]> code.delx.au - gnu-emacs/blob - doc/lispref/numbers.texi
Merge from emacs-24; up to 2012-04-20T05:47:55Z!eliz@gnu.org
[gnu-emacs] / doc / lispref / numbers.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2012
4 @c Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Numbers, Strings and Characters, Lisp Data Types, Top
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
10
11 GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating point numbers}. Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
15 2.71828. They can also be expressed in exponential notation: 1.5e2
16 equals 150; in this example, @samp{e2} stands for ten to the second
17 power, and that is multiplied by 1.5. Floating point values are not
18 exact; they have a fixed, limited amount of precision.
19
20 @menu
21 * Integer Basics:: Representation and range of integers.
22 * Float Basics:: Representation and range of floating point.
23 * Predicates on Numbers:: Testing for numbers.
24 * Comparison of Numbers:: Equality and inequality predicates.
25 * Numeric Conversions:: Converting float to integer and vice versa.
26 * Arithmetic Operations:: How to add, subtract, multiply and divide.
27 * Rounding Operations:: Explicitly rounding floating point numbers.
28 * Bitwise Operations:: Logical and, or, not, shifting.
29 * Math Functions:: Trig, exponential and logarithmic functions.
30 * Random Numbers:: Obtaining random integers, predictable or not.
31 @end menu
32
33 @node Integer Basics
34 @comment node-name, next, previous, up
35 @section Integer Basics
36
37 The range of values for an integer depends on the machine. The
38 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
39 @ifnottex
40 -2**29
41 @end ifnottex
42 @tex
43 @math{-2^{29}}
44 @end tex
45 to
46 @ifnottex
47 2**29 - 1),
48 @end ifnottex
49 @tex
50 @math{2^{29}-1}),
51 @end tex
52 but some machines provide a wider range. Many examples in this
53 chapter assume that an integer has 30 bits and that floating point
54 numbers are IEEE double precision.
55 @cindex overflow
56
57 The Lisp reader reads an integer as a sequence of digits with optional
58 initial sign and optional final period. An integer that is out of the
59 Emacs range is treated as a floating-point number.
60
61 @example
62 1 ; @r{The integer 1.}
63 1. ; @r{The integer 1.}
64 +1 ; @r{Also the integer 1.}
65 -1 ; @r{The integer @minus{}1.}
66 1073741825 ; @r{The floating point number 1073741825.0.}
67 0 ; @r{The integer 0.}
68 -0 ; @r{The integer 0.}
69 @end example
70
71 @cindex integers in specific radix
72 @cindex radix for reading an integer
73 @cindex base for reading an integer
74 @cindex hex numbers
75 @cindex octal numbers
76 @cindex reading numbers in hex, octal, and binary
77 The syntax for integers in bases other than 10 uses @samp{#}
78 followed by a letter that specifies the radix: @samp{b} for binary,
79 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
80 specify radix @var{radix}. Case is not significant for the letter
81 that specifies the radix. Thus, @samp{#b@var{integer}} reads
82 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
83 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run
84 from 2 to 36. For example:
85
86 @example
87 #b101100 @result{} 44
88 #o54 @result{} 44
89 #x2c @result{} 44
90 #24r1k @result{} 44
91 @end example
92
93 To understand how various functions work on integers, especially the
94 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
95 view the numbers in their binary form.
96
97 In 30-bit binary, the decimal integer 5 looks like this:
98
99 @example
100 0000...000101 (30 bits total)
101 @end example
102
103 @noindent
104 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
105 this case, @samp{...} stands for twenty 0 bits. Later examples also
106 use the @samp{...} notation to make binary integers easier to read.)
107
108 The integer @minus{}1 looks like this:
109
110 @example
111 1111...111111 (30 bits total)
112 @end example
113
114 @noindent
115 @cindex two's complement
116 @minus{}1 is represented as 30 ones. (This is called @dfn{two's
117 complement} notation.)
118
119 The negative integer, @minus{}5, is creating by subtracting 4 from
120 @minus{}1. In binary, the decimal integer 4 is 100. Consequently,
121 @minus{}5 looks like this:
122
123 @example
124 1111...111011 (30 bits total)
125 @end example
126
127 In this implementation, the largest 30-bit binary integer value is
128 536,870,911 in decimal. In binary, it looks like this:
129
130 @example
131 0111...111111 (30 bits total)
132 @end example
133
134 Since the arithmetic functions do not check whether integers go
135 outside their range, when you add 1 to 536,870,911, the value is the
136 negative integer @minus{}536,870,912:
137
138 @example
139 (+ 1 536870911)
140 @result{} -536870912
141 @result{} 1000...000000 (30 bits total)
142 @end example
143
144 Many of the functions described in this chapter accept markers for
145 arguments in place of numbers. (@xref{Markers}.) Since the actual
146 arguments to such functions may be either numbers or markers, we often
147 give these arguments the name @var{number-or-marker}. When the argument
148 value is a marker, its position value is used and its buffer is ignored.
149
150 @cindex largest Lisp integer number
151 @cindex maximum Lisp integer number
152 @defvar most-positive-fixnum
153 The value of this variable is the largest integer that Emacs Lisp
154 can handle.
155 @end defvar
156
157 @cindex smallest Lisp integer number
158 @cindex minimum Lisp integer number
159 @defvar most-negative-fixnum
160 The value of this variable is the smallest integer that Emacs Lisp can
161 handle. It is negative.
162 @end defvar
163
164 @xref{Character Codes, max-char}, for the maximum value of a valid
165 character codepoint.
166
167 @node Float Basics
168 @section Floating Point Basics
169
170 @cindex @acronym{IEEE} floating point
171 Floating point numbers are useful for representing numbers that are
172 not integral. The precise range of floating point numbers is
173 machine-specific; it is the same as the range of the C data type
174 @code{double} on the machine you are using. Emacs uses the
175 @acronym{IEEE} floating point standard where possible (the standard is
176 supported by most modern computers).
177
178 The read syntax for floating point numbers requires either a decimal
179 point (with at least one digit following), an exponent, or both. For
180 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
181 @samp{.15e4} are five ways of writing a floating point number whose
182 value is 1500. They are all equivalent. You can also use a minus
183 sign to write negative floating point numbers, as in @samp{-1.0}.
184
185 Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
186 respect to @code{equal} and @code{=}), even though the two are
187 distinguishable in the @acronym{IEEE} floating point standard.
188
189 @cindex positive infinity
190 @cindex negative infinity
191 @cindex infinity
192 @cindex NaN
193 The @acronym{IEEE} floating point standard supports positive
194 infinity and negative infinity as floating point values. It also
195 provides for a class of values called NaN or ``not-a-number'';
196 numerical functions return such values in cases where there is no
197 correct answer. For example, @code{(/ 0.0 0.0)} returns a NaN. (NaN
198 values can also carry a sign, but for practical purposes there's no
199 significant difference between different NaN values in Emacs Lisp.)
200 Here are the read syntaxes for these special floating point values:
201
202 @table @asis
203 @item positive infinity
204 @samp{1.0e+INF}
205 @item negative infinity
206 @samp{-1.0e+INF}
207 @item Not-a-number
208 @samp{0.0e+NaN} or @samp{-0.0e+NaN}.
209 @end table
210
211 @defun isnan number
212 This predicate tests whether its argument is NaN, and returns @code{t}
213 if so, @code{nil} otherwise. The argument must be a number.
214 @end defun
215
216 The following functions are specialized for handling floating point
217 numbers:
218
219 @defun frexp x
220 This function returns a cons cell @code{(@var{sig} . @var{exp})},
221 where @var{sig} and @var{exp} are respectively the significand and
222 exponent of the floating point number @var{x}:
223
224 @smallexample
225 @var{x} = @var{sig} * 2^@var{exp}
226 @end smallexample
227
228 @var{sig} is a floating point number between 0.5 (inclusive) and 1.0
229 (exclusive). If @var{x} is zero, the return value is @code{(0 . 0)}.
230 @end defun
231
232 @defun ldexp sig &optional exp
233 This function returns a floating point number corresponding to the
234 significand @var{sig} and exponent @var{exp}.
235 @end defun
236
237 @defun copysign x1 x2
238 This function copies the sign of @var{x2} to the value of @var{x1},
239 and returns the result. @var{x1} and @var{x2} must be floating point
240 numbers.
241 @end defun
242
243 @defun logb number
244 This function returns the binary exponent of @var{number}. More
245 precisely, the value is the logarithm of @var{number} base 2, rounded
246 down to an integer.
247
248 @example
249 (logb 10)
250 @result{} 3
251 (logb 10.0e20)
252 @result{} 69
253 @end example
254 @end defun
255
256 @node Predicates on Numbers
257 @section Type Predicates for Numbers
258 @cindex predicates for numbers
259
260 The functions in this section test for numbers, or for a specific
261 type of number. The functions @code{integerp} and @code{floatp} can
262 take any type of Lisp object as argument (they would not be of much
263 use otherwise), but the @code{zerop} predicate requires a number as
264 its argument. See also @code{integer-or-marker-p} and
265 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
266
267 @defun floatp object
268 This predicate tests whether its argument is a floating point
269 number and returns @code{t} if so, @code{nil} otherwise.
270 @end defun
271
272 @defun integerp object
273 This predicate tests whether its argument is an integer, and returns
274 @code{t} if so, @code{nil} otherwise.
275 @end defun
276
277 @defun numberp object
278 This predicate tests whether its argument is a number (either integer or
279 floating point), and returns @code{t} if so, @code{nil} otherwise.
280 @end defun
281
282 @defun natnump object
283 @cindex natural numbers
284 This predicate (whose name comes from the phrase ``natural number'')
285 tests to see whether its argument is a nonnegative integer, and
286 returns @code{t} if so, @code{nil} otherwise. 0 is considered
287 non-negative.
288
289 @findex wholenump number
290 This is a synonym for @code{natnump}.
291 @end defun
292
293 @defun zerop number
294 This predicate tests whether its argument is zero, and returns @code{t}
295 if so, @code{nil} otherwise. The argument must be a number.
296
297 @code{(zerop x)} is equivalent to @code{(= x 0)}.
298 @end defun
299
300 @node Comparison of Numbers
301 @section Comparison of Numbers
302 @cindex number comparison
303 @cindex comparing numbers
304
305 To test numbers for numerical equality, you should normally use
306 @code{=}, not @code{eq}. There can be many distinct floating point
307 number objects with the same numeric value. If you use @code{eq} to
308 compare them, then you test whether two values are the same
309 @emph{object}. By contrast, @code{=} compares only the numeric values
310 of the objects.
311
312 At present, each integer value has a unique Lisp object in Emacs Lisp.
313 Therefore, @code{eq} is equivalent to @code{=} where integers are
314 concerned. It is sometimes convenient to use @code{eq} for comparing an
315 unknown value with an integer, because @code{eq} does not report an
316 error if the unknown value is not a number---it accepts arguments of any
317 type. By contrast, @code{=} signals an error if the arguments are not
318 numbers or markers. However, it is a good idea to use @code{=} if you
319 can, even for comparing integers, just in case we change the
320 representation of integers in a future Emacs version.
321
322 Sometimes it is useful to compare numbers with @code{equal}; it
323 treats two numbers as equal if they have the same data type (both
324 integers, or both floating point) and the same value. By contrast,
325 @code{=} can treat an integer and a floating point number as equal.
326 @xref{Equality Predicates}.
327
328 There is another wrinkle: because floating point arithmetic is not
329 exact, it is often a bad idea to check for equality of two floating
330 point values. Usually it is better to test for approximate equality.
331 Here's a function to do this:
332
333 @example
334 (defvar fuzz-factor 1.0e-6)
335 (defun approx-equal (x y)
336 (or (and (= x 0) (= y 0))
337 (< (/ (abs (- x y))
338 (max (abs x) (abs y)))
339 fuzz-factor)))
340 @end example
341
342 @cindex CL note---integers vrs @code{eq}
343 @quotation
344 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
345 @code{=} because Common Lisp implements multi-word integers, and two
346 distinct integer objects can have the same numeric value. Emacs Lisp
347 can have just one integer object for any given value because it has a
348 limited range of integer values.
349 @end quotation
350
351 @defun = number-or-marker1 number-or-marker2
352 This function tests whether its arguments are numerically equal, and
353 returns @code{t} if so, @code{nil} otherwise.
354 @end defun
355
356 @defun eql value1 value2
357 This function acts like @code{eq} except when both arguments are
358 numbers. It compares numbers by type and numeric value, so that
359 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
360 @code{(eql 1 1)} both return @code{t}.
361 @end defun
362
363 @defun /= number-or-marker1 number-or-marker2
364 This function tests whether its arguments are numerically equal, and
365 returns @code{t} if they are not, and @code{nil} if they are.
366 @end defun
367
368 @defun < number-or-marker1 number-or-marker2
369 This function tests whether its first argument is strictly less than
370 its second argument. It returns @code{t} if so, @code{nil} otherwise.
371 @end defun
372
373 @defun <= number-or-marker1 number-or-marker2
374 This function tests whether its first argument is less than or equal
375 to its second argument. It returns @code{t} if so, @code{nil}
376 otherwise.
377 @end defun
378
379 @defun > number-or-marker1 number-or-marker2
380 This function tests whether its first argument is strictly greater
381 than its second argument. It returns @code{t} if so, @code{nil}
382 otherwise.
383 @end defun
384
385 @defun >= number-or-marker1 number-or-marker2
386 This function tests whether its first argument is greater than or
387 equal to its second argument. It returns @code{t} if so, @code{nil}
388 otherwise.
389 @end defun
390
391 @defun max number-or-marker &rest numbers-or-markers
392 This function returns the largest of its arguments.
393 If any of the arguments is floating-point, the value is returned
394 as floating point, even if it was given as an integer.
395
396 @example
397 (max 20)
398 @result{} 20
399 (max 1 2.5)
400 @result{} 2.5
401 (max 1 3 2.5)
402 @result{} 3.0
403 @end example
404 @end defun
405
406 @defun min number-or-marker &rest numbers-or-markers
407 This function returns the smallest of its arguments.
408 If any of the arguments is floating-point, the value is returned
409 as floating point, even if it was given as an integer.
410
411 @example
412 (min -4 1)
413 @result{} -4
414 @end example
415 @end defun
416
417 @defun abs number
418 This function returns the absolute value of @var{number}.
419 @end defun
420
421 @node Numeric Conversions
422 @section Numeric Conversions
423 @cindex rounding in conversions
424 @cindex number conversions
425 @cindex converting numbers
426
427 To convert an integer to floating point, use the function @code{float}.
428
429 @defun float number
430 This returns @var{number} converted to floating point.
431 If @var{number} is already a floating point number, @code{float} returns
432 it unchanged.
433 @end defun
434
435 There are four functions to convert floating point numbers to integers;
436 they differ in how they round. All accept an argument @var{number}
437 and an optional argument @var{divisor}. Both arguments may be
438 integers or floating point numbers. @var{divisor} may also be
439 @code{nil}. If @var{divisor} is @code{nil} or omitted, these
440 functions convert @var{number} to an integer, or return it unchanged
441 if it already is an integer. If @var{divisor} is non-@code{nil}, they
442 divide @var{number} by @var{divisor} and convert the result to an
443 integer. An @code{arith-error} results if @var{divisor} is 0.
444
445 @defun truncate number &optional divisor
446 This returns @var{number}, converted to an integer by rounding towards
447 zero.
448
449 @example
450 (truncate 1.2)
451 @result{} 1
452 (truncate 1.7)
453 @result{} 1
454 (truncate -1.2)
455 @result{} -1
456 (truncate -1.7)
457 @result{} -1
458 @end example
459 @end defun
460
461 @defun floor number &optional divisor
462 This returns @var{number}, converted to an integer by rounding downward
463 (towards negative infinity).
464
465 If @var{divisor} is specified, this uses the kind of division
466 operation that corresponds to @code{mod}, rounding downward.
467
468 @example
469 (floor 1.2)
470 @result{} 1
471 (floor 1.7)
472 @result{} 1
473 (floor -1.2)
474 @result{} -2
475 (floor -1.7)
476 @result{} -2
477 (floor 5.99 3)
478 @result{} 1
479 @end example
480 @end defun
481
482 @defun ceiling number &optional divisor
483 This returns @var{number}, converted to an integer by rounding upward
484 (towards positive infinity).
485
486 @example
487 (ceiling 1.2)
488 @result{} 2
489 (ceiling 1.7)
490 @result{} 2
491 (ceiling -1.2)
492 @result{} -1
493 (ceiling -1.7)
494 @result{} -1
495 @end example
496 @end defun
497
498 @defun round number &optional divisor
499 This returns @var{number}, converted to an integer by rounding towards the
500 nearest integer. Rounding a value equidistant between two integers
501 may choose the integer closer to zero, or it may prefer an even integer,
502 depending on your machine.
503
504 @example
505 (round 1.2)
506 @result{} 1
507 (round 1.7)
508 @result{} 2
509 (round -1.2)
510 @result{} -1
511 (round -1.7)
512 @result{} -2
513 @end example
514 @end defun
515
516 @node Arithmetic Operations
517 @section Arithmetic Operations
518 @cindex arithmetic operations
519
520 Emacs Lisp provides the traditional four arithmetic operations:
521 addition, subtraction, multiplication, and division. Remainder and modulus
522 functions supplement the division functions. The functions to
523 add or subtract 1 are provided because they are traditional in Lisp and
524 commonly used.
525
526 All of these functions except @code{%} return a floating point value
527 if any argument is floating.
528
529 It is important to note that in Emacs Lisp, arithmetic functions
530 do not check for overflow. Thus @code{(1+ 536870911)} may evaluate to
531 @minus{}536870912, depending on your hardware.
532
533 @defun 1+ number-or-marker
534 This function returns @var{number-or-marker} plus 1.
535 For example,
536
537 @example
538 (setq foo 4)
539 @result{} 4
540 (1+ foo)
541 @result{} 5
542 @end example
543
544 This function is not analogous to the C operator @code{++}---it does not
545 increment a variable. It just computes a sum. Thus, if we continue,
546
547 @example
548 foo
549 @result{} 4
550 @end example
551
552 If you want to increment the variable, you must use @code{setq},
553 like this:
554
555 @example
556 (setq foo (1+ foo))
557 @result{} 5
558 @end example
559 @end defun
560
561 @defun 1- number-or-marker
562 This function returns @var{number-or-marker} minus 1.
563 @end defun
564
565 @defun + &rest numbers-or-markers
566 This function adds its arguments together. When given no arguments,
567 @code{+} returns 0.
568
569 @example
570 (+)
571 @result{} 0
572 (+ 1)
573 @result{} 1
574 (+ 1 2 3 4)
575 @result{} 10
576 @end example
577 @end defun
578
579 @defun - &optional number-or-marker &rest more-numbers-or-markers
580 The @code{-} function serves two purposes: negation and subtraction.
581 When @code{-} has a single argument, the value is the negative of the
582 argument. When there are multiple arguments, @code{-} subtracts each of
583 the @var{more-numbers-or-markers} from @var{number-or-marker},
584 cumulatively. If there are no arguments, the result is 0.
585
586 @example
587 (- 10 1 2 3 4)
588 @result{} 0
589 (- 10)
590 @result{} -10
591 (-)
592 @result{} 0
593 @end example
594 @end defun
595
596 @defun * &rest numbers-or-markers
597 This function multiplies its arguments together, and returns the
598 product. When given no arguments, @code{*} returns 1.
599
600 @example
601 (*)
602 @result{} 1
603 (* 1)
604 @result{} 1
605 (* 1 2 3 4)
606 @result{} 24
607 @end example
608 @end defun
609
610 @defun / dividend divisor &rest divisors
611 This function divides @var{dividend} by @var{divisor} and returns the
612 quotient. If there are additional arguments @var{divisors}, then it
613 divides @var{dividend} by each divisor in turn. Each argument may be a
614 number or a marker.
615
616 If all the arguments are integers, then the result is an integer too.
617 This means the result has to be rounded. On most machines, the result
618 is rounded towards zero after each division, but some machines may round
619 differently with negative arguments. This is because the Lisp function
620 @code{/} is implemented using the C division operator, which also
621 permits machine-dependent rounding. As a practical matter, all known
622 machines round in the standard fashion.
623
624 @cindex @code{arith-error} in division
625 If you divide an integer by 0, an @code{arith-error} error is signaled.
626 (@xref{Errors}.) Floating point division by zero returns either
627 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
628 otherwise, it signals an @code{arith-error} error.
629
630 @example
631 @group
632 (/ 6 2)
633 @result{} 3
634 @end group
635 (/ 5 2)
636 @result{} 2
637 (/ 5.0 2)
638 @result{} 2.5
639 (/ 5 2.0)
640 @result{} 2.5
641 (/ 5.0 2.0)
642 @result{} 2.5
643 (/ 25 3 2)
644 @result{} 4
645 @group
646 (/ -17 6)
647 @result{} -2 @r{(could in theory be @minus{}3 on some machines)}
648 @end group
649 @end example
650 @end defun
651
652 @defun % dividend divisor
653 @cindex remainder
654 This function returns the integer remainder after division of @var{dividend}
655 by @var{divisor}. The arguments must be integers or markers.
656
657 For negative arguments, the remainder is in principle machine-dependent
658 since the quotient is; but in practice, all known machines behave alike.
659
660 An @code{arith-error} results if @var{divisor} is 0.
661
662 @example
663 (% 9 4)
664 @result{} 1
665 (% -9 4)
666 @result{} -1
667 (% 9 -4)
668 @result{} 1
669 (% -9 -4)
670 @result{} -1
671 @end example
672
673 For any two integers @var{dividend} and @var{divisor},
674
675 @example
676 @group
677 (+ (% @var{dividend} @var{divisor})
678 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
679 @end group
680 @end example
681
682 @noindent
683 always equals @var{dividend}.
684 @end defun
685
686 @defun mod dividend divisor
687 @cindex modulus
688 This function returns the value of @var{dividend} modulo @var{divisor};
689 in other words, the remainder after division of @var{dividend}
690 by @var{divisor}, but with the same sign as @var{divisor}.
691 The arguments must be numbers or markers.
692
693 Unlike @code{%}, @code{mod} returns a well-defined result for negative
694 arguments. It also permits floating point arguments; it rounds the
695 quotient downward (towards minus infinity) to an integer, and uses that
696 quotient to compute the remainder.
697
698 An @code{arith-error} results if @var{divisor} is 0.
699
700 @example
701 @group
702 (mod 9 4)
703 @result{} 1
704 @end group
705 @group
706 (mod -9 4)
707 @result{} 3
708 @end group
709 @group
710 (mod 9 -4)
711 @result{} -3
712 @end group
713 @group
714 (mod -9 -4)
715 @result{} -1
716 @end group
717 @group
718 (mod 5.5 2.5)
719 @result{} .5
720 @end group
721 @end example
722
723 For any two numbers @var{dividend} and @var{divisor},
724
725 @example
726 @group
727 (+ (mod @var{dividend} @var{divisor})
728 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
729 @end group
730 @end example
731
732 @noindent
733 always equals @var{dividend}, subject to rounding error if either
734 argument is floating point. For @code{floor}, see @ref{Numeric
735 Conversions}.
736 @end defun
737
738 @node Rounding Operations
739 @section Rounding Operations
740 @cindex rounding without conversion
741
742 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
743 @code{ftruncate} take a floating point argument and return a floating
744 point result whose value is a nearby integer. @code{ffloor} returns the
745 nearest integer below; @code{fceiling}, the nearest integer above;
746 @code{ftruncate}, the nearest integer in the direction towards zero;
747 @code{fround}, the nearest integer.
748
749 @defun ffloor float
750 This function rounds @var{float} to the next lower integral value, and
751 returns that value as a floating point number.
752 @end defun
753
754 @defun fceiling float
755 This function rounds @var{float} to the next higher integral value, and
756 returns that value as a floating point number.
757 @end defun
758
759 @defun ftruncate float
760 This function rounds @var{float} towards zero to an integral value, and
761 returns that value as a floating point number.
762 @end defun
763
764 @defun fround float
765 This function rounds @var{float} to the nearest integral value,
766 and returns that value as a floating point number.
767 @end defun
768
769 @node Bitwise Operations
770 @section Bitwise Operations on Integers
771 @cindex bitwise arithmetic
772 @cindex logical arithmetic
773
774 In a computer, an integer is represented as a binary number, a
775 sequence of @dfn{bits} (digits which are either zero or one). A bitwise
776 operation acts on the individual bits of such a sequence. For example,
777 @dfn{shifting} moves the whole sequence left or right one or more places,
778 reproducing the same pattern ``moved over''.
779
780 The bitwise operations in Emacs Lisp apply only to integers.
781
782 @defun lsh integer1 count
783 @cindex logical shift
784 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
785 bits in @var{integer1} to the left @var{count} places, or to the right
786 if @var{count} is negative, bringing zeros into the vacated bits. If
787 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
788 (most-significant) bit, producing a positive result even if
789 @var{integer1} is negative. Contrast this with @code{ash}, below.
790
791 Here are two examples of @code{lsh}, shifting a pattern of bits one
792 place to the left. We show only the low-order eight bits of the binary
793 pattern; the rest are all zero.
794
795 @example
796 @group
797 (lsh 5 1)
798 @result{} 10
799 ;; @r{Decimal 5 becomes decimal 10.}
800 00000101 @result{} 00001010
801
802 (lsh 7 1)
803 @result{} 14
804 ;; @r{Decimal 7 becomes decimal 14.}
805 00000111 @result{} 00001110
806 @end group
807 @end example
808
809 @noindent
810 As the examples illustrate, shifting the pattern of bits one place to
811 the left produces a number that is twice the value of the previous
812 number.
813
814 Shifting a pattern of bits two places to the left produces results
815 like this (with 8-bit binary numbers):
816
817 @example
818 @group
819 (lsh 3 2)
820 @result{} 12
821 ;; @r{Decimal 3 becomes decimal 12.}
822 00000011 @result{} 00001100
823 @end group
824 @end example
825
826 On the other hand, shifting one place to the right looks like this:
827
828 @example
829 @group
830 (lsh 6 -1)
831 @result{} 3
832 ;; @r{Decimal 6 becomes decimal 3.}
833 00000110 @result{} 00000011
834 @end group
835
836 @group
837 (lsh 5 -1)
838 @result{} 2
839 ;; @r{Decimal 5 becomes decimal 2.}
840 00000101 @result{} 00000010
841 @end group
842 @end example
843
844 @noindent
845 As the example illustrates, shifting one place to the right divides the
846 value of a positive integer by two, rounding downward.
847
848 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
849 not check for overflow, so shifting left can discard significant bits
850 and change the sign of the number. For example, left shifting
851 536,870,911 produces @minus{}2 in the 30-bit implementation:
852
853 @example
854 (lsh 536870911 1) ; @r{left shift}
855 @result{} -2
856 @end example
857
858 In binary, the argument looks like this:
859
860 @example
861 @group
862 ;; @r{Decimal 536,870,911}
863 0111...111111 (30 bits total)
864 @end group
865 @end example
866
867 @noindent
868 which becomes the following when left shifted:
869
870 @example
871 @group
872 ;; @r{Decimal @minus{}2}
873 1111...111110 (30 bits total)
874 @end group
875 @end example
876 @end defun
877
878 @defun ash integer1 count
879 @cindex arithmetic shift
880 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
881 to the left @var{count} places, or to the right if @var{count}
882 is negative.
883
884 @code{ash} gives the same results as @code{lsh} except when
885 @var{integer1} and @var{count} are both negative. In that case,
886 @code{ash} puts ones in the empty bit positions on the left, while
887 @code{lsh} puts zeros in those bit positions.
888
889 Thus, with @code{ash}, shifting the pattern of bits one place to the right
890 looks like this:
891
892 @example
893 @group
894 (ash -6 -1) @result{} -3
895 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
896 1111...111010 (30 bits total)
897 @result{}
898 1111...111101 (30 bits total)
899 @end group
900 @end example
901
902 In contrast, shifting the pattern of bits one place to the right with
903 @code{lsh} looks like this:
904
905 @example
906 @group
907 (lsh -6 -1) @result{} 536870909
908 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
909 1111...111010 (30 bits total)
910 @result{}
911 0111...111101 (30 bits total)
912 @end group
913 @end example
914
915 Here are other examples:
916
917 @c !!! Check if lined up in smallbook format! XDVI shows problem
918 @c with smallbook but not with regular book! --rjc 16mar92
919 @smallexample
920 @group
921 ; @r{ 30-bit binary values}
922
923 (lsh 5 2) ; 5 = @r{0000...000101}
924 @result{} 20 ; = @r{0000...010100}
925 @end group
926 @group
927 (ash 5 2)
928 @result{} 20
929 (lsh -5 2) ; -5 = @r{1111...111011}
930 @result{} -20 ; = @r{1111...101100}
931 (ash -5 2)
932 @result{} -20
933 @end group
934 @group
935 (lsh 5 -2) ; 5 = @r{0000...000101}
936 @result{} 1 ; = @r{0000...000001}
937 @end group
938 @group
939 (ash 5 -2)
940 @result{} 1
941 @end group
942 @group
943 (lsh -5 -2) ; -5 = @r{1111...111011}
944 @result{} 268435454
945 ; = @r{0011...111110}
946 @end group
947 @group
948 (ash -5 -2) ; -5 = @r{1111...111011}
949 @result{} -2 ; = @r{1111...111110}
950 @end group
951 @end smallexample
952 @end defun
953
954 @defun logand &rest ints-or-markers
955 This function returns the ``logical and'' of the arguments: the
956 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
957 set in all the arguments. (``Set'' means that the value of the bit is 1
958 rather than 0.)
959
960 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
961 12 is 12: 1101 combined with 1100 produces 1100.
962 In both the binary numbers, the leftmost two bits are set (i.e., they
963 are 1's), so the leftmost two bits of the returned value are set.
964 However, for the rightmost two bits, each is zero in at least one of
965 the arguments, so the rightmost two bits of the returned value are 0's.
966
967 @noindent
968 Therefore,
969
970 @example
971 @group
972 (logand 13 12)
973 @result{} 12
974 @end group
975 @end example
976
977 If @code{logand} is not passed any argument, it returns a value of
978 @minus{}1. This number is an identity element for @code{logand}
979 because its binary representation consists entirely of ones. If
980 @code{logand} is passed just one argument, it returns that argument.
981
982 @smallexample
983 @group
984 ; @r{ 30-bit binary values}
985
986 (logand 14 13) ; 14 = @r{0000...001110}
987 ; 13 = @r{0000...001101}
988 @result{} 12 ; 12 = @r{0000...001100}
989 @end group
990
991 @group
992 (logand 14 13 4) ; 14 = @r{0000...001110}
993 ; 13 = @r{0000...001101}
994 ; 4 = @r{0000...000100}
995 @result{} 4 ; 4 = @r{0000...000100}
996 @end group
997
998 @group
999 (logand)
1000 @result{} -1 ; -1 = @r{1111...111111}
1001 @end group
1002 @end smallexample
1003 @end defun
1004
1005 @defun logior &rest ints-or-markers
1006 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1007 is set in the result if, and only if, the @var{n}th bit is set in at least
1008 one of the arguments. If there are no arguments, the result is zero,
1009 which is an identity element for this operation. If @code{logior} is
1010 passed just one argument, it returns that argument.
1011
1012 @smallexample
1013 @group
1014 ; @r{ 30-bit binary values}
1015
1016 (logior 12 5) ; 12 = @r{0000...001100}
1017 ; 5 = @r{0000...000101}
1018 @result{} 13 ; 13 = @r{0000...001101}
1019 @end group
1020
1021 @group
1022 (logior 12 5 7) ; 12 = @r{0000...001100}
1023 ; 5 = @r{0000...000101}
1024 ; 7 = @r{0000...000111}
1025 @result{} 15 ; 15 = @r{0000...001111}
1026 @end group
1027 @end smallexample
1028 @end defun
1029
1030 @defun logxor &rest ints-or-markers
1031 This function returns the ``exclusive or'' of its arguments: the
1032 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1033 set in an odd number of the arguments. If there are no arguments, the
1034 result is 0, which is an identity element for this operation. If
1035 @code{logxor} is passed just one argument, it returns that argument.
1036
1037 @smallexample
1038 @group
1039 ; @r{ 30-bit binary values}
1040
1041 (logxor 12 5) ; 12 = @r{0000...001100}
1042 ; 5 = @r{0000...000101}
1043 @result{} 9 ; 9 = @r{0000...001001}
1044 @end group
1045
1046 @group
1047 (logxor 12 5 7) ; 12 = @r{0000...001100}
1048 ; 5 = @r{0000...000101}
1049 ; 7 = @r{0000...000111}
1050 @result{} 14 ; 14 = @r{0000...001110}
1051 @end group
1052 @end smallexample
1053 @end defun
1054
1055 @defun lognot integer
1056 This function returns the logical complement of its argument: the @var{n}th
1057 bit is one in the result if, and only if, the @var{n}th bit is zero in
1058 @var{integer}, and vice-versa.
1059
1060 @example
1061 (lognot 5)
1062 @result{} -6
1063 ;; 5 = @r{0000...000101} (30 bits total)
1064 ;; @r{becomes}
1065 ;; -6 = @r{1111...111010} (30 bits total)
1066 @end example
1067 @end defun
1068
1069 @node Math Functions
1070 @section Standard Mathematical Functions
1071 @cindex transcendental functions
1072 @cindex mathematical functions
1073 @cindex floating-point functions
1074
1075 These mathematical functions allow integers as well as floating point
1076 numbers as arguments.
1077
1078 @defun sin arg
1079 @defunx cos arg
1080 @defunx tan arg
1081 These are the ordinary trigonometric functions, with argument measured
1082 in radians.
1083 @end defun
1084
1085 @defun asin arg
1086 The value of @code{(asin @var{arg})} is a number between
1087 @ifnottex
1088 @minus{}pi/2
1089 @end ifnottex
1090 @tex
1091 @math{-\pi/2}
1092 @end tex
1093 and
1094 @ifnottex
1095 pi/2
1096 @end ifnottex
1097 @tex
1098 @math{\pi/2}
1099 @end tex
1100 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1101 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1102 @end defun
1103
1104 @defun acos arg
1105 The value of @code{(acos @var{arg})} is a number between 0 and
1106 @ifnottex
1107 pi
1108 @end ifnottex
1109 @tex
1110 @math{\pi}
1111 @end tex
1112 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1113 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1114 @end defun
1115
1116 @defun atan y &optional x
1117 The value of @code{(atan @var{y})} is a number between
1118 @ifnottex
1119 @minus{}pi/2
1120 @end ifnottex
1121 @tex
1122 @math{-\pi/2}
1123 @end tex
1124 and
1125 @ifnottex
1126 pi/2
1127 @end ifnottex
1128 @tex
1129 @math{\pi/2}
1130 @end tex
1131 (exclusive) whose tangent is @var{y}. If the optional second
1132 argument @var{x} is given, the value of @code{(atan y x)} is the
1133 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1134 @code{X} axis.
1135 @end defun
1136
1137 @defun exp arg
1138 This is the exponential function; it returns @math{e} to the power
1139 @var{arg}.
1140 @end defun
1141
1142 @defun log arg &optional base
1143 This function returns the logarithm of @var{arg}, with base
1144 @var{base}. If you don't specify @var{base}, the natural base
1145 @math{e} is used. If @var{arg} is negative, it signals a
1146 @code{domain-error} error.
1147 @end defun
1148
1149 @ignore
1150 @defun expm1 arg
1151 This function returns @code{(1- (exp @var{arg}))}, but it is more
1152 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1153 is close to 1.
1154 @end defun
1155
1156 @defun log1p arg
1157 This function returns @code{(log (1+ @var{arg}))}, but it is more
1158 accurate than that when @var{arg} is so small that adding 1 to it would
1159 lose accuracy.
1160 @end defun
1161 @end ignore
1162
1163 @defun log10 arg
1164 This function returns the logarithm of @var{arg}, with base 10. If
1165 @var{arg} is negative, it signals a @code{domain-error} error.
1166 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1167 approximately.
1168 @end defun
1169
1170 @defun expt x y
1171 This function returns @var{x} raised to power @var{y}. If both
1172 arguments are integers and @var{y} is positive, the result is an
1173 integer; in this case, overflow causes truncation, so watch out.
1174 @end defun
1175
1176 @defun sqrt arg
1177 This returns the square root of @var{arg}. If @var{arg} is negative,
1178 it signals a @code{domain-error} error.
1179 @end defun
1180
1181 In addition, Emacs defines the following common mathematical
1182 constants:
1183
1184 @defvar float-e
1185 The mathematical constant @math{e} (2.71828@dots{}).
1186 @end defvar
1187
1188 @defvar float-pi
1189 The mathematical constant @math{pi} (3.14159@dots{}).
1190 @end defvar
1191
1192 @node Random Numbers
1193 @section Random Numbers
1194 @cindex random numbers
1195
1196 A deterministic computer program cannot generate true random numbers.
1197 For most purposes, @dfn{pseudo-random numbers} suffice. A series of
1198 pseudo-random numbers is generated in a deterministic fashion. The
1199 numbers are not truly random, but they have certain properties that
1200 mimic a random series. For example, all possible values occur equally
1201 often in a pseudo-random series.
1202
1203 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1204 Starting from any given seed, the @code{random} function always
1205 generates the same sequence of numbers. Emacs always starts with the
1206 same seed value, so the sequence of values of @code{random} is actually
1207 the same in each Emacs run! For example, in one operating system, the
1208 first call to @code{(random)} after you start Emacs always returns
1209 @minus{}1457731, and the second one always returns @minus{}7692030. This
1210 repeatability is helpful for debugging.
1211
1212 If you want random numbers that don't always come out the same, execute
1213 @code{(random t)}. This chooses a new seed based on the current time of
1214 day and on Emacs's process @acronym{ID} number.
1215
1216 @defun random &optional limit
1217 This function returns a pseudo-random integer. Repeated calls return a
1218 series of pseudo-random integers.
1219
1220 If @var{limit} is a positive integer, the value is chosen to be
1221 nonnegative and less than @var{limit}.
1222
1223 If @var{limit} is @code{t}, it means to choose a new seed based on the
1224 current time of day and on Emacs's process @acronym{ID} number.
1225
1226 On some machines, any integer representable in Lisp may be the result
1227 of @code{random}. On other machines, the result can never be larger
1228 than a certain maximum or less than a certain (negative) minimum.
1229 @end defun