lessp);
3641 apropos_accumulate = Qnil;
3642 apropos_predicate = Qnil;
3643 return tem;
3644 }
3645 \f
3646 void
3647 syms_of_keymap ()
3648 {
3649 Qkeymap = intern ("keymap");
3650 staticpro (&Qkeymap);
3651 staticpro (&apropos_predicate);
3652 staticpro (&apropos_accumulate);
3653 apropos_predicate = Qnil;
3654 apropos_accumulate = Qnil;
3655
3656 /* Now we are ready to set up this property, so we can
3657 create char tables. */
3658 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3659
3660 /* Initialize the keymaps standardly used.
3661 Each one is the value of a Lisp variable, and is also
3662 pointed to by a C variable */
3663
3664 global_map = Fmake_keymap (Qnil);
3665 Fset (intern ("global-map"), global_map);
3666
3667 current_global_map = global_map;
3668 staticpro (&global_map);
3669 staticpro (&current_global_map);
3670
3671 meta_map = Fmake_keymap (Qnil);
3672 Fset (intern ("esc-map"), meta_map);
3673 Ffset (intern ("ESC-prefix"), meta_map);
3674
3675 control_x_map = Fmake_keymap (Qnil);
3676 Fset (intern ("ctl-x-map"), control_x_map);
3677 Ffset (intern ("Control-X-prefix"), control_x_map);
3678
3679 exclude_keys
3680 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3681 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3682 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3683 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3684 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3685 Qnil)))));
3686 staticpro (&exclude_keys);
3687
3688 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3689 doc: /* List of commands given new key bindings recently.
3690 This is used for internal purposes during Emacs startup;
3691 don't alter it yourself. */);
3692 Vdefine_key_rebound_commands = Qt;
3693
3694 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3695 doc: /* Default keymap to use when reading from the minibuffer. */);
3696 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3697
3698 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3699 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3700 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3701 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3702
3703 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3704 doc: /* Local keymap for minibuffer input with completion. */);
3705 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3706 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3707
3708 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3709 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3710 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3711 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3712 Vminibuffer_local_completion_map);
3713
3714 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3715 doc: /* Alist of keymaps to use for minor modes.
3716 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3717 key sequences and look up bindings iff VARIABLE's value is non-nil.
3718 If two active keymaps bind the same key, the keymap appearing earlier
3719 in the list takes precedence. */);
3720 Vminor_mode_map_alist = Qnil;
3721
3722 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3723 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3724 This variable is an alist just like `minor-mode-map-alist', and it is
3725 used the same way (and before `minor-mode-map-alist'); however,
3726 it is provided for major modes to bind locally. */);
3727 Vminor_mode_overriding_map_alist = Qnil;
3728
3729 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3730 doc: /* List of keymap alists to use for emulations modes.
3731 It is intended for modes or packages using multiple minor-mode keymaps.
3732 Each element is a keymap alist just like `minor-mode-map-alist', or a
3733 symbol with a variable binding which is a keymap alist, and it is used
3734 the same way. The "active" keymaps in each alist are used before
3735 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3736 Vemulation_mode_map_alists = Qnil;
3737
3738
3739 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3740 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3741 This allows Emacs to recognize function keys sent from ASCII
3742 terminals at any point in a key sequence.
3743
3744 The `read-key-sequence' function replaces any subsequence bound by
3745 `function-key-map' with its binding. More precisely, when the active
3746 keymaps have no binding for the current key sequence but
3747 `function-key-map' binds a suffix of the sequence to a vector or string,
3748 `read-key-sequence' replaces the matching suffix with its binding, and
3749 continues with the new sequence.
3750
3751 The events that come from bindings in `function-key-map' are not
3752 themselves looked up in `function-key-map'.
3753
3754 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3755 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3756 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3757 key, typing `ESC O P x' would return [f1 x]. */);
3758 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3759
3760 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3761 doc: /* Keymap of key translations that can override keymaps.
3762 This keymap works like `function-key-map', but comes after that,
3763 and its non-prefix bindings override ordinary bindings. */);
3764 Vkey_translation_map = Qnil;
3765
3766 staticpro (&Vmouse_events);
3767 Vmouse_events = Fcons (intern ("menu-bar"),
3768 Fcons (intern ("tool-bar"),
3769 Fcons (intern ("header-line"),
3770 Fcons (intern ("mode-line"),
3771 Fcons (intern ("mouse-1"),
3772 Fcons (intern ("mouse-2"),
3773 Fcons (intern ("mouse-3"),
3774 Fcons (intern ("mouse-4"),
3775 Fcons (intern ("mouse-5"),
3776 Qnil)))))))));
3777
3778
3779 Qsingle_key_description = intern ("single-key-description");
3780 staticpro (&Qsingle_key_description);
3781
3782 Qkey_description = intern ("key-description");
3783 staticpro (&Qkey_description);
3784
3785 Qkeymapp = intern ("keymapp");
3786 staticpro (&Qkeymapp);
3787
3788 Qnon_ascii = intern ("non-ascii");
3789 staticpro (&Qnon_ascii);
3790
3791 Qmenu_item = intern ("menu-item");
3792 staticpro (&Qmenu_item);
3793
3794 Qremap = intern ("remap");
3795 staticpro (&Qremap);
3796
3797 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
3798 staticpro (&command_remapping_vector);
3799
3800 where_is_cache_keymaps = Qt;
3801 where_is_cache = Qnil;
3802 staticpro (&where_is_cache);
3803 staticpro (&where_is_cache_keymaps);
3804
3805 defsubr (&Skeymapp);
3806 defsubr (&Skeymap_parent);
3807 defsubr (&Skeymap_prompt);
3808 defsubr (&Sset_keymap_parent);
3809 defsubr (&Smake_keymap);
3810 defsubr (&Smake_sparse_keymap);
3811 defsubr (&Smap_keymap);
3812 defsubr (&Scopy_keymap);
3813 defsubr (&Scommand_remapping);
3814 defsubr (&Skey_binding);
3815 defsubr (&Slocal_key_binding);
3816 defsubr (&Sglobal_key_binding);
3817 defsubr (&Sminor_mode_key_binding);
3818 defsubr (&Sdefine_key);
3819 defsubr (&Slookup_key);
3820 defsubr (&Sdefine_prefix_command);
3821 defsubr (&Suse_global_map);
3822 defsubr (&Suse_local_map);
3823 defsubr (&Scurrent_local_map);
3824 defsubr (&Scurrent_global_map);
3825 defsubr (&Scurrent_minor_mode_maps);
3826 defsubr (&Scurrent_active_maps);
3827 defsubr (&Saccessible_keymaps);
3828 defsubr (&Skey_description);
3829 defsubr (&Sdescribe_vector);
3830 defsubr (&Ssingle_key_description);
3831 defsubr (&Stext_char_description);
3832 defsubr (&Swhere_is_internal);
3833 defsubr (&Sdescribe_buffer_bindings);
3834 defsubr (&Sapropos_internal);
3835 }
3836
3837 void
3838 keys_of_keymap ()
3839 {
3840 initial_define_key (global_map, 033, "ESC-prefix");
3841 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3842 }
3843
3844 /* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
3845 (do not change this comment) */