]> code.delx.au - gnu-emacs/blob - src/coding.c
(Fget_char_property): Update call to overlays_at.
[gnu-emacs] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*** TABLE OF CONTENTS ***
23
24 0. General comments
25 1. Preamble
26 2. Emacs' internal format (emacs-mule) handlers
27 3. ISO2022 handlers
28 4. Shift-JIS and BIG5 handlers
29 5. CCL handlers
30 6. End-of-line handlers
31 7. C library functions
32 8. Emacs Lisp library functions
33 9. Post-amble
34
35 */
36
37 /*** 0. General comments ***/
38
39
40 /*** GENERAL NOTE on CODING SYSTEM ***
41
42 Coding system is an encoding mechanism of one or more character
43 sets. Here's a list of coding systems which Emacs can handle. When
44 we say "decode", it means converting some other coding system to
45 Emacs' internal format (emacs-internal), and when we say "encode",
46 it means converting the coding system emacs-mule to some other
47 coding system.
48
49 0. Emacs' internal format (emacs-mule)
50
51 Emacs itself holds a multi-lingual character in a buffer and a string
52 in a special format. Details are described in section 2.
53
54 1. ISO2022
55
56 The most famous coding system for multiple character sets. X's
57 Compound Text, various EUCs (Extended Unix Code), and coding
58 systems used in Internet communication such as ISO-2022-JP are
59 all variants of ISO2022. Details are described in section 3.
60
61 2. SJIS (or Shift-JIS or MS-Kanji-Code)
62
63 A coding system to encode character sets: ASCII, JISX0201, and
64 JISX0208. Widely used for PC's in Japan. Details are described in
65 section 4.
66
67 3. BIG5
68
69 A coding system to encode character sets: ASCII and Big5. Widely
70 used by Chinese (mainly in Taiwan and Hong Kong). Details are
71 described in section 4. In this file, when we write "BIG5"
72 (all uppercase), we mean the coding system, and when we write
73 "Big5" (capitalized), we mean the character set.
74
75 4. Raw text
76
77 A coding system for a text containing random 8-bit code. Emacs does
78 no code conversion on such a text except for end-of-line format.
79
80 5. Other
81
82 If a user wants to read/write a text encoded in a coding system not
83 listed above, he can supply a decoder and an encoder for it in CCL
84 (Code Conversion Language) programs. Emacs executes the CCL program
85 while reading/writing.
86
87 Emacs represents a coding system by a Lisp symbol that has a property
88 `coding-system'. But, before actually using the coding system, the
89 information about it is set in a structure of type `struct
90 coding_system' for rapid processing. See section 6 for more details.
91
92 */
93
94 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
95
96 How end-of-line of a text is encoded depends on a system. For
97 instance, Unix's format is just one byte of `line-feed' code,
98 whereas DOS's format is two-byte sequence of `carriage-return' and
99 `line-feed' codes. MacOS's format is usually one byte of
100 `carriage-return'.
101
102 Since text characters encoding and end-of-line encoding are
103 independent, any coding system described above can take
104 any format of end-of-line. So, Emacs has information of format of
105 end-of-line in each coding-system. See section 6 for more details.
106
107 */
108
109 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
110
111 These functions check if a text between SRC and SRC_END is encoded
112 in the coding system category XXX. Each returns an integer value in
113 which appropriate flag bits for the category XXX is set. The flag
114 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
115 template of these functions. */
116 #if 0
117 int
118 detect_coding_emacs_mule (src, src_end)
119 unsigned char *src, *src_end;
120 {
121 ...
122 }
123 #endif
124
125 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
126
127 These functions decode SRC_BYTES length of unibyte text at SOURCE
128 encoded in CODING to Emacs' internal format. The resulting
129 multibyte text goes to a place pointed to by DESTINATION, the length
130 of which should not exceed DST_BYTES.
131
132 These functions set the information of original and decoded texts in
133 the members produced, produced_char, consumed, and consumed_char of
134 the structure *CODING. They also set the member result to one of
135 CODING_FINISH_XXX indicating how the decoding finished.
136
137 DST_BYTES zero means that source area and destination area are
138 overlapped, which means that we can produce a decoded text until it
139 reaches at the head of not-yet-decoded source text.
140
141 Below is a template of these functions. */
142 #if 0
143 static void
144 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
145 struct coding_system *coding;
146 unsigned char *source, *destination;
147 int src_bytes, dst_bytes;
148 {
149 ...
150 }
151 #endif
152
153 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
154
155 These functions encode SRC_BYTES length text at SOURCE of Emacs'
156 internal multibyte format to CODING. The resulting unibyte text
157 goes to a place pointed to by DESTINATION, the length of which
158 should not exceed DST_BYTES.
159
160 These functions set the information of original and encoded texts in
161 the members produced, produced_char, consumed, and consumed_char of
162 the structure *CODING. They also set the member result to one of
163 CODING_FINISH_XXX indicating how the encoding finished.
164
165 DST_BYTES zero means that source area and destination area are
166 overlapped, which means that we can produce a encoded text until it
167 reaches at the head of not-yet-encoded source text.
168
169 Below is a template of these functions. */
170 #if 0
171 static void
172 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
173 struct coding_system *coding;
174 unsigned char *source, *destination;
175 int src_bytes, dst_bytes;
176 {
177 ...
178 }
179 #endif
180
181 /*** COMMONLY USED MACROS ***/
182
183 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
184 get one, two, and three bytes from the source text respectively.
185 If there are not enough bytes in the source, they jump to
186 `label_end_of_loop'. The caller should set variables `coding',
187 `src' and `src_end' to appropriate pointer in advance. These
188 macros are called from decoding routines `decode_coding_XXX', thus
189 it is assumed that the source text is unibyte. */
190
191 #define ONE_MORE_BYTE(c1) \
192 do { \
193 if (src >= src_end) \
194 { \
195 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
196 goto label_end_of_loop; \
197 } \
198 c1 = *src++; \
199 } while (0)
200
201 #define TWO_MORE_BYTES(c1, c2) \
202 do { \
203 if (src + 1 >= src_end) \
204 { \
205 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
206 goto label_end_of_loop; \
207 } \
208 c1 = *src++; \
209 c2 = *src++; \
210 } while (0)
211
212
213 /* Set C to the next character at the source text pointed by `src'.
214 If there are not enough characters in the source, jump to
215 `label_end_of_loop'. The caller should set variables `coding'
216 `src', `src_end', and `translation_table' to appropriate pointers
217 in advance. This macro is used in encoding routines
218 `encode_coding_XXX', thus it assumes that the source text is in
219 multibyte form except for 8-bit characters. 8-bit characters are
220 in multibyte form if coding->src_multibyte is nonzero, else they
221 are represented by a single byte. */
222
223 #define ONE_MORE_CHAR(c) \
224 do { \
225 int len = src_end - src; \
226 int bytes; \
227 if (len <= 0) \
228 { \
229 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
230 goto label_end_of_loop; \
231 } \
232 if (coding->src_multibyte \
233 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
234 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
235 else \
236 c = *src, bytes = 1; \
237 if (!NILP (translation_table)) \
238 c = translate_char (translation_table, c, 0, 0, 0); \
239 src += bytes; \
240 } while (0)
241
242
243 /* Produce a multibyte form of characater C to `dst'. Jump to
244 `label_end_of_loop' if there's not enough space at `dst'.
245
246 If we are now in the middle of composition sequence, the decoded
247 character may be ALTCHAR (for the current composition). In that
248 case, the character goes to coding->cmp_data->data instead of
249 `dst'.
250
251 This macro is used in decoding routines. */
252
253 #define EMIT_CHAR(c) \
254 do { \
255 if (! COMPOSING_P (coding) \
256 || coding->composing == COMPOSITION_RELATIVE \
257 || coding->composing == COMPOSITION_WITH_RULE) \
258 { \
259 int bytes = CHAR_BYTES (c); \
260 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
261 { \
262 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
263 goto label_end_of_loop; \
264 } \
265 dst += CHAR_STRING (c, dst); \
266 coding->produced_char++; \
267 } \
268 \
269 if (COMPOSING_P (coding) \
270 && coding->composing != COMPOSITION_RELATIVE) \
271 { \
272 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
273 coding->composition_rule_follows \
274 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
275 } \
276 } while (0)
277
278
279 #define EMIT_ONE_BYTE(c) \
280 do { \
281 if (dst >= (dst_bytes ? dst_end : src)) \
282 { \
283 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
284 goto label_end_of_loop; \
285 } \
286 *dst++ = c; \
287 } while (0)
288
289 #define EMIT_TWO_BYTES(c1, c2) \
290 do { \
291 if (dst + 2 > (dst_bytes ? dst_end : src)) \
292 { \
293 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
294 goto label_end_of_loop; \
295 } \
296 *dst++ = c1, *dst++ = c2; \
297 } while (0)
298
299 #define EMIT_BYTES(from, to) \
300 do { \
301 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 while (from < to) \
307 *dst++ = *from++; \
308 } while (0)
309
310 \f
311 /*** 1. Preamble ***/
312
313 #ifdef emacs
314 #include <config.h>
315 #endif
316
317 #include <stdio.h>
318
319 #ifdef emacs
320
321 #include "lisp.h"
322 #include "buffer.h"
323 #include "charset.h"
324 #include "composite.h"
325 #include "ccl.h"
326 #include "coding.h"
327 #include "window.h"
328
329 #else /* not emacs */
330
331 #include "mulelib.h"
332
333 #endif /* not emacs */
334
335 Lisp_Object Qcoding_system, Qeol_type;
336 Lisp_Object Qbuffer_file_coding_system;
337 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
338 Lisp_Object Qno_conversion, Qundecided;
339 Lisp_Object Qcoding_system_history;
340 Lisp_Object Qsafe_chars;
341 Lisp_Object Qvalid_codes;
342
343 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
344 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
345 Lisp_Object Qstart_process, Qopen_network_stream;
346 Lisp_Object Qtarget_idx;
347
348 Lisp_Object Vselect_safe_coding_system_function;
349
350 /* Mnemonic string for each format of end-of-line. */
351 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
352 /* Mnemonic string to indicate format of end-of-line is not yet
353 decided. */
354 Lisp_Object eol_mnemonic_undecided;
355
356 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
357 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
358 int system_eol_type;
359
360 #ifdef emacs
361
362 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
363
364 Lisp_Object Qcoding_system_p, Qcoding_system_error;
365
366 /* Coding system emacs-mule and raw-text are for converting only
367 end-of-line format. */
368 Lisp_Object Qemacs_mule, Qraw_text;
369
370 /* Coding-systems are handed between Emacs Lisp programs and C internal
371 routines by the following three variables. */
372 /* Coding-system for reading files and receiving data from process. */
373 Lisp_Object Vcoding_system_for_read;
374 /* Coding-system for writing files and sending data to process. */
375 Lisp_Object Vcoding_system_for_write;
376 /* Coding-system actually used in the latest I/O. */
377 Lisp_Object Vlast_coding_system_used;
378
379 /* A vector of length 256 which contains information about special
380 Latin codes (especially for dealing with Microsoft codes). */
381 Lisp_Object Vlatin_extra_code_table;
382
383 /* Flag to inhibit code conversion of end-of-line format. */
384 int inhibit_eol_conversion;
385
386 /* Flag to inhibit ISO2022 escape sequence detection. */
387 int inhibit_iso_escape_detection;
388
389 /* Flag to make buffer-file-coding-system inherit from process-coding. */
390 int inherit_process_coding_system;
391
392 /* Coding system to be used to encode text for terminal display. */
393 struct coding_system terminal_coding;
394
395 /* Coding system to be used to encode text for terminal display when
396 terminal coding system is nil. */
397 struct coding_system safe_terminal_coding;
398
399 /* Coding system of what is sent from terminal keyboard. */
400 struct coding_system keyboard_coding;
401
402 /* Default coding system to be used to write a file. */
403 struct coding_system default_buffer_file_coding;
404
405 Lisp_Object Vfile_coding_system_alist;
406 Lisp_Object Vprocess_coding_system_alist;
407 Lisp_Object Vnetwork_coding_system_alist;
408
409 Lisp_Object Vlocale_coding_system;
410
411 #endif /* emacs */
412
413 Lisp_Object Qcoding_category, Qcoding_category_index;
414
415 /* List of symbols `coding-category-xxx' ordered by priority. */
416 Lisp_Object Vcoding_category_list;
417
418 /* Table of coding categories (Lisp symbols). */
419 Lisp_Object Vcoding_category_table;
420
421 /* Table of names of symbol for each coding-category. */
422 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
423 "coding-category-emacs-mule",
424 "coding-category-sjis",
425 "coding-category-iso-7",
426 "coding-category-iso-7-tight",
427 "coding-category-iso-8-1",
428 "coding-category-iso-8-2",
429 "coding-category-iso-7-else",
430 "coding-category-iso-8-else",
431 "coding-category-ccl",
432 "coding-category-big5",
433 "coding-category-utf-8",
434 "coding-category-utf-16-be",
435 "coding-category-utf-16-le",
436 "coding-category-raw-text",
437 "coding-category-binary"
438 };
439
440 /* Table of pointers to coding systems corresponding to each coding
441 categories. */
442 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
443
444 /* Table of coding category masks. Nth element is a mask for a coding
445 cateogry of which priority is Nth. */
446 static
447 int coding_priorities[CODING_CATEGORY_IDX_MAX];
448
449 /* Flag to tell if we look up translation table on character code
450 conversion. */
451 Lisp_Object Venable_character_translation;
452 /* Standard translation table to look up on decoding (reading). */
453 Lisp_Object Vstandard_translation_table_for_decode;
454 /* Standard translation table to look up on encoding (writing). */
455 Lisp_Object Vstandard_translation_table_for_encode;
456
457 Lisp_Object Qtranslation_table;
458 Lisp_Object Qtranslation_table_id;
459 Lisp_Object Qtranslation_table_for_decode;
460 Lisp_Object Qtranslation_table_for_encode;
461
462 /* Alist of charsets vs revision number. */
463 Lisp_Object Vcharset_revision_alist;
464
465 /* Default coding systems used for process I/O. */
466 Lisp_Object Vdefault_process_coding_system;
467
468 /* Global flag to tell that we can't call post-read-conversion and
469 pre-write-conversion functions. Usually the value is zero, but it
470 is set to 1 temporarily while such functions are running. This is
471 to avoid infinite recursive call. */
472 static int inhibit_pre_post_conversion;
473
474 /* Char-table containing safe coding systems of each character. */
475 Lisp_Object Vchar_coding_system_table;
476 Lisp_Object Qchar_coding_system;
477
478 /* Return `safe-chars' property of coding system CODING. Don't check
479 validity of CODING. */
480
481 Lisp_Object
482 coding_safe_chars (coding)
483 struct coding_system *coding;
484 {
485 Lisp_Object coding_spec, plist, safe_chars;
486
487 coding_spec = Fget (coding->symbol, Qcoding_system);
488 plist = XVECTOR (coding_spec)->contents[3];
489 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
490 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
491 }
492
493 #define CODING_SAFE_CHAR_P(safe_chars, c) \
494 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
495
496 \f
497 /*** 2. Emacs internal format (emacs-mule) handlers ***/
498
499 /* Emacs' internal format for encoding multiple character sets is a
500 kind of multi-byte encoding, i.e. characters are encoded by
501 variable-length sequences of one-byte codes.
502
503 ASCII characters and control characters (e.g. `tab', `newline') are
504 represented by one-byte sequences which are their ASCII codes, in
505 the range 0x00 through 0x7F.
506
507 8-bit characters of the range 0x80..0x9F are represented by
508 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
509 code + 0x20).
510
511 8-bit characters of the range 0xA0..0xFF are represented by
512 one-byte sequences which are their 8-bit code.
513
514 The other characters are represented by a sequence of `base
515 leading-code', optional `extended leading-code', and one or two
516 `position-code's. The length of the sequence is determined by the
517 base leading-code. Leading-code takes the range 0x80 through 0x9F,
518 whereas extended leading-code and position-code take the range 0xA0
519 through 0xFF. See `charset.h' for more details about leading-code
520 and position-code.
521
522 --- CODE RANGE of Emacs' internal format ---
523 character set range
524 ------------- -----
525 ascii 0x00..0x7F
526 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
527 eight-bit-graphic 0xA0..0xBF
528 ELSE 0x81..0x9F + [0xA0..0xFF]+
529 ---------------------------------------------
530
531 */
532
533 enum emacs_code_class_type emacs_code_class[256];
534
535 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
536 Check if a text is encoded in Emacs' internal format. If it is,
537 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
538
539 int
540 detect_coding_emacs_mule (src, src_end)
541 unsigned char *src, *src_end;
542 {
543 unsigned char c;
544 int composing = 0;
545 /* Dummy for ONE_MORE_BYTE. */
546 struct coding_system dummy_coding;
547 struct coding_system *coding = &dummy_coding;
548
549 while (1)
550 {
551 ONE_MORE_BYTE (c);
552
553 if (composing)
554 {
555 if (c < 0xA0)
556 composing = 0;
557 else if (c == 0xA0)
558 {
559 ONE_MORE_BYTE (c);
560 c &= 0x7F;
561 }
562 else
563 c -= 0x20;
564 }
565
566 if (c < 0x20)
567 {
568 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
569 return 0;
570 }
571 else if (c >= 0x80 && c < 0xA0)
572 {
573 if (c == 0x80)
574 /* Old leading code for a composite character. */
575 composing = 1;
576 else
577 {
578 unsigned char *src_base = src - 1;
579 int bytes;
580
581 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
582 bytes))
583 return 0;
584 src = src_base + bytes;
585 }
586 }
587 }
588 label_end_of_loop:
589 return CODING_CATEGORY_MASK_EMACS_MULE;
590 }
591
592
593 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
594
595 static void
596 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
597 struct coding_system *coding;
598 unsigned char *source, *destination;
599 int src_bytes, dst_bytes;
600 {
601 unsigned char *src = source;
602 unsigned char *src_end = source + src_bytes;
603 unsigned char *dst = destination;
604 unsigned char *dst_end = destination + dst_bytes;
605 /* SRC_BASE remembers the start position in source in each loop.
606 The loop will be exited when there's not enough source code, or
607 when there's not enough destination area to produce a
608 character. */
609 unsigned char *src_base;
610
611 coding->produced_char = 0;
612 while ((src_base = src) < src_end)
613 {
614 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
615 int bytes;
616
617 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
618 {
619 p = src;
620 src += bytes;
621 }
622 else
623 {
624 bytes = CHAR_STRING (*src, tmp);
625 p = tmp;
626 src++;
627 }
628 if (dst + bytes >= (dst_bytes ? dst_end : src))
629 {
630 coding->result = CODING_FINISH_INSUFFICIENT_DST;
631 break;
632 }
633 while (bytes--) *dst++ = *p++;
634 coding->produced_char++;
635 }
636 coding->consumed = coding->consumed_char = src_base - source;
637 coding->produced = dst - destination;
638 }
639
640 #define encode_coding_emacs_mule(coding, source, destination, src_bytes, dst_bytes) \
641 encode_eol (coding, source, destination, src_bytes, dst_bytes)
642
643
644 \f
645 /*** 3. ISO2022 handlers ***/
646
647 /* The following note describes the coding system ISO2022 briefly.
648 Since the intention of this note is to help understand the
649 functions in this file, some parts are NOT ACCURATE or OVERLY
650 SIMPLIFIED. For thorough understanding, please refer to the
651 original document of ISO2022.
652
653 ISO2022 provides many mechanisms to encode several character sets
654 in 7-bit and 8-bit environments. For 7-bite environments, all text
655 is encoded using bytes less than 128. This may make the encoded
656 text a little bit longer, but the text passes more easily through
657 several gateways, some of which strip off MSB (Most Signigant Bit).
658
659 There are two kinds of character sets: control character set and
660 graphic character set. The former contains control characters such
661 as `newline' and `escape' to provide control functions (control
662 functions are also provided by escape sequences). The latter
663 contains graphic characters such as 'A' and '-'. Emacs recognizes
664 two control character sets and many graphic character sets.
665
666 Graphic character sets are classified into one of the following
667 four classes, according to the number of bytes (DIMENSION) and
668 number of characters in one dimension (CHARS) of the set:
669 - DIMENSION1_CHARS94
670 - DIMENSION1_CHARS96
671 - DIMENSION2_CHARS94
672 - DIMENSION2_CHARS96
673
674 In addition, each character set is assigned an identification tag,
675 unique for each set, called "final character" (denoted as <F>
676 hereafter). The <F> of each character set is decided by ECMA(*)
677 when it is registered in ISO. The code range of <F> is 0x30..0x7F
678 (0x30..0x3F are for private use only).
679
680 Note (*): ECMA = European Computer Manufacturers Association
681
682 Here are examples of graphic character set [NAME(<F>)]:
683 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
684 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
685 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
686 o DIMENSION2_CHARS96 -- none for the moment
687
688 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
689 C0 [0x00..0x1F] -- control character plane 0
690 GL [0x20..0x7F] -- graphic character plane 0
691 C1 [0x80..0x9F] -- control character plane 1
692 GR [0xA0..0xFF] -- graphic character plane 1
693
694 A control character set is directly designated and invoked to C0 or
695 C1 by an escape sequence. The most common case is that:
696 - ISO646's control character set is designated/invoked to C0, and
697 - ISO6429's control character set is designated/invoked to C1,
698 and usually these designations/invocations are omitted in encoded
699 text. In a 7-bit environment, only C0 can be used, and a control
700 character for C1 is encoded by an appropriate escape sequence to
701 fit into the environment. All control characters for C1 are
702 defined to have corresponding escape sequences.
703
704 A graphic character set is at first designated to one of four
705 graphic registers (G0 through G3), then these graphic registers are
706 invoked to GL or GR. These designations and invocations can be
707 done independently. The most common case is that G0 is invoked to
708 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
709 these invocations and designations are omitted in encoded text.
710 In a 7-bit environment, only GL can be used.
711
712 When a graphic character set of CHARS94 is invoked to GL, codes
713 0x20 and 0x7F of the GL area work as control characters SPACE and
714 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
715 be used.
716
717 There are two ways of invocation: locking-shift and single-shift.
718 With locking-shift, the invocation lasts until the next different
719 invocation, whereas with single-shift, the invocation affects the
720 following character only and doesn't affect the locking-shift
721 state. Invocations are done by the following control characters or
722 escape sequences:
723
724 ----------------------------------------------------------------------
725 abbrev function cntrl escape seq description
726 ----------------------------------------------------------------------
727 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
728 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
729 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
730 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
731 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
732 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
733 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
734 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
735 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
736 ----------------------------------------------------------------------
737 (*) These are not used by any known coding system.
738
739 Control characters for these functions are defined by macros
740 ISO_CODE_XXX in `coding.h'.
741
742 Designations are done by the following escape sequences:
743 ----------------------------------------------------------------------
744 escape sequence description
745 ----------------------------------------------------------------------
746 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
747 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
748 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
749 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
750 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
751 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
752 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
753 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
754 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
755 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
756 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
757 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
758 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
759 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
760 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
761 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
762 ----------------------------------------------------------------------
763
764 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
765 of dimension 1, chars 94, and final character <F>, etc...
766
767 Note (*): Although these designations are not allowed in ISO2022,
768 Emacs accepts them on decoding, and produces them on encoding
769 CHARS96 character sets in a coding system which is characterized as
770 7-bit environment, non-locking-shift, and non-single-shift.
771
772 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
773 '(' can be omitted. We refer to this as "short-form" hereafter.
774
775 Now you may notice that there are a lot of ways for encoding the
776 same multilingual text in ISO2022. Actually, there exist many
777 coding systems such as Compound Text (used in X11's inter client
778 communication, ISO-2022-JP (used in Japanese internet), ISO-2022-KR
779 (used in Korean internet), EUC (Extended UNIX Code, used in Asian
780 localized platforms), and all of these are variants of ISO2022.
781
782 In addition to the above, Emacs handles two more kinds of escape
783 sequences: ISO6429's direction specification and Emacs' private
784 sequence for specifying character composition.
785
786 ISO6429's direction specification takes the following form:
787 o CSI ']' -- end of the current direction
788 o CSI '0' ']' -- end of the current direction
789 o CSI '1' ']' -- start of left-to-right text
790 o CSI '2' ']' -- start of right-to-left text
791 The control character CSI (0x9B: control sequence introducer) is
792 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
793
794 Character composition specification takes the following form:
795 o ESC '0' -- start relative composition
796 o ESC '1' -- end composition
797 o ESC '2' -- start rule-base composition (*)
798 o ESC '3' -- start relative composition with alternate chars (**)
799 o ESC '4' -- start rule-base composition with alternate chars (**)
800 Since these are not standard escape sequences of any ISO standard,
801 the use of them for these meaning is restricted to Emacs only.
802
803 (*) This form is used only in Emacs 20.5 and the older versions,
804 but the newer versions can safely decode it.
805 (**) This form is used only in Emacs 21.1 and the newer versions,
806 and the older versions can't decode it.
807
808 Here's a list of examples usages of these composition escape
809 sequences (categorized by `enum composition_method').
810
811 COMPOSITION_RELATIVE:
812 ESC 0 CHAR [ CHAR ] ESC 1
813 COMPOSITOIN_WITH_RULE:
814 ESC 2 CHAR [ RULE CHAR ] ESC 1
815 COMPOSITION_WITH_ALTCHARS:
816 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
817 COMPOSITION_WITH_RULE_ALTCHARS:
818 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
819
820 enum iso_code_class_type iso_code_class[256];
821
822 #define CHARSET_OK(idx, charset, c) \
823 (coding_system_table[idx] \
824 && (charset == CHARSET_ASCII \
825 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
826 CODING_SAFE_CHAR_P (safe_chars, c))) \
827 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
828 charset) \
829 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
830
831 #define SHIFT_OUT_OK(idx) \
832 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
833
834 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
835 Check if a text is encoded in ISO2022. If it is, returns an
836 integer in which appropriate flag bits any of:
837 CODING_CATEGORY_MASK_ISO_7
838 CODING_CATEGORY_MASK_ISO_7_TIGHT
839 CODING_CATEGORY_MASK_ISO_8_1
840 CODING_CATEGORY_MASK_ISO_8_2
841 CODING_CATEGORY_MASK_ISO_7_ELSE
842 CODING_CATEGORY_MASK_ISO_8_ELSE
843 are set. If a code which should never appear in ISO2022 is found,
844 returns 0. */
845
846 int
847 detect_coding_iso2022 (src, src_end)
848 unsigned char *src, *src_end;
849 {
850 int mask = CODING_CATEGORY_MASK_ISO;
851 int mask_found = 0;
852 int reg[4], shift_out = 0, single_shifting = 0;
853 int c, c1, i, charset;
854 /* Dummy for ONE_MORE_BYTE. */
855 struct coding_system dummy_coding;
856 struct coding_system *coding = &dummy_coding;
857 Lisp_Object safe_chars;
858
859 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
860 while (mask && src < src_end)
861 {
862 ONE_MORE_BYTE (c);
863 switch (c)
864 {
865 case ISO_CODE_ESC:
866 if (inhibit_iso_escape_detection)
867 break;
868 single_shifting = 0;
869 ONE_MORE_BYTE (c);
870 if (c >= '(' && c <= '/')
871 {
872 /* Designation sequence for a charset of dimension 1. */
873 ONE_MORE_BYTE (c1);
874 if (c1 < ' ' || c1 >= 0x80
875 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
876 /* Invalid designation sequence. Just ignore. */
877 break;
878 reg[(c - '(') % 4] = charset;
879 }
880 else if (c == '$')
881 {
882 /* Designation sequence for a charset of dimension 2. */
883 ONE_MORE_BYTE (c);
884 if (c >= '@' && c <= 'B')
885 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
886 reg[0] = charset = iso_charset_table[1][0][c];
887 else if (c >= '(' && c <= '/')
888 {
889 ONE_MORE_BYTE (c1);
890 if (c1 < ' ' || c1 >= 0x80
891 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
892 /* Invalid designation sequence. Just ignore. */
893 break;
894 reg[(c - '(') % 4] = charset;
895 }
896 else
897 /* Invalid designation sequence. Just ignore. */
898 break;
899 }
900 else if (c == 'N' || c == 'O')
901 {
902 /* ESC <Fe> for SS2 or SS3. */
903 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
904 break;
905 }
906 else if (c >= '0' && c <= '4')
907 {
908 /* ESC <Fp> for start/end composition. */
909 mask_found |= CODING_CATEGORY_MASK_ISO;
910 break;
911 }
912 else
913 /* Invalid escape sequence. Just ignore. */
914 break;
915
916 /* We found a valid designation sequence for CHARSET. */
917 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
918 c = MAKE_CHAR (charset, 0, 0);
919 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
920 mask_found |= CODING_CATEGORY_MASK_ISO_7;
921 else
922 mask &= ~CODING_CATEGORY_MASK_ISO_7;
923 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
924 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
925 else
926 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
927 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
928 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
929 else
930 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
931 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
932 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
933 else
934 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
935 break;
936
937 case ISO_CODE_SO:
938 if (inhibit_iso_escape_detection)
939 break;
940 single_shifting = 0;
941 if (shift_out == 0
942 && (reg[1] >= 0
943 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
944 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
945 {
946 /* Locking shift out. */
947 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
948 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
949 }
950 break;
951
952 case ISO_CODE_SI:
953 if (inhibit_iso_escape_detection)
954 break;
955 single_shifting = 0;
956 if (shift_out == 1)
957 {
958 /* Locking shift in. */
959 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
960 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
961 }
962 break;
963
964 case ISO_CODE_CSI:
965 single_shifting = 0;
966 case ISO_CODE_SS2:
967 case ISO_CODE_SS3:
968 {
969 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
970
971 if (inhibit_iso_escape_detection)
972 break;
973 if (c != ISO_CODE_CSI)
974 {
975 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
976 & CODING_FLAG_ISO_SINGLE_SHIFT)
977 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
978 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
979 & CODING_FLAG_ISO_SINGLE_SHIFT)
980 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
981 single_shifting = 1;
982 }
983 if (VECTORP (Vlatin_extra_code_table)
984 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
985 {
986 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
987 & CODING_FLAG_ISO_LATIN_EXTRA)
988 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
989 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
990 & CODING_FLAG_ISO_LATIN_EXTRA)
991 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
992 }
993 mask &= newmask;
994 mask_found |= newmask;
995 }
996 break;
997
998 default:
999 if (c < 0x80)
1000 {
1001 single_shifting = 0;
1002 break;
1003 }
1004 else if (c < 0xA0)
1005 {
1006 single_shifting = 0;
1007 if (VECTORP (Vlatin_extra_code_table)
1008 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1009 {
1010 int newmask = 0;
1011
1012 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1013 & CODING_FLAG_ISO_LATIN_EXTRA)
1014 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1015 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1016 & CODING_FLAG_ISO_LATIN_EXTRA)
1017 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1018 mask &= newmask;
1019 mask_found |= newmask;
1020 }
1021 else
1022 return 0;
1023 }
1024 else
1025 {
1026 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1027 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1028 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1029 /* Check the length of succeeding codes of the range
1030 0xA0..0FF. If the byte length is odd, we exclude
1031 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1032 when we are not single shifting. */
1033 if (!single_shifting
1034 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1035 {
1036 int i = 1;
1037 while (src < src_end)
1038 {
1039 ONE_MORE_BYTE (c);
1040 if (c < 0xA0)
1041 break;
1042 i++;
1043 }
1044
1045 if (i & 1 && src < src_end)
1046 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1047 else
1048 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1049 }
1050 }
1051 break;
1052 }
1053 }
1054 label_end_of_loop:
1055 return (mask & mask_found);
1056 }
1057
1058 /* Decode a character of which charset is CHARSET, the 1st position
1059 code is C1, the 2nd position code is C2, and return the decoded
1060 character code. If the variable `translation_table' is non-nil,
1061 returned the translated code. */
1062
1063 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1064 (NILP (translation_table) \
1065 ? MAKE_CHAR (charset, c1, c2) \
1066 : translate_char (translation_table, -1, charset, c1, c2))
1067
1068 /* Set designation state into CODING. */
1069 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1070 do { \
1071 int charset, c; \
1072 \
1073 if (final_char < '0' || final_char >= 128) \
1074 goto label_invalid_code; \
1075 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1076 make_number (chars), \
1077 make_number (final_char)); \
1078 c = MAKE_CHAR (charset, 0, 0); \
1079 if (charset >= 0 \
1080 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1081 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1082 { \
1083 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1084 && reg == 0 \
1085 && charset == CHARSET_ASCII) \
1086 { \
1087 /* We should insert this designation sequence as is so \
1088 that it is surely written back to a file. */ \
1089 coding->spec.iso2022.last_invalid_designation_register = -1; \
1090 goto label_invalid_code; \
1091 } \
1092 coding->spec.iso2022.last_invalid_designation_register = -1; \
1093 if ((coding->mode & CODING_MODE_DIRECTION) \
1094 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1095 charset = CHARSET_REVERSE_CHARSET (charset); \
1096 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1097 } \
1098 else \
1099 { \
1100 coding->spec.iso2022.last_invalid_designation_register = reg; \
1101 goto label_invalid_code; \
1102 } \
1103 } while (0)
1104
1105 /* Allocate a memory block for storing information about compositions.
1106 The block is chained to the already allocated blocks. */
1107
1108 void
1109 coding_allocate_composition_data (coding, char_offset)
1110 struct coding_system *coding;
1111 int char_offset;
1112 {
1113 struct composition_data *cmp_data
1114 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1115
1116 cmp_data->char_offset = char_offset;
1117 cmp_data->used = 0;
1118 cmp_data->prev = coding->cmp_data;
1119 cmp_data->next = NULL;
1120 if (coding->cmp_data)
1121 coding->cmp_data->next = cmp_data;
1122 coding->cmp_data = cmp_data;
1123 coding->cmp_data_start = 0;
1124 }
1125
1126 /* Record the starting position START and METHOD of one composition. */
1127
1128 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
1129 do { \
1130 struct composition_data *cmp_data = coding->cmp_data; \
1131 int *data = cmp_data->data + cmp_data->used; \
1132 coding->cmp_data_start = cmp_data->used; \
1133 data[0] = -1; \
1134 data[1] = cmp_data->char_offset + start; \
1135 data[3] = (int) method; \
1136 cmp_data->used += 4; \
1137 } while (0)
1138
1139 /* Record the ending position END of the current composition. */
1140
1141 #define CODING_ADD_COMPOSITION_END(coding, end) \
1142 do { \
1143 struct composition_data *cmp_data = coding->cmp_data; \
1144 int *data = cmp_data->data + coding->cmp_data_start; \
1145 data[0] = cmp_data->used - coding->cmp_data_start; \
1146 data[2] = cmp_data->char_offset + end; \
1147 } while (0)
1148
1149 /* Record one COMPONENT (alternate character or composition rule). */
1150
1151 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
1152 (coding->cmp_data->data[coding->cmp_data->used++] = component)
1153
1154 /* Handle compositoin start sequence ESC 0, ESC 2, ESC 3, or ESC 4. */
1155
1156 #define DECODE_COMPOSITION_START(c1) \
1157 do { \
1158 if (coding->composing == COMPOSITION_DISABLED) \
1159 { \
1160 *dst++ = ISO_CODE_ESC; \
1161 *dst++ = c1 & 0x7f; \
1162 coding->produced_char += 2; \
1163 } \
1164 else if (!COMPOSING_P (coding)) \
1165 { \
1166 /* This is surely the start of a composition. We must be sure \
1167 that coding->cmp_data has enough space to store the \
1168 information about the composition. If not, terminate the \
1169 current decoding loop, allocate one more memory block for \
1170 coding->cmp_data in the calller, then start the decoding \
1171 loop again. We can't allocate memory here directly because \
1172 it may cause buffer/string relocation. */ \
1173 if (!coding->cmp_data \
1174 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1175 >= COMPOSITION_DATA_SIZE)) \
1176 { \
1177 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1178 goto label_end_of_loop; \
1179 } \
1180 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1181 : c1 == '2' ? COMPOSITION_WITH_RULE \
1182 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1183 : COMPOSITION_WITH_RULE_ALTCHARS); \
1184 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1185 coding->composing); \
1186 coding->composition_rule_follows = 0; \
1187 } \
1188 else \
1189 { \
1190 /* We are already handling a composition. If the method is \
1191 the following two, the codes following the current escape \
1192 sequence are actual characters stored in a buffer. */ \
1193 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1194 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1195 { \
1196 coding->composing = COMPOSITION_RELATIVE; \
1197 coding->composition_rule_follows = 0; \
1198 } \
1199 } \
1200 } while (0)
1201
1202 /* Handle compositoin end sequence ESC 1. */
1203
1204 #define DECODE_COMPOSITION_END(c1) \
1205 do { \
1206 if (coding->composing == COMPOSITION_DISABLED) \
1207 { \
1208 *dst++ = ISO_CODE_ESC; \
1209 *dst++ = c1; \
1210 coding->produced_char += 2; \
1211 } \
1212 else \
1213 { \
1214 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1215 coding->composing = COMPOSITION_NO; \
1216 } \
1217 } while (0)
1218
1219 /* Decode a composition rule from the byte C1 (and maybe one more byte
1220 from SRC) and store one encoded composition rule in
1221 coding->cmp_data. */
1222
1223 #define DECODE_COMPOSITION_RULE(c1) \
1224 do { \
1225 int rule = 0; \
1226 (c1) -= 32; \
1227 if (c1 < 81) /* old format (before ver.21) */ \
1228 { \
1229 int gref = (c1) / 9; \
1230 int nref = (c1) % 9; \
1231 if (gref == 4) gref = 10; \
1232 if (nref == 4) nref = 10; \
1233 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1234 } \
1235 else if (c1 < 93) /* new format (after ver.21) */ \
1236 { \
1237 ONE_MORE_BYTE (c2); \
1238 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1239 } \
1240 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1241 coding->composition_rule_follows = 0; \
1242 } while (0)
1243
1244
1245 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1246
1247 static void
1248 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1249 struct coding_system *coding;
1250 unsigned char *source, *destination;
1251 int src_bytes, dst_bytes;
1252 {
1253 unsigned char *src = source;
1254 unsigned char *src_end = source + src_bytes;
1255 unsigned char *dst = destination;
1256 unsigned char *dst_end = destination + dst_bytes;
1257 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1258 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1259 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1260 /* SRC_BASE remembers the start position in source in each loop.
1261 The loop will be exited when there's not enough source code
1262 (within macro ONE_MORE_BYTE), or when there's not enough
1263 destination area to produce a character (within macro
1264 EMIT_CHAR). */
1265 unsigned char *src_base;
1266 int c, charset;
1267 Lisp_Object translation_table;
1268 Lisp_Object safe_chars;
1269
1270 safe_chars = coding_safe_chars (coding);
1271
1272 if (NILP (Venable_character_translation))
1273 translation_table = Qnil;
1274 else
1275 {
1276 translation_table = coding->translation_table_for_decode;
1277 if (NILP (translation_table))
1278 translation_table = Vstandard_translation_table_for_decode;
1279 }
1280
1281 coding->result = CODING_FINISH_NORMAL;
1282
1283 while (1)
1284 {
1285 int c1, c2;
1286
1287 src_base = src;
1288 ONE_MORE_BYTE (c1);
1289
1290 /* We produce no character or one character. */
1291 switch (iso_code_class [c1])
1292 {
1293 case ISO_0x20_or_0x7F:
1294 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1295 {
1296 DECODE_COMPOSITION_RULE (c1);
1297 continue;
1298 }
1299 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1300 {
1301 /* This is SPACE or DEL. */
1302 charset = CHARSET_ASCII;
1303 break;
1304 }
1305 /* This is a graphic character, we fall down ... */
1306
1307 case ISO_graphic_plane_0:
1308 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1309 {
1310 DECODE_COMPOSITION_RULE (c1);
1311 continue;
1312 }
1313 charset = charset0;
1314 break;
1315
1316 case ISO_0xA0_or_0xFF:
1317 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1318 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1319 goto label_invalid_code;
1320 /* This is a graphic character, we fall down ... */
1321
1322 case ISO_graphic_plane_1:
1323 if (charset1 < 0)
1324 goto label_invalid_code;
1325 charset = charset1;
1326 break;
1327
1328 case ISO_control_0:
1329 if (COMPOSING_P (coding))
1330 DECODE_COMPOSITION_END ('1');
1331
1332 /* All ISO2022 control characters in this class have the
1333 same representation in Emacs internal format. */
1334 if (c1 == '\n'
1335 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1336 && (coding->eol_type == CODING_EOL_CR
1337 || coding->eol_type == CODING_EOL_CRLF))
1338 {
1339 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1340 goto label_end_of_loop;
1341 }
1342 charset = CHARSET_ASCII;
1343 break;
1344
1345 case ISO_control_1:
1346 if (COMPOSING_P (coding))
1347 DECODE_COMPOSITION_END ('1');
1348 goto label_invalid_code;
1349
1350 case ISO_carriage_return:
1351 if (COMPOSING_P (coding))
1352 DECODE_COMPOSITION_END ('1');
1353
1354 if (coding->eol_type == CODING_EOL_CR)
1355 c1 = '\n';
1356 else if (coding->eol_type == CODING_EOL_CRLF)
1357 {
1358 ONE_MORE_BYTE (c1);
1359 if (c1 != ISO_CODE_LF)
1360 {
1361 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1362 {
1363 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1364 goto label_end_of_loop;
1365 }
1366 src--;
1367 c1 = '\r';
1368 }
1369 }
1370 charset = CHARSET_ASCII;
1371 break;
1372
1373 case ISO_shift_out:
1374 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1375 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1376 goto label_invalid_code;
1377 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1378 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1379 continue;
1380
1381 case ISO_shift_in:
1382 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1383 goto label_invalid_code;
1384 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1385 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1386 continue;
1387
1388 case ISO_single_shift_2_7:
1389 case ISO_single_shift_2:
1390 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1391 goto label_invalid_code;
1392 /* SS2 is handled as an escape sequence of ESC 'N' */
1393 c1 = 'N';
1394 goto label_escape_sequence;
1395
1396 case ISO_single_shift_3:
1397 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1398 goto label_invalid_code;
1399 /* SS2 is handled as an escape sequence of ESC 'O' */
1400 c1 = 'O';
1401 goto label_escape_sequence;
1402
1403 case ISO_control_sequence_introducer:
1404 /* CSI is handled as an escape sequence of ESC '[' ... */
1405 c1 = '[';
1406 goto label_escape_sequence;
1407
1408 case ISO_escape:
1409 ONE_MORE_BYTE (c1);
1410 label_escape_sequence:
1411 /* Escape sequences handled by Emacs are invocation,
1412 designation, direction specification, and character
1413 composition specification. */
1414 switch (c1)
1415 {
1416 case '&': /* revision of following character set */
1417 ONE_MORE_BYTE (c1);
1418 if (!(c1 >= '@' && c1 <= '~'))
1419 goto label_invalid_code;
1420 ONE_MORE_BYTE (c1);
1421 if (c1 != ISO_CODE_ESC)
1422 goto label_invalid_code;
1423 ONE_MORE_BYTE (c1);
1424 goto label_escape_sequence;
1425
1426 case '$': /* designation of 2-byte character set */
1427 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1428 goto label_invalid_code;
1429 ONE_MORE_BYTE (c1);
1430 if (c1 >= '@' && c1 <= 'B')
1431 { /* designation of JISX0208.1978, GB2312.1980,
1432 or JISX0208.1980 */
1433 DECODE_DESIGNATION (0, 2, 94, c1);
1434 }
1435 else if (c1 >= 0x28 && c1 <= 0x2B)
1436 { /* designation of DIMENSION2_CHARS94 character set */
1437 ONE_MORE_BYTE (c2);
1438 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1439 }
1440 else if (c1 >= 0x2C && c1 <= 0x2F)
1441 { /* designation of DIMENSION2_CHARS96 character set */
1442 ONE_MORE_BYTE (c2);
1443 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1444 }
1445 else
1446 goto label_invalid_code;
1447 /* We must update these variables now. */
1448 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1449 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1450 continue;
1451
1452 case 'n': /* invocation of locking-shift-2 */
1453 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1454 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1455 goto label_invalid_code;
1456 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1457 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1458 continue;
1459
1460 case 'o': /* invocation of locking-shift-3 */
1461 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1462 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1463 goto label_invalid_code;
1464 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1465 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1466 continue;
1467
1468 case 'N': /* invocation of single-shift-2 */
1469 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1470 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1471 goto label_invalid_code;
1472 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1473 ONE_MORE_BYTE (c1);
1474 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1475 goto label_invalid_code;
1476 break;
1477
1478 case 'O': /* invocation of single-shift-3 */
1479 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1480 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1481 goto label_invalid_code;
1482 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1483 ONE_MORE_BYTE (c1);
1484 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1485 goto label_invalid_code;
1486 break;
1487
1488 case '0': case '2': case '3': case '4': /* start composition */
1489 DECODE_COMPOSITION_START (c1);
1490 continue;
1491
1492 case '1': /* end composition */
1493 DECODE_COMPOSITION_END (c1);
1494 continue;
1495
1496 case '[': /* specification of direction */
1497 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1498 goto label_invalid_code;
1499 /* For the moment, nested direction is not supported.
1500 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1501 left-to-right, and nozero means right-to-left. */
1502 ONE_MORE_BYTE (c1);
1503 switch (c1)
1504 {
1505 case ']': /* end of the current direction */
1506 coding->mode &= ~CODING_MODE_DIRECTION;
1507
1508 case '0': /* end of the current direction */
1509 case '1': /* start of left-to-right direction */
1510 ONE_MORE_BYTE (c1);
1511 if (c1 == ']')
1512 coding->mode &= ~CODING_MODE_DIRECTION;
1513 else
1514 goto label_invalid_code;
1515 break;
1516
1517 case '2': /* start of right-to-left direction */
1518 ONE_MORE_BYTE (c1);
1519 if (c1 == ']')
1520 coding->mode |= CODING_MODE_DIRECTION;
1521 else
1522 goto label_invalid_code;
1523 break;
1524
1525 default:
1526 goto label_invalid_code;
1527 }
1528 continue;
1529
1530 default:
1531 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1532 goto label_invalid_code;
1533 if (c1 >= 0x28 && c1 <= 0x2B)
1534 { /* designation of DIMENSION1_CHARS94 character set */
1535 ONE_MORE_BYTE (c2);
1536 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1537 }
1538 else if (c1 >= 0x2C && c1 <= 0x2F)
1539 { /* designation of DIMENSION1_CHARS96 character set */
1540 ONE_MORE_BYTE (c2);
1541 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
1542 }
1543 else
1544 goto label_invalid_code;
1545 /* We must update these variables now. */
1546 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1547 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1548 continue;
1549 }
1550 }
1551
1552 /* Now we know CHARSET and 1st position code C1 of a character.
1553 Produce a multibyte sequence for that character while getting
1554 2nd position code C2 if necessary. */
1555 if (CHARSET_DIMENSION (charset) == 2)
1556 {
1557 ONE_MORE_BYTE (c2);
1558 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
1559 /* C2 is not in a valid range. */
1560 goto label_invalid_code;
1561 }
1562 c = DECODE_ISO_CHARACTER (charset, c1, c2);
1563 EMIT_CHAR (c);
1564 continue;
1565
1566 label_invalid_code:
1567 coding->errors++;
1568 if (COMPOSING_P (coding))
1569 DECODE_COMPOSITION_END ('1');
1570 src = src_base;
1571 c = *src++;
1572 EMIT_CHAR (c);
1573 }
1574
1575 label_end_of_loop:
1576 coding->consumed = coding->consumed_char = src_base - source;
1577 coding->produced = dst - destination;
1578 return;
1579 }
1580
1581
1582 /* ISO2022 encoding stuff. */
1583
1584 /*
1585 It is not enough to say just "ISO2022" on encoding, we have to
1586 specify more details. In Emacs, each coding system of ISO2022
1587 variant has the following specifications:
1588 1. Initial designation to G0 thru G3.
1589 2. Allows short-form designation?
1590 3. ASCII should be designated to G0 before control characters?
1591 4. ASCII should be designated to G0 at end of line?
1592 5. 7-bit environment or 8-bit environment?
1593 6. Use locking-shift?
1594 7. Use Single-shift?
1595 And the following two are only for Japanese:
1596 8. Use ASCII in place of JIS0201-1976-Roman?
1597 9. Use JISX0208-1983 in place of JISX0208-1978?
1598 These specifications are encoded in `coding->flags' as flag bits
1599 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
1600 details.
1601 */
1602
1603 /* Produce codes (escape sequence) for designating CHARSET to graphic
1604 register REG at DST, and increment DST. If <final-char> of CHARSET is
1605 '@', 'A', or 'B' and the coding system CODING allows, produce
1606 designation sequence of short-form. */
1607
1608 #define ENCODE_DESIGNATION(charset, reg, coding) \
1609 do { \
1610 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
1611 char *intermediate_char_94 = "()*+"; \
1612 char *intermediate_char_96 = ",-./"; \
1613 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
1614 \
1615 if (revision < 255) \
1616 { \
1617 *dst++ = ISO_CODE_ESC; \
1618 *dst++ = '&'; \
1619 *dst++ = '@' + revision; \
1620 } \
1621 *dst++ = ISO_CODE_ESC; \
1622 if (CHARSET_DIMENSION (charset) == 1) \
1623 { \
1624 if (CHARSET_CHARS (charset) == 94) \
1625 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1626 else \
1627 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1628 } \
1629 else \
1630 { \
1631 *dst++ = '$'; \
1632 if (CHARSET_CHARS (charset) == 94) \
1633 { \
1634 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
1635 || reg != 0 \
1636 || final_char < '@' || final_char > 'B') \
1637 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1638 } \
1639 else \
1640 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1641 } \
1642 *dst++ = final_char; \
1643 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1644 } while (0)
1645
1646 /* The following two macros produce codes (control character or escape
1647 sequence) for ISO2022 single-shift functions (single-shift-2 and
1648 single-shift-3). */
1649
1650 #define ENCODE_SINGLE_SHIFT_2 \
1651 do { \
1652 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1653 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
1654 else \
1655 *dst++ = ISO_CODE_SS2; \
1656 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1657 } while (0)
1658
1659 #define ENCODE_SINGLE_SHIFT_3 \
1660 do { \
1661 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1662 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
1663 else \
1664 *dst++ = ISO_CODE_SS3; \
1665 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1666 } while (0)
1667
1668 /* The following four macros produce codes (control character or
1669 escape sequence) for ISO2022 locking-shift functions (shift-in,
1670 shift-out, locking-shift-2, and locking-shift-3). */
1671
1672 #define ENCODE_SHIFT_IN \
1673 do { \
1674 *dst++ = ISO_CODE_SI; \
1675 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
1676 } while (0)
1677
1678 #define ENCODE_SHIFT_OUT \
1679 do { \
1680 *dst++ = ISO_CODE_SO; \
1681 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
1682 } while (0)
1683
1684 #define ENCODE_LOCKING_SHIFT_2 \
1685 do { \
1686 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
1687 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
1688 } while (0)
1689
1690 #define ENCODE_LOCKING_SHIFT_3 \
1691 do { \
1692 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
1693 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
1694 } while (0)
1695
1696 /* Produce codes for a DIMENSION1 character whose character set is
1697 CHARSET and whose position-code is C1. Designation and invocation
1698 sequences are also produced in advance if necessary. */
1699
1700 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
1701 do { \
1702 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1703 { \
1704 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1705 *dst++ = c1 & 0x7F; \
1706 else \
1707 *dst++ = c1 | 0x80; \
1708 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1709 break; \
1710 } \
1711 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1712 { \
1713 *dst++ = c1 & 0x7F; \
1714 break; \
1715 } \
1716 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1717 { \
1718 *dst++ = c1 | 0x80; \
1719 break; \
1720 } \
1721 else \
1722 /* Since CHARSET is not yet invoked to any graphic planes, we \
1723 must invoke it, or, at first, designate it to some graphic \
1724 register. Then repeat the loop to actually produce the \
1725 character. */ \
1726 dst = encode_invocation_designation (charset, coding, dst); \
1727 } while (1)
1728
1729 /* Produce codes for a DIMENSION2 character whose character set is
1730 CHARSET and whose position-codes are C1 and C2. Designation and
1731 invocation codes are also produced in advance if necessary. */
1732
1733 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
1734 do { \
1735 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1736 { \
1737 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1738 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
1739 else \
1740 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
1741 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1742 break; \
1743 } \
1744 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1745 { \
1746 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
1747 break; \
1748 } \
1749 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1750 { \
1751 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
1752 break; \
1753 } \
1754 else \
1755 /* Since CHARSET is not yet invoked to any graphic planes, we \
1756 must invoke it, or, at first, designate it to some graphic \
1757 register. Then repeat the loop to actually produce the \
1758 character. */ \
1759 dst = encode_invocation_designation (charset, coding, dst); \
1760 } while (1)
1761
1762 #define ENCODE_ISO_CHARACTER(c) \
1763 do { \
1764 int charset, c1, c2; \
1765 \
1766 SPLIT_CHAR (c, charset, c1, c2); \
1767 if (CHARSET_DEFINED_P (charset)) \
1768 { \
1769 if (CHARSET_DIMENSION (charset) == 1) \
1770 { \
1771 if (charset == CHARSET_ASCII \
1772 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
1773 charset = charset_latin_jisx0201; \
1774 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
1775 } \
1776 else \
1777 { \
1778 if (charset == charset_jisx0208 \
1779 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
1780 charset = charset_jisx0208_1978; \
1781 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
1782 } \
1783 } \
1784 else \
1785 { \
1786 *dst++ = c1; \
1787 if (c2 >= 0) \
1788 *dst++ = c2; \
1789 } \
1790 } while (0)
1791
1792
1793 /* Instead of encoding character C, produce one or two `?'s. */
1794
1795 #define ENCODE_UNSAFE_CHARACTER(c) \
1796 do { \
1797 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
1798 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
1799 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
1800 } while (0)
1801
1802
1803 /* Produce designation and invocation codes at a place pointed by DST
1804 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
1805 Return new DST. */
1806
1807 unsigned char *
1808 encode_invocation_designation (charset, coding, dst)
1809 int charset;
1810 struct coding_system *coding;
1811 unsigned char *dst;
1812 {
1813 int reg; /* graphic register number */
1814
1815 /* At first, check designations. */
1816 for (reg = 0; reg < 4; reg++)
1817 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
1818 break;
1819
1820 if (reg >= 4)
1821 {
1822 /* CHARSET is not yet designated to any graphic registers. */
1823 /* At first check the requested designation. */
1824 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1825 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
1826 /* Since CHARSET requests no special designation, designate it
1827 to graphic register 0. */
1828 reg = 0;
1829
1830 ENCODE_DESIGNATION (charset, reg, coding);
1831 }
1832
1833 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
1834 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
1835 {
1836 /* Since the graphic register REG is not invoked to any graphic
1837 planes, invoke it to graphic plane 0. */
1838 switch (reg)
1839 {
1840 case 0: /* graphic register 0 */
1841 ENCODE_SHIFT_IN;
1842 break;
1843
1844 case 1: /* graphic register 1 */
1845 ENCODE_SHIFT_OUT;
1846 break;
1847
1848 case 2: /* graphic register 2 */
1849 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1850 ENCODE_SINGLE_SHIFT_2;
1851 else
1852 ENCODE_LOCKING_SHIFT_2;
1853 break;
1854
1855 case 3: /* graphic register 3 */
1856 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1857 ENCODE_SINGLE_SHIFT_3;
1858 else
1859 ENCODE_LOCKING_SHIFT_3;
1860 break;
1861 }
1862 }
1863
1864 return dst;
1865 }
1866
1867 /* Produce 2-byte codes for encoded composition rule RULE. */
1868
1869 #define ENCODE_COMPOSITION_RULE(rule) \
1870 do { \
1871 int gref, nref; \
1872 COMPOSITION_DECODE_RULE (rule, gref, nref); \
1873 *dst++ = 32 + 81 + gref; \
1874 *dst++ = 32 + nref; \
1875 } while (0)
1876
1877 /* Produce codes for indicating the start of a composition sequence
1878 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
1879 which specify information about the composition. See the comment
1880 in coding.h for the format of DATA. */
1881
1882 #define ENCODE_COMPOSITION_START(coding, data) \
1883 do { \
1884 coding->composing = data[3]; \
1885 *dst++ = ISO_CODE_ESC; \
1886 if (coding->composing == COMPOSITION_RELATIVE) \
1887 *dst++ = '0'; \
1888 else \
1889 { \
1890 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
1891 ? '3' : '4'); \
1892 coding->cmp_data_index = coding->cmp_data_start + 4; \
1893 coding->composition_rule_follows = 0; \
1894 } \
1895 } while (0)
1896
1897 /* Produce codes for indicating the end of the current composition. */
1898
1899 #define ENCODE_COMPOSITION_END(coding, data) \
1900 do { \
1901 *dst++ = ISO_CODE_ESC; \
1902 *dst++ = '1'; \
1903 coding->cmp_data_start += data[0]; \
1904 coding->composing = COMPOSITION_NO; \
1905 if (coding->cmp_data_start == coding->cmp_data->used \
1906 && coding->cmp_data->next) \
1907 { \
1908 coding->cmp_data = coding->cmp_data->next; \
1909 coding->cmp_data_start = 0; \
1910 } \
1911 } while (0)
1912
1913 /* Produce composition start sequence ESC 0. Here, this sequence
1914 doesn't mean the start of a new composition but means that we have
1915 just produced components (alternate chars and composition rules) of
1916 the composition and the actual text follows in SRC. */
1917
1918 #define ENCODE_COMPOSITION_FAKE_START(coding) \
1919 do { \
1920 *dst++ = ISO_CODE_ESC; \
1921 *dst++ = '0'; \
1922 coding->composing = COMPOSITION_RELATIVE; \
1923 } while (0)
1924
1925 /* The following three macros produce codes for indicating direction
1926 of text. */
1927 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
1928 do { \
1929 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
1930 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
1931 else \
1932 *dst++ = ISO_CODE_CSI; \
1933 } while (0)
1934
1935 #define ENCODE_DIRECTION_R2L \
1936 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
1937
1938 #define ENCODE_DIRECTION_L2R \
1939 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
1940
1941 /* Produce codes for designation and invocation to reset the graphic
1942 planes and registers to initial state. */
1943 #define ENCODE_RESET_PLANE_AND_REGISTER \
1944 do { \
1945 int reg; \
1946 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
1947 ENCODE_SHIFT_IN; \
1948 for (reg = 0; reg < 4; reg++) \
1949 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
1950 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
1951 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
1952 ENCODE_DESIGNATION \
1953 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
1954 } while (0)
1955
1956 /* Produce designation sequences of charsets in the line started from
1957 SRC to a place pointed by DST, and return updated DST.
1958
1959 If the current block ends before any end-of-line, we may fail to
1960 find all the necessary designations. */
1961
1962 static unsigned char *
1963 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
1964 struct coding_system *coding;
1965 Lisp_Object translation_table;
1966 unsigned char *src, *src_end, *dst;
1967 {
1968 int charset, c, found = 0, reg;
1969 /* Table of charsets to be designated to each graphic register. */
1970 int r[4];
1971
1972 for (reg = 0; reg < 4; reg++)
1973 r[reg] = -1;
1974
1975 while (found < 4)
1976 {
1977 ONE_MORE_CHAR (c);
1978 if (c == '\n')
1979 break;
1980
1981 charset = CHAR_CHARSET (c);
1982 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1983 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
1984 {
1985 found++;
1986 r[reg] = charset;
1987 }
1988 }
1989
1990 label_end_of_loop:
1991 if (found)
1992 {
1993 for (reg = 0; reg < 4; reg++)
1994 if (r[reg] >= 0
1995 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
1996 ENCODE_DESIGNATION (r[reg], reg, coding);
1997 }
1998
1999 return dst;
2000 }
2001
2002 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2003
2004 static void
2005 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2006 struct coding_system *coding;
2007 unsigned char *source, *destination;
2008 int src_bytes, dst_bytes;
2009 {
2010 unsigned char *src = source;
2011 unsigned char *src_end = source + src_bytes;
2012 unsigned char *dst = destination;
2013 unsigned char *dst_end = destination + dst_bytes;
2014 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2015 from DST_END to assure overflow checking is necessary only at the
2016 head of loop. */
2017 unsigned char *adjusted_dst_end = dst_end - 19;
2018 /* SRC_BASE remembers the start position in source in each loop.
2019 The loop will be exited when there's not enough source text to
2020 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2021 there's not enough destination area to produce encoded codes
2022 (within macro EMIT_BYTES). */
2023 unsigned char *src_base;
2024 int c;
2025 Lisp_Object translation_table;
2026 Lisp_Object safe_chars;
2027
2028 safe_chars = coding_safe_chars (coding);
2029
2030 if (NILP (Venable_character_translation))
2031 translation_table = Qnil;
2032 else
2033 {
2034 translation_table = coding->translation_table_for_encode;
2035 if (NILP (translation_table))
2036 translation_table = Vstandard_translation_table_for_encode;
2037 }
2038
2039 coding->consumed_char = 0;
2040 coding->errors = 0;
2041 while (1)
2042 {
2043 src_base = src;
2044
2045 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2046 {
2047 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2048 break;
2049 }
2050
2051 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2052 && CODING_SPEC_ISO_BOL (coding))
2053 {
2054 /* We have to produce designation sequences if any now. */
2055 dst = encode_designation_at_bol (coding, translation_table,
2056 src, src_end, dst);
2057 CODING_SPEC_ISO_BOL (coding) = 0;
2058 }
2059
2060 /* Check composition start and end. */
2061 if (coding->composing != COMPOSITION_DISABLED
2062 && coding->cmp_data_start < coding->cmp_data->used)
2063 {
2064 struct composition_data *cmp_data = coding->cmp_data;
2065 int *data = cmp_data->data + coding->cmp_data_start;
2066 int this_pos = cmp_data->char_offset + coding->consumed_char;
2067
2068 if (coding->composing == COMPOSITION_RELATIVE)
2069 {
2070 if (this_pos == data[2])
2071 {
2072 ENCODE_COMPOSITION_END (coding, data);
2073 cmp_data = coding->cmp_data;
2074 data = cmp_data->data + coding->cmp_data_start;
2075 }
2076 }
2077 else if (COMPOSING_P (coding))
2078 {
2079 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2080 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2081 /* We have consumed components of the composition.
2082 What follows in SRC is the compositions's base
2083 text. */
2084 ENCODE_COMPOSITION_FAKE_START (coding);
2085 else
2086 {
2087 int c = cmp_data->data[coding->cmp_data_index++];
2088 if (coding->composition_rule_follows)
2089 {
2090 ENCODE_COMPOSITION_RULE (c);
2091 coding->composition_rule_follows = 0;
2092 }
2093 else
2094 {
2095 if (coding->flags & CODING_FLAG_ISO_SAFE
2096 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2097 ENCODE_UNSAFE_CHARACTER (c);
2098 else
2099 ENCODE_ISO_CHARACTER (c);
2100 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2101 coding->composition_rule_follows = 1;
2102 }
2103 continue;
2104 }
2105 }
2106 if (!COMPOSING_P (coding))
2107 {
2108 if (this_pos == data[1])
2109 {
2110 ENCODE_COMPOSITION_START (coding, data);
2111 continue;
2112 }
2113 }
2114 }
2115
2116 ONE_MORE_CHAR (c);
2117
2118 /* Now encode the character C. */
2119 if (c < 0x20 || c == 0x7F)
2120 {
2121 if (c == '\r')
2122 {
2123 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2124 {
2125 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2126 ENCODE_RESET_PLANE_AND_REGISTER;
2127 *dst++ = c;
2128 continue;
2129 }
2130 /* fall down to treat '\r' as '\n' ... */
2131 c = '\n';
2132 }
2133 if (c == '\n')
2134 {
2135 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2136 ENCODE_RESET_PLANE_AND_REGISTER;
2137 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2138 bcopy (coding->spec.iso2022.initial_designation,
2139 coding->spec.iso2022.current_designation,
2140 sizeof coding->spec.iso2022.initial_designation);
2141 if (coding->eol_type == CODING_EOL_LF
2142 || coding->eol_type == CODING_EOL_UNDECIDED)
2143 *dst++ = ISO_CODE_LF;
2144 else if (coding->eol_type == CODING_EOL_CRLF)
2145 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2146 else
2147 *dst++ = ISO_CODE_CR;
2148 CODING_SPEC_ISO_BOL (coding) = 1;
2149 }
2150 else
2151 {
2152 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2153 ENCODE_RESET_PLANE_AND_REGISTER;
2154 *dst++ = c;
2155 }
2156 }
2157 else if (ASCII_BYTE_P (c))
2158 ENCODE_ISO_CHARACTER (c);
2159 else if (SINGLE_BYTE_CHAR_P (c))
2160 {
2161 *dst++ = c;
2162 coding->errors++;
2163 }
2164 else if (coding->flags & CODING_FLAG_ISO_SAFE
2165 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2166 ENCODE_UNSAFE_CHARACTER (c);
2167 else
2168 ENCODE_ISO_CHARACTER (c);
2169
2170 coding->consumed_char++;
2171 }
2172
2173 label_end_of_loop:
2174 coding->consumed = src_base - source;
2175 coding->produced = coding->produced_char = dst - destination;
2176 }
2177
2178 \f
2179 /*** 4. SJIS and BIG5 handlers ***/
2180
2181 /* Although SJIS and BIG5 are not ISO's coding system, they are used
2182 quite widely. So, for the moment, Emacs supports them in the bare
2183 C code. But, in the future, they may be supported only by CCL. */
2184
2185 /* SJIS is a coding system encoding three character sets: ASCII, right
2186 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2187 as is. A character of charset katakana-jisx0201 is encoded by
2188 "position-code + 0x80". A character of charset japanese-jisx0208
2189 is encoded in 2-byte but two position-codes are divided and shifted
2190 so that it fit in the range below.
2191
2192 --- CODE RANGE of SJIS ---
2193 (character set) (range)
2194 ASCII 0x00 .. 0x7F
2195 KATAKANA-JISX0201 0xA0 .. 0xDF
2196 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2197 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2198 -------------------------------
2199
2200 */
2201
2202 /* BIG5 is a coding system encoding two character sets: ASCII and
2203 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2204 character set and is encoded in two-byte.
2205
2206 --- CODE RANGE of BIG5 ---
2207 (character set) (range)
2208 ASCII 0x00 .. 0x7F
2209 Big5 (1st byte) 0xA1 .. 0xFE
2210 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2211 --------------------------
2212
2213 Since the number of characters in Big5 is larger than maximum
2214 characters in Emacs' charset (96x96), it can't be handled as one
2215 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2216 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2217 contains frequently used characters and the latter contains less
2218 frequently used characters. */
2219
2220 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2221 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2222 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2223 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2224
2225 /* Number of Big5 characters which have the same code in 1st byte. */
2226 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2227
2228 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2229 do { \
2230 unsigned int temp \
2231 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2232 if (b1 < 0xC9) \
2233 charset = charset_big5_1; \
2234 else \
2235 { \
2236 charset = charset_big5_2; \
2237 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2238 } \
2239 c1 = temp / (0xFF - 0xA1) + 0x21; \
2240 c2 = temp % (0xFF - 0xA1) + 0x21; \
2241 } while (0)
2242
2243 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2244 do { \
2245 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2246 if (charset == charset_big5_2) \
2247 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2248 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2249 b2 = temp % BIG5_SAME_ROW; \
2250 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2251 } while (0)
2252
2253 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2254 Check if a text is encoded in SJIS. If it is, return
2255 CODING_CATEGORY_MASK_SJIS, else return 0. */
2256
2257 int
2258 detect_coding_sjis (src, src_end)
2259 unsigned char *src, *src_end;
2260 {
2261 int c;
2262 /* Dummy for ONE_MORE_BYTE. */
2263 struct coding_system dummy_coding;
2264 struct coding_system *coding = &dummy_coding;
2265
2266 while (1)
2267 {
2268 ONE_MORE_BYTE (c);
2269 if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
2270 {
2271 ONE_MORE_BYTE (c);
2272 if (c < 0x40)
2273 return 0;
2274 }
2275 }
2276 label_end_of_loop:
2277 return CODING_CATEGORY_MASK_SJIS;
2278 }
2279
2280 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2281 Check if a text is encoded in BIG5. If it is, return
2282 CODING_CATEGORY_MASK_BIG5, else return 0. */
2283
2284 int
2285 detect_coding_big5 (src, src_end)
2286 unsigned char *src, *src_end;
2287 {
2288 int c;
2289 /* Dummy for ONE_MORE_BYTE. */
2290 struct coding_system dummy_coding;
2291 struct coding_system *coding = &dummy_coding;
2292
2293 while (1)
2294 {
2295 ONE_MORE_BYTE (c);
2296 if (c >= 0xA1)
2297 {
2298 ONE_MORE_BYTE (c);
2299 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
2300 return 0;
2301 }
2302 }
2303 label_end_of_loop:
2304 return CODING_CATEGORY_MASK_BIG5;
2305 }
2306
2307 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2308 Check if a text is encoded in UTF-8. If it is, return
2309 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2310
2311 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2312 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2313 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2314 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2315 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2316 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2317 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2318
2319 int
2320 detect_coding_utf_8 (src, src_end)
2321 unsigned char *src, *src_end;
2322 {
2323 unsigned char c;
2324 int seq_maybe_bytes;
2325 /* Dummy for ONE_MORE_BYTE. */
2326 struct coding_system dummy_coding;
2327 struct coding_system *coding = &dummy_coding;
2328
2329 while (1)
2330 {
2331 ONE_MORE_BYTE (c);
2332 if (UTF_8_1_OCTET_P (c))
2333 continue;
2334 else if (UTF_8_2_OCTET_LEADING_P (c))
2335 seq_maybe_bytes = 1;
2336 else if (UTF_8_3_OCTET_LEADING_P (c))
2337 seq_maybe_bytes = 2;
2338 else if (UTF_8_4_OCTET_LEADING_P (c))
2339 seq_maybe_bytes = 3;
2340 else if (UTF_8_5_OCTET_LEADING_P (c))
2341 seq_maybe_bytes = 4;
2342 else if (UTF_8_6_OCTET_LEADING_P (c))
2343 seq_maybe_bytes = 5;
2344 else
2345 return 0;
2346
2347 do
2348 {
2349 ONE_MORE_BYTE (c);
2350 if (!UTF_8_EXTRA_OCTET_P (c))
2351 return 0;
2352 seq_maybe_bytes--;
2353 }
2354 while (seq_maybe_bytes > 0);
2355 }
2356
2357 label_end_of_loop:
2358 return CODING_CATEGORY_MASK_UTF_8;
2359 }
2360
2361 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2362 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2363 Little Endian (otherwise). If it is, return
2364 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2365 else return 0. */
2366
2367 #define UTF_16_INVALID_P(val) \
2368 (((val) == 0xFFFE) \
2369 || ((val) == 0xFFFF))
2370
2371 #define UTF_16_HIGH_SURROGATE_P(val) \
2372 (((val) & 0xD800) == 0xD800)
2373
2374 #define UTF_16_LOW_SURROGATE_P(val) \
2375 (((val) & 0xDC00) == 0xDC00)
2376
2377 int
2378 detect_coding_utf_16 (src, src_end)
2379 unsigned char *src, *src_end;
2380 {
2381 unsigned char c1, c2;
2382 /* Dummy for TWO_MORE_BYTES. */
2383 struct coding_system dummy_coding;
2384 struct coding_system *coding = &dummy_coding;
2385
2386 TWO_MORE_BYTES (c1, c2);
2387
2388 if ((c1 == 0xFF) && (c2 == 0xFE))
2389 return CODING_CATEGORY_MASK_UTF_16_LE;
2390 else if ((c1 == 0xFE) && (c2 == 0xFF))
2391 return CODING_CATEGORY_MASK_UTF_16_BE;
2392
2393 label_end_of_loop:
2394 return 0;
2395 }
2396
2397 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2398 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2399
2400 static void
2401 decode_coding_sjis_big5 (coding, source, destination,
2402 src_bytes, dst_bytes, sjis_p)
2403 struct coding_system *coding;
2404 unsigned char *source, *destination;
2405 int src_bytes, dst_bytes;
2406 int sjis_p;
2407 {
2408 unsigned char *src = source;
2409 unsigned char *src_end = source + src_bytes;
2410 unsigned char *dst = destination;
2411 unsigned char *dst_end = destination + dst_bytes;
2412 /* SRC_BASE remembers the start position in source in each loop.
2413 The loop will be exited when there's not enough source code
2414 (within macro ONE_MORE_BYTE), or when there's not enough
2415 destination area to produce a character (within macro
2416 EMIT_CHAR). */
2417 unsigned char *src_base;
2418 Lisp_Object translation_table;
2419
2420 if (NILP (Venable_character_translation))
2421 translation_table = Qnil;
2422 else
2423 {
2424 translation_table = coding->translation_table_for_decode;
2425 if (NILP (translation_table))
2426 translation_table = Vstandard_translation_table_for_decode;
2427 }
2428
2429 coding->produced_char = 0;
2430 while (1)
2431 {
2432 int c, charset, c1, c2;
2433
2434 src_base = src;
2435 ONE_MORE_BYTE (c1);
2436
2437 if (c1 < 0x80)
2438 {
2439 charset = CHARSET_ASCII;
2440 if (c1 < 0x20)
2441 {
2442 if (c1 == '\r')
2443 {
2444 if (coding->eol_type == CODING_EOL_CRLF)
2445 {
2446 ONE_MORE_BYTE (c2);
2447 if (c2 == '\n')
2448 c1 = c2;
2449 else if (coding->mode
2450 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2451 {
2452 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2453 goto label_end_of_loop;
2454 }
2455 else
2456 /* To process C2 again, SRC is subtracted by 1. */
2457 src--;
2458 }
2459 else if (coding->eol_type == CODING_EOL_CR)
2460 c1 = '\n';
2461 }
2462 else if (c1 == '\n'
2463 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2464 && (coding->eol_type == CODING_EOL_CR
2465 || coding->eol_type == CODING_EOL_CRLF))
2466 {
2467 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2468 goto label_end_of_loop;
2469 }
2470 }
2471 }
2472 else
2473 {
2474 if (sjis_p)
2475 {
2476 if (c1 >= 0xF0)
2477 goto label_invalid_code;
2478 if (c1 < 0xA0 || c1 >= 0xE0)
2479 {
2480 /* SJIS -> JISX0208 */
2481 ONE_MORE_BYTE (c2);
2482 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2483 goto label_invalid_code;
2484 DECODE_SJIS (c1, c2, c1, c2);
2485 charset = charset_jisx0208;
2486 }
2487 else
2488 /* SJIS -> JISX0201-Kana */
2489 charset = charset_katakana_jisx0201;
2490 }
2491 else
2492 {
2493 /* BIG5 -> Big5 */
2494 if (c1 < 0xA1 || c1 > 0xFE)
2495 goto label_invalid_code;
2496 ONE_MORE_BYTE (c2);
2497 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2498 goto label_invalid_code;
2499 DECODE_BIG5 (c1, c2, charset, c1, c2);
2500 }
2501 }
2502
2503 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2504 EMIT_CHAR (c);
2505 continue;
2506
2507 label_invalid_code:
2508 coding->errors++;
2509 src = src_base;
2510 c = *src++;
2511 EMIT_CHAR (c);
2512 }
2513
2514 label_end_of_loop:
2515 coding->consumed = coding->consumed_char = src_base - source;
2516 coding->produced = dst - destination;
2517 return;
2518 }
2519
2520 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2521 This function can encode charsets `ascii', `katakana-jisx0201',
2522 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2523 are sure that all these charsets are registered as official charset
2524 (i.e. do not have extended leading-codes). Characters of other
2525 charsets are produced without any encoding. If SJIS_P is 1, encode
2526 SJIS text, else encode BIG5 text. */
2527
2528 static void
2529 encode_coding_sjis_big5 (coding, source, destination,
2530 src_bytes, dst_bytes, sjis_p)
2531 struct coding_system *coding;
2532 unsigned char *source, *destination;
2533 int src_bytes, dst_bytes;
2534 int sjis_p;
2535 {
2536 unsigned char *src = source;
2537 unsigned char *src_end = source + src_bytes;
2538 unsigned char *dst = destination;
2539 unsigned char *dst_end = destination + dst_bytes;
2540 /* SRC_BASE remembers the start position in source in each loop.
2541 The loop will be exited when there's not enough source text to
2542 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2543 there's not enough destination area to produce encoded codes
2544 (within macro EMIT_BYTES). */
2545 unsigned char *src_base;
2546 Lisp_Object translation_table;
2547
2548 if (NILP (Venable_character_translation))
2549 translation_table = Qnil;
2550 else
2551 {
2552 translation_table = coding->translation_table_for_decode;
2553 if (NILP (translation_table))
2554 translation_table = Vstandard_translation_table_for_decode;
2555 }
2556
2557 while (1)
2558 {
2559 int c, charset, c1, c2;
2560
2561 src_base = src;
2562 ONE_MORE_CHAR (c);
2563
2564 /* Now encode the character C. */
2565 if (SINGLE_BYTE_CHAR_P (c))
2566 {
2567 switch (c)
2568 {
2569 case '\r':
2570 if (!coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
2571 {
2572 EMIT_ONE_BYTE (c);
2573 break;
2574 }
2575 c = '\n';
2576 case '\n':
2577 if (coding->eol_type == CODING_EOL_CRLF)
2578 {
2579 EMIT_TWO_BYTES ('\r', c);
2580 break;
2581 }
2582 else if (coding->eol_type == CODING_EOL_CR)
2583 c = '\r';
2584 default:
2585 EMIT_ONE_BYTE (c);
2586 }
2587 }
2588 else
2589 {
2590 SPLIT_CHAR (c, charset, c1, c2);
2591 if (sjis_p)
2592 {
2593 if (charset == charset_jisx0208
2594 || charset == charset_jisx0208_1978)
2595 {
2596 ENCODE_SJIS (c1, c2, c1, c2);
2597 EMIT_TWO_BYTES (c1, c2);
2598 }
2599 else if (charset == charset_latin_jisx0201)
2600 EMIT_ONE_BYTE (c1);
2601 else
2602 /* There's no way other than producing the internal
2603 codes as is. */
2604 EMIT_BYTES (src_base, src);
2605 }
2606 else
2607 {
2608 if (charset == charset_big5_1 || charset == charset_big5_2)
2609 {
2610 ENCODE_BIG5 (charset, c1, c2, c1, c2);
2611 EMIT_TWO_BYTES (c1, c2);
2612 }
2613 else
2614 /* There's no way other than producing the internal
2615 codes as is. */
2616 EMIT_BYTES (src_base, src);
2617 }
2618 }
2619 coding->consumed_char++;
2620 }
2621
2622 label_end_of_loop:
2623 coding->consumed = src_base - source;
2624 coding->produced = coding->produced_char = dst - destination;
2625 }
2626
2627 \f
2628 /*** 5. CCL handlers ***/
2629
2630 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2631 Check if a text is encoded in a coding system of which
2632 encoder/decoder are written in CCL program. If it is, return
2633 CODING_CATEGORY_MASK_CCL, else return 0. */
2634
2635 int
2636 detect_coding_ccl (src, src_end)
2637 unsigned char *src, *src_end;
2638 {
2639 unsigned char *valid;
2640 int c;
2641 /* Dummy for ONE_MORE_BYTE. */
2642 struct coding_system dummy_coding;
2643 struct coding_system *coding = &dummy_coding;
2644
2645 /* No coding system is assigned to coding-category-ccl. */
2646 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
2647 return 0;
2648
2649 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
2650 while (1)
2651 {
2652 ONE_MORE_BYTE (c);
2653 if (! valid[c])
2654 return 0;
2655 }
2656 label_end_of_loop:
2657 return CODING_CATEGORY_MASK_CCL;
2658 }
2659
2660 \f
2661 /*** 6. End-of-line handlers ***/
2662
2663 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2664
2665 static void
2666 decode_eol (coding, source, destination, src_bytes, dst_bytes)
2667 struct coding_system *coding;
2668 unsigned char *source, *destination;
2669 int src_bytes, dst_bytes;
2670 {
2671 unsigned char *src = source;
2672 unsigned char *dst = destination;
2673 unsigned char *src_end = src + src_bytes;
2674 unsigned char *dst_end = dst + dst_bytes;
2675 Lisp_Object translation_table;
2676 /* SRC_BASE remembers the start position in source in each loop.
2677 The loop will be exited when there's not enough source code
2678 (within macro ONE_MORE_BYTE), or when there's not enough
2679 destination area to produce a character (within macro
2680 EMIT_CHAR). */
2681 unsigned char *src_base;
2682 int c;
2683
2684 translation_table = Qnil;
2685 switch (coding->eol_type)
2686 {
2687 case CODING_EOL_CRLF:
2688 while (1)
2689 {
2690 src_base = src;
2691 ONE_MORE_BYTE (c);
2692 if (c == '\r')
2693 {
2694 ONE_MORE_BYTE (c);
2695 if (c != '\n')
2696 {
2697 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2698 {
2699 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2700 goto label_end_of_loop;
2701 }
2702 src--;
2703 c = '\r';
2704 }
2705 }
2706 else if (c == '\n'
2707 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
2708 {
2709 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2710 goto label_end_of_loop;
2711 }
2712 EMIT_CHAR (c);
2713 }
2714 break;
2715
2716 case CODING_EOL_CR:
2717 while (1)
2718 {
2719 src_base = src;
2720 ONE_MORE_BYTE (c);
2721 if (c == '\n')
2722 {
2723 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2724 {
2725 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2726 goto label_end_of_loop;
2727 }
2728 }
2729 else if (c == '\r')
2730 c = '\n';
2731 EMIT_CHAR (c);
2732 }
2733 break;
2734
2735 default: /* no need for EOL handling */
2736 while (1)
2737 {
2738 src_base = src;
2739 ONE_MORE_BYTE (c);
2740 EMIT_CHAR (c);
2741 }
2742 }
2743
2744 label_end_of_loop:
2745 coding->consumed = coding->consumed_char = src_base - source;
2746 coding->produced = dst - destination;
2747 return;
2748 }
2749
2750 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
2751 format of end-of-line according to `coding->eol_type'. It also
2752 convert multibyte form 8-bit characers to unibyte if
2753 CODING->src_multibyte is nonzero. If `coding->mode &
2754 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
2755 also means end-of-line. */
2756
2757 static void
2758 encode_eol (coding, source, destination, src_bytes, dst_bytes)
2759 struct coding_system *coding;
2760 unsigned char *source, *destination;
2761 int src_bytes, dst_bytes;
2762 {
2763 unsigned char *src = source;
2764 unsigned char *dst = destination;
2765 unsigned char *src_end = src + src_bytes;
2766 unsigned char *dst_end = dst + dst_bytes;
2767 Lisp_Object translation_table;
2768 /* SRC_BASE remembers the start position in source in each loop.
2769 The loop will be exited when there's not enough source text to
2770 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2771 there's not enough destination area to produce encoded codes
2772 (within macro EMIT_BYTES). */
2773 unsigned char *src_base;
2774 int c;
2775 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
2776
2777 translation_table = Qnil;
2778 if (coding->src_multibyte
2779 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
2780 {
2781 src_end--;
2782 src_bytes--;
2783 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
2784 }
2785
2786 if (coding->eol_type == CODING_EOL_CRLF)
2787 {
2788 while (src < src_end)
2789 {
2790 src_base = src;
2791 c = *src++;
2792 if (c >= 0x20)
2793 EMIT_ONE_BYTE (c);
2794 else if (c == '\n' || (c == '\r' && selective_display))
2795 EMIT_TWO_BYTES ('\r', '\n');
2796 else
2797 EMIT_ONE_BYTE (c);
2798 }
2799 src_base = src;
2800 label_end_of_loop:
2801 ;
2802 }
2803 else
2804 {
2805 if (src_bytes <= dst_bytes)
2806 {
2807 safe_bcopy (src, dst, src_bytes);
2808 src_base = src_end;
2809 dst += src_bytes;
2810 }
2811 else
2812 {
2813 if (coding->src_multibyte
2814 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
2815 dst_bytes--;
2816 safe_bcopy (src, dst, dst_bytes);
2817 src_base = src + dst_bytes;
2818 dst = destination + dst_bytes;
2819 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2820 }
2821 if (coding->eol_type == CODING_EOL_CR)
2822 {
2823 for (src = destination; src < dst; src++)
2824 if (*src == '\n') *src = '\r';
2825 }
2826 else if (selective_display)
2827 {
2828 for (src = destination; src < dst; src++)
2829 if (*src == '\r') *src = '\n';
2830 }
2831 }
2832 if (coding->src_multibyte)
2833 dst = destination + str_as_unibyte (destination, dst - destination);
2834
2835 coding->consumed = src_base - source;
2836 coding->produced = dst - destination;
2837 }
2838
2839 \f
2840 /*** 7. C library functions ***/
2841
2842 /* In Emacs Lisp, coding system is represented by a Lisp symbol which
2843 has a property `coding-system'. The value of this property is a
2844 vector of length 5 (called as coding-vector). Among elements of
2845 this vector, the first (element[0]) and the fifth (element[4])
2846 carry important information for decoding/encoding. Before
2847 decoding/encoding, this information should be set in fields of a
2848 structure of type `coding_system'.
2849
2850 A value of property `coding-system' can be a symbol of another
2851 subsidiary coding-system. In that case, Emacs gets coding-vector
2852 from that symbol.
2853
2854 `element[0]' contains information to be set in `coding->type'. The
2855 value and its meaning is as follows:
2856
2857 0 -- coding_type_emacs_mule
2858 1 -- coding_type_sjis
2859 2 -- coding_type_iso2022
2860 3 -- coding_type_big5
2861 4 -- coding_type_ccl encoder/decoder written in CCL
2862 nil -- coding_type_no_conversion
2863 t -- coding_type_undecided (automatic conversion on decoding,
2864 no-conversion on encoding)
2865
2866 `element[4]' contains information to be set in `coding->flags' and
2867 `coding->spec'. The meaning varies by `coding->type'.
2868
2869 If `coding->type' is `coding_type_iso2022', element[4] is a vector
2870 of length 32 (of which the first 13 sub-elements are used now).
2871 Meanings of these sub-elements are:
2872
2873 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
2874 If the value is an integer of valid charset, the charset is
2875 assumed to be designated to graphic register N initially.
2876
2877 If the value is minus, it is a minus value of charset which
2878 reserves graphic register N, which means that the charset is
2879 not designated initially but should be designated to graphic
2880 register N just before encoding a character in that charset.
2881
2882 If the value is nil, graphic register N is never used on
2883 encoding.
2884
2885 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
2886 Each value takes t or nil. See the section ISO2022 of
2887 `coding.h' for more information.
2888
2889 If `coding->type' is `coding_type_big5', element[4] is t to denote
2890 BIG5-ETen or nil to denote BIG5-HKU.
2891
2892 If `coding->type' takes the other value, element[4] is ignored.
2893
2894 Emacs Lisp's coding system also carries information about format of
2895 end-of-line in a value of property `eol-type'. If the value is
2896 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
2897 means CODING_EOL_CR. If it is not integer, it should be a vector
2898 of subsidiary coding systems of which property `eol-type' has one
2899 of above values.
2900
2901 */
2902
2903 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
2904 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
2905 is setup so that no conversion is necessary and return -1, else
2906 return 0. */
2907
2908 int
2909 setup_coding_system (coding_system, coding)
2910 Lisp_Object coding_system;
2911 struct coding_system *coding;
2912 {
2913 Lisp_Object coding_spec, coding_type, eol_type, plist;
2914 Lisp_Object val;
2915 int i;
2916
2917 /* Initialize some fields required for all kinds of coding systems. */
2918 coding->symbol = coding_system;
2919 coding->common_flags = 0;
2920 coding->mode = 0;
2921 coding->heading_ascii = -1;
2922 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
2923 coding->composing = COMPOSITION_DISABLED;
2924 coding->cmp_data = NULL;
2925
2926 if (NILP (coding_system))
2927 goto label_invalid_coding_system;
2928
2929 coding_spec = Fget (coding_system, Qcoding_system);
2930
2931 if (!VECTORP (coding_spec)
2932 || XVECTOR (coding_spec)->size != 5
2933 || !CONSP (XVECTOR (coding_spec)->contents[3]))
2934 goto label_invalid_coding_system;
2935
2936 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
2937 if (VECTORP (eol_type))
2938 {
2939 coding->eol_type = CODING_EOL_UNDECIDED;
2940 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
2941 }
2942 else if (XFASTINT (eol_type) == 1)
2943 {
2944 coding->eol_type = CODING_EOL_CRLF;
2945 coding->common_flags
2946 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2947 }
2948 else if (XFASTINT (eol_type) == 2)
2949 {
2950 coding->eol_type = CODING_EOL_CR;
2951 coding->common_flags
2952 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2953 }
2954 else
2955 coding->eol_type = CODING_EOL_LF;
2956
2957 coding_type = XVECTOR (coding_spec)->contents[0];
2958 /* Try short cut. */
2959 if (SYMBOLP (coding_type))
2960 {
2961 if (EQ (coding_type, Qt))
2962 {
2963 coding->type = coding_type_undecided;
2964 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
2965 }
2966 else
2967 coding->type = coding_type_no_conversion;
2968 return 0;
2969 }
2970
2971 /* Get values of coding system properties:
2972 `post-read-conversion', `pre-write-conversion',
2973 `translation-table-for-decode', `translation-table-for-encode'. */
2974 plist = XVECTOR (coding_spec)->contents[3];
2975 /* Pre & post conversion functions should be disabled if
2976 inhibit_eol_conversion is nozero. This is the case that a code
2977 conversion function is called while those functions are running. */
2978 if (! inhibit_pre_post_conversion)
2979 {
2980 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
2981 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
2982 }
2983 val = Fplist_get (plist, Qtranslation_table_for_decode);
2984 if (SYMBOLP (val))
2985 val = Fget (val, Qtranslation_table_for_decode);
2986 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
2987 val = Fplist_get (plist, Qtranslation_table_for_encode);
2988 if (SYMBOLP (val))
2989 val = Fget (val, Qtranslation_table_for_encode);
2990 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
2991 val = Fplist_get (plist, Qcoding_category);
2992 if (!NILP (val))
2993 {
2994 val = Fget (val, Qcoding_category_index);
2995 if (INTEGERP (val))
2996 coding->category_idx = XINT (val);
2997 else
2998 goto label_invalid_coding_system;
2999 }
3000 else
3001 goto label_invalid_coding_system;
3002
3003 /* If the coding system has non-nil `composition' property, enable
3004 composition handling. */
3005 val = Fplist_get (plist, Qcomposition);
3006 if (!NILP (val))
3007 coding->composing = COMPOSITION_NO;
3008
3009 switch (XFASTINT (coding_type))
3010 {
3011 case 0:
3012 coding->type = coding_type_emacs_mule;
3013 if (!NILP (coding->post_read_conversion))
3014 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3015 if (!NILP (coding->pre_write_conversion))
3016 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3017 break;
3018
3019 case 1:
3020 coding->type = coding_type_sjis;
3021 coding->common_flags
3022 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3023 break;
3024
3025 case 2:
3026 coding->type = coding_type_iso2022;
3027 coding->common_flags
3028 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3029 {
3030 Lisp_Object val, temp;
3031 Lisp_Object *flags;
3032 int i, charset, reg_bits = 0;
3033
3034 val = XVECTOR (coding_spec)->contents[4];
3035
3036 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3037 goto label_invalid_coding_system;
3038
3039 flags = XVECTOR (val)->contents;
3040 coding->flags
3041 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3042 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3043 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3044 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3045 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3046 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3047 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3048 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3049 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3050 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3051 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3052 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3053 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3054 );
3055
3056 /* Invoke graphic register 0 to plane 0. */
3057 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3058 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3059 CODING_SPEC_ISO_INVOCATION (coding, 1)
3060 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3061 /* Not single shifting at first. */
3062 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3063 /* Beginning of buffer should also be regarded as bol. */
3064 CODING_SPEC_ISO_BOL (coding) = 1;
3065
3066 for (charset = 0; charset <= MAX_CHARSET; charset++)
3067 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3068 val = Vcharset_revision_alist;
3069 while (CONSP (val))
3070 {
3071 charset = get_charset_id (Fcar_safe (XCAR (val)));
3072 if (charset >= 0
3073 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3074 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3075 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3076 val = XCDR (val);
3077 }
3078
3079 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3080 FLAGS[REG] can be one of below:
3081 integer CHARSET: CHARSET occupies register I,
3082 t: designate nothing to REG initially, but can be used
3083 by any charsets,
3084 list of integer, nil, or t: designate the first
3085 element (if integer) to REG initially, the remaining
3086 elements (if integer) is designated to REG on request,
3087 if an element is t, REG can be used by any charsets,
3088 nil: REG is never used. */
3089 for (charset = 0; charset <= MAX_CHARSET; charset++)
3090 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3091 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3092 for (i = 0; i < 4; i++)
3093 {
3094 if (INTEGERP (flags[i])
3095 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
3096 || (charset = get_charset_id (flags[i])) >= 0)
3097 {
3098 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3099 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3100 }
3101 else if (EQ (flags[i], Qt))
3102 {
3103 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3104 reg_bits |= 1 << i;
3105 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3106 }
3107 else if (CONSP (flags[i]))
3108 {
3109 Lisp_Object tail;
3110 tail = flags[i];
3111
3112 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3113 if (INTEGERP (XCAR (tail))
3114 && (charset = XINT (XCAR (tail)),
3115 CHARSET_VALID_P (charset))
3116 || (charset = get_charset_id (XCAR (tail))) >= 0)
3117 {
3118 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3119 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3120 }
3121 else
3122 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3123 tail = XCDR (tail);
3124 while (CONSP (tail))
3125 {
3126 if (INTEGERP (XCAR (tail))
3127 && (charset = XINT (XCAR (tail)),
3128 CHARSET_VALID_P (charset))
3129 || (charset = get_charset_id (XCAR (tail))) >= 0)
3130 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3131 = i;
3132 else if (EQ (XCAR (tail), Qt))
3133 reg_bits |= 1 << i;
3134 tail = XCDR (tail);
3135 }
3136 }
3137 else
3138 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3139
3140 CODING_SPEC_ISO_DESIGNATION (coding, i)
3141 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3142 }
3143
3144 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3145 {
3146 /* REG 1 can be used only by locking shift in 7-bit env. */
3147 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3148 reg_bits &= ~2;
3149 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3150 /* Without any shifting, only REG 0 and 1 can be used. */
3151 reg_bits &= 3;
3152 }
3153
3154 if (reg_bits)
3155 for (charset = 0; charset <= MAX_CHARSET; charset++)
3156 {
3157 if (CHARSET_VALID_P (charset)
3158 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3159 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3160 {
3161 /* There exist some default graphic registers to be
3162 used by CHARSET. */
3163
3164 /* We had better avoid designating a charset of
3165 CHARS96 to REG 0 as far as possible. */
3166 if (CHARSET_CHARS (charset) == 96)
3167 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3168 = (reg_bits & 2
3169 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3170 else
3171 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3172 = (reg_bits & 1
3173 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3174 }
3175 }
3176 }
3177 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3178 coding->spec.iso2022.last_invalid_designation_register = -1;
3179 break;
3180
3181 case 3:
3182 coding->type = coding_type_big5;
3183 coding->common_flags
3184 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3185 coding->flags
3186 = (NILP (XVECTOR (coding_spec)->contents[4])
3187 ? CODING_FLAG_BIG5_HKU
3188 : CODING_FLAG_BIG5_ETEN);
3189 break;
3190
3191 case 4:
3192 coding->type = coding_type_ccl;
3193 coding->common_flags
3194 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3195 {
3196 val = XVECTOR (coding_spec)->contents[4];
3197 if (! CONSP (val)
3198 || setup_ccl_program (&(coding->spec.ccl.decoder),
3199 XCAR (val)) < 0
3200 || setup_ccl_program (&(coding->spec.ccl.encoder),
3201 XCDR (val)) < 0)
3202 goto label_invalid_coding_system;
3203
3204 bzero (coding->spec.ccl.valid_codes, 256);
3205 val = Fplist_get (plist, Qvalid_codes);
3206 if (CONSP (val))
3207 {
3208 Lisp_Object this;
3209
3210 for (; CONSP (val); val = XCDR (val))
3211 {
3212 this = XCAR (val);
3213 if (INTEGERP (this)
3214 && XINT (this) >= 0 && XINT (this) < 256)
3215 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3216 else if (CONSP (this)
3217 && INTEGERP (XCAR (this))
3218 && INTEGERP (XCDR (this)))
3219 {
3220 int start = XINT (XCAR (this));
3221 int end = XINT (XCDR (this));
3222
3223 if (start >= 0 && start <= end && end < 256)
3224 while (start <= end)
3225 coding->spec.ccl.valid_codes[start++] = 1;
3226 }
3227 }
3228 }
3229 }
3230 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3231 coding->spec.ccl.cr_carryover = 0;
3232 break;
3233
3234 case 5:
3235 coding->type = coding_type_raw_text;
3236 break;
3237
3238 default:
3239 goto label_invalid_coding_system;
3240 }
3241 return 0;
3242
3243 label_invalid_coding_system:
3244 coding->type = coding_type_no_conversion;
3245 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3246 coding->common_flags = 0;
3247 coding->eol_type = CODING_EOL_LF;
3248 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3249 return -1;
3250 }
3251
3252 /* Free memory blocks allocated for storing composition information. */
3253
3254 void
3255 coding_free_composition_data (coding)
3256 struct coding_system *coding;
3257 {
3258 struct composition_data *cmp_data = coding->cmp_data, *next;
3259
3260 if (!cmp_data)
3261 return;
3262 /* Memory blocks are chained. At first, rewind to the first, then,
3263 free blocks one by one. */
3264 while (cmp_data->prev)
3265 cmp_data = cmp_data->prev;
3266 while (cmp_data)
3267 {
3268 next = cmp_data->next;
3269 xfree (cmp_data);
3270 cmp_data = next;
3271 }
3272 coding->cmp_data = NULL;
3273 }
3274
3275 /* Set `char_offset' member of all memory blocks pointed by
3276 coding->cmp_data to POS. */
3277
3278 void
3279 coding_adjust_composition_offset (coding, pos)
3280 struct coding_system *coding;
3281 int pos;
3282 {
3283 struct composition_data *cmp_data;
3284
3285 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3286 cmp_data->char_offset = pos;
3287 }
3288
3289 /* Setup raw-text or one of its subsidiaries in the structure
3290 coding_system CODING according to the already setup value eol_type
3291 in CODING. CODING should be setup for some coding system in
3292 advance. */
3293
3294 void
3295 setup_raw_text_coding_system (coding)
3296 struct coding_system *coding;
3297 {
3298 if (coding->type != coding_type_raw_text)
3299 {
3300 coding->symbol = Qraw_text;
3301 coding->type = coding_type_raw_text;
3302 if (coding->eol_type != CODING_EOL_UNDECIDED)
3303 {
3304 Lisp_Object subsidiaries;
3305 subsidiaries = Fget (Qraw_text, Qeol_type);
3306
3307 if (VECTORP (subsidiaries)
3308 && XVECTOR (subsidiaries)->size == 3)
3309 coding->symbol
3310 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3311 }
3312 setup_coding_system (coding->symbol, coding);
3313 }
3314 return;
3315 }
3316
3317 /* Emacs has a mechanism to automatically detect a coding system if it
3318 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3319 it's impossible to distinguish some coding systems accurately
3320 because they use the same range of codes. So, at first, coding
3321 systems are categorized into 7, those are:
3322
3323 o coding-category-emacs-mule
3324
3325 The category for a coding system which has the same code range
3326 as Emacs' internal format. Assigned the coding-system (Lisp
3327 symbol) `emacs-mule' by default.
3328
3329 o coding-category-sjis
3330
3331 The category for a coding system which has the same code range
3332 as SJIS. Assigned the coding-system (Lisp
3333 symbol) `japanese-shift-jis' by default.
3334
3335 o coding-category-iso-7
3336
3337 The category for a coding system which has the same code range
3338 as ISO2022 of 7-bit environment. This doesn't use any locking
3339 shift and single shift functions. This can encode/decode all
3340 charsets. Assigned the coding-system (Lisp symbol)
3341 `iso-2022-7bit' by default.
3342
3343 o coding-category-iso-7-tight
3344
3345 Same as coding-category-iso-7 except that this can
3346 encode/decode only the specified charsets.
3347
3348 o coding-category-iso-8-1
3349
3350 The category for a coding system which has the same code range
3351 as ISO2022 of 8-bit environment and graphic plane 1 used only
3352 for DIMENSION1 charset. This doesn't use any locking shift
3353 and single shift functions. Assigned the coding-system (Lisp
3354 symbol) `iso-latin-1' by default.
3355
3356 o coding-category-iso-8-2
3357
3358 The category for a coding system which has the same code range
3359 as ISO2022 of 8-bit environment and graphic plane 1 used only
3360 for DIMENSION2 charset. This doesn't use any locking shift
3361 and single shift functions. Assigned the coding-system (Lisp
3362 symbol) `japanese-iso-8bit' by default.
3363
3364 o coding-category-iso-7-else
3365
3366 The category for a coding system which has the same code range
3367 as ISO2022 of 7-bit environemnt but uses locking shift or
3368 single shift functions. Assigned the coding-system (Lisp
3369 symbol) `iso-2022-7bit-lock' by default.
3370
3371 o coding-category-iso-8-else
3372
3373 The category for a coding system which has the same code range
3374 as ISO2022 of 8-bit environemnt but uses locking shift or
3375 single shift functions. Assigned the coding-system (Lisp
3376 symbol) `iso-2022-8bit-ss2' by default.
3377
3378 o coding-category-big5
3379
3380 The category for a coding system which has the same code range
3381 as BIG5. Assigned the coding-system (Lisp symbol)
3382 `cn-big5' by default.
3383
3384 o coding-category-utf-8
3385
3386 The category for a coding system which has the same code range
3387 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3388 symbol) `utf-8' by default.
3389
3390 o coding-category-utf-16-be
3391
3392 The category for a coding system in which a text has an
3393 Unicode signature (cf. Unicode Standard) in the order of BIG
3394 endian at the head. Assigned the coding-system (Lisp symbol)
3395 `utf-16-be' by default.
3396
3397 o coding-category-utf-16-le
3398
3399 The category for a coding system in which a text has an
3400 Unicode signature (cf. Unicode Standard) in the order of
3401 LITTLE endian at the head. Assigned the coding-system (Lisp
3402 symbol) `utf-16-le' by default.
3403
3404 o coding-category-ccl
3405
3406 The category for a coding system of which encoder/decoder is
3407 written in CCL programs. The default value is nil, i.e., no
3408 coding system is assigned.
3409
3410 o coding-category-binary
3411
3412 The category for a coding system not categorized in any of the
3413 above. Assigned the coding-system (Lisp symbol)
3414 `no-conversion' by default.
3415
3416 Each of them is a Lisp symbol and the value is an actual
3417 `coding-system's (this is also a Lisp symbol) assigned by a user.
3418 What Emacs does actually is to detect a category of coding system.
3419 Then, it uses a `coding-system' assigned to it. If Emacs can't
3420 decide only one possible category, it selects a category of the
3421 highest priority. Priorities of categories are also specified by a
3422 user in a Lisp variable `coding-category-list'.
3423
3424 */
3425
3426 static
3427 int ascii_skip_code[256];
3428
3429 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3430 If it detects possible coding systems, return an integer in which
3431 appropriate flag bits are set. Flag bits are defined by macros
3432 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3433 it should point the table `coding_priorities'. In that case, only
3434 the flag bit for a coding system of the highest priority is set in
3435 the returned value.
3436
3437 How many ASCII characters are at the head is returned as *SKIP. */
3438
3439 static int
3440 detect_coding_mask (source, src_bytes, priorities, skip)
3441 unsigned char *source;
3442 int src_bytes, *priorities, *skip;
3443 {
3444 register unsigned char c;
3445 unsigned char *src = source, *src_end = source + src_bytes;
3446 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3447 int i, idx;
3448
3449 /* At first, skip all ASCII characters and control characters except
3450 for three ISO2022 specific control characters. */
3451 ascii_skip_code[ISO_CODE_SO] = 0;
3452 ascii_skip_code[ISO_CODE_SI] = 0;
3453 ascii_skip_code[ISO_CODE_ESC] = 0;
3454
3455 label_loop_detect_coding:
3456 while (src < src_end && ascii_skip_code[*src]) src++;
3457 *skip = src - source;
3458
3459 if (src >= src_end)
3460 /* We found nothing other than ASCII. There's nothing to do. */
3461 return 0;
3462
3463 c = *src;
3464 /* The text seems to be encoded in some multilingual coding system.
3465 Now, try to find in which coding system the text is encoded. */
3466 if (c < 0x80)
3467 {
3468 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3469 /* C is an ISO2022 specific control code of C0. */
3470 mask = detect_coding_iso2022 (src, src_end);
3471 if (mask == 0)
3472 {
3473 /* No valid ISO2022 code follows C. Try again. */
3474 src++;
3475 if (c == ISO_CODE_ESC)
3476 ascii_skip_code[ISO_CODE_ESC] = 1;
3477 else
3478 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3479 goto label_loop_detect_coding;
3480 }
3481 if (priorities)
3482 {
3483 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3484 {
3485 if (mask & priorities[i])
3486 return priorities[i];
3487 }
3488 return CODING_CATEGORY_MASK_RAW_TEXT;
3489 }
3490 }
3491 else
3492 {
3493 int try;
3494
3495 if (c < 0xA0)
3496 {
3497 /* C is the first byte of SJIS character code,
3498 or a leading-code of Emacs' internal format (emacs-mule),
3499 or the first byte of UTF-16. */
3500 try = (CODING_CATEGORY_MASK_SJIS
3501 | CODING_CATEGORY_MASK_EMACS_MULE
3502 | CODING_CATEGORY_MASK_UTF_16_BE
3503 | CODING_CATEGORY_MASK_UTF_16_LE);
3504
3505 /* Or, if C is a special latin extra code,
3506 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3507 or is an ISO2022 control-sequence-introducer (CSI),
3508 we should also consider the possibility of ISO2022 codings. */
3509 if ((VECTORP (Vlatin_extra_code_table)
3510 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3511 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
3512 || (c == ISO_CODE_CSI
3513 && (src < src_end
3514 && (*src == ']'
3515 || ((*src == '0' || *src == '1' || *src == '2')
3516 && src + 1 < src_end
3517 && src[1] == ']')))))
3518 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
3519 | CODING_CATEGORY_MASK_ISO_8BIT);
3520 }
3521 else
3522 /* C is a character of ISO2022 in graphic plane right,
3523 or a SJIS's 1-byte character code (i.e. JISX0201),
3524 or the first byte of BIG5's 2-byte code,
3525 or the first byte of UTF-8/16. */
3526 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
3527 | CODING_CATEGORY_MASK_ISO_8BIT
3528 | CODING_CATEGORY_MASK_SJIS
3529 | CODING_CATEGORY_MASK_BIG5
3530 | CODING_CATEGORY_MASK_UTF_8
3531 | CODING_CATEGORY_MASK_UTF_16_BE
3532 | CODING_CATEGORY_MASK_UTF_16_LE);
3533
3534 /* Or, we may have to consider the possibility of CCL. */
3535 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
3536 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
3537 ->spec.ccl.valid_codes)[c])
3538 try |= CODING_CATEGORY_MASK_CCL;
3539
3540 mask = 0;
3541 utf16_examined_p = iso2022_examined_p = 0;
3542 if (priorities)
3543 {
3544 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3545 {
3546 if (!iso2022_examined_p
3547 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
3548 {
3549 mask |= detect_coding_iso2022 (src, src_end);
3550 iso2022_examined_p = 1;
3551 }
3552 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
3553 mask |= detect_coding_sjis (src, src_end);
3554 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
3555 mask |= detect_coding_utf_8 (src, src_end);
3556 else if (!utf16_examined_p
3557 && (priorities[i] & try &
3558 CODING_CATEGORY_MASK_UTF_16_BE_LE))
3559 {
3560 mask |= detect_coding_utf_16 (src, src_end);
3561 utf16_examined_p = 1;
3562 }
3563 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
3564 mask |= detect_coding_big5 (src, src_end);
3565 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
3566 mask |= detect_coding_emacs_mule (src, src_end);
3567 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
3568 mask |= detect_coding_ccl (src, src_end);
3569 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
3570 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
3571 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
3572 mask |= CODING_CATEGORY_MASK_BINARY;
3573 if (mask & priorities[i])
3574 return priorities[i];
3575 }
3576 return CODING_CATEGORY_MASK_RAW_TEXT;
3577 }
3578 if (try & CODING_CATEGORY_MASK_ISO)
3579 mask |= detect_coding_iso2022 (src, src_end);
3580 if (try & CODING_CATEGORY_MASK_SJIS)
3581 mask |= detect_coding_sjis (src, src_end);
3582 if (try & CODING_CATEGORY_MASK_BIG5)
3583 mask |= detect_coding_big5 (src, src_end);
3584 if (try & CODING_CATEGORY_MASK_UTF_8)
3585 mask |= detect_coding_utf_8 (src, src_end);
3586 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
3587 mask |= detect_coding_utf_16 (src, src_end);
3588 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
3589 mask |= detect_coding_emacs_mule (src, src_end);
3590 if (try & CODING_CATEGORY_MASK_CCL)
3591 mask |= detect_coding_ccl (src, src_end);
3592 }
3593 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
3594 }
3595
3596 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
3597 The information of the detected coding system is set in CODING. */
3598
3599 void
3600 detect_coding (coding, src, src_bytes)
3601 struct coding_system *coding;
3602 unsigned char *src;
3603 int src_bytes;
3604 {
3605 unsigned int idx;
3606 int skip, mask, i;
3607 Lisp_Object val;
3608
3609 val = Vcoding_category_list;
3610 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip);
3611 coding->heading_ascii = skip;
3612
3613 if (!mask) return;
3614
3615 /* We found a single coding system of the highest priority in MASK. */
3616 idx = 0;
3617 while (mask && ! (mask & 1)) mask >>= 1, idx++;
3618 if (! mask)
3619 idx = CODING_CATEGORY_IDX_RAW_TEXT;
3620
3621 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[idx])->value;
3622
3623 if (coding->eol_type != CODING_EOL_UNDECIDED)
3624 {
3625 Lisp_Object tmp;
3626
3627 tmp = Fget (val, Qeol_type);
3628 if (VECTORP (tmp))
3629 val = XVECTOR (tmp)->contents[coding->eol_type];
3630 }
3631
3632 /* Setup this new coding system while preserving some slots. */
3633 {
3634 int src_multibyte = coding->src_multibyte;
3635 int dst_multibyte = coding->dst_multibyte;
3636
3637 setup_coding_system (val, coding);
3638 coding->src_multibyte = src_multibyte;
3639 coding->dst_multibyte = dst_multibyte;
3640 coding->heading_ascii = skip;
3641 }
3642 }
3643
3644 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
3645 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
3646 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
3647
3648 How many non-eol characters are at the head is returned as *SKIP. */
3649
3650 #define MAX_EOL_CHECK_COUNT 3
3651
3652 static int
3653 detect_eol_type (source, src_bytes, skip)
3654 unsigned char *source;
3655 int src_bytes, *skip;
3656 {
3657 unsigned char *src = source, *src_end = src + src_bytes;
3658 unsigned char c;
3659 int total = 0; /* How many end-of-lines are found so far. */
3660 int eol_type = CODING_EOL_UNDECIDED;
3661 int this_eol_type;
3662
3663 *skip = 0;
3664
3665 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
3666 {
3667 c = *src++;
3668 if (c == '\n' || c == '\r')
3669 {
3670 if (*skip == 0)
3671 *skip = src - 1 - source;
3672 total++;
3673 if (c == '\n')
3674 this_eol_type = CODING_EOL_LF;
3675 else if (src >= src_end || *src != '\n')
3676 this_eol_type = CODING_EOL_CR;
3677 else
3678 this_eol_type = CODING_EOL_CRLF, src++;
3679
3680 if (eol_type == CODING_EOL_UNDECIDED)
3681 /* This is the first end-of-line. */
3682 eol_type = this_eol_type;
3683 else if (eol_type != this_eol_type)
3684 {
3685 /* The found type is different from what found before. */
3686 eol_type = CODING_EOL_INCONSISTENT;
3687 break;
3688 }
3689 }
3690 }
3691
3692 if (*skip == 0)
3693 *skip = src_end - source;
3694 return eol_type;
3695 }
3696
3697 /* Like detect_eol_type, but detect EOL type in 2-octet
3698 big-endian/little-endian format for coding systems utf-16-be and
3699 utf-16-le. */
3700
3701 static int
3702 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
3703 unsigned char *source;
3704 int src_bytes, *skip;
3705 {
3706 unsigned char *src = source, *src_end = src + src_bytes;
3707 unsigned int c1, c2;
3708 int total = 0; /* How many end-of-lines are found so far. */
3709 int eol_type = CODING_EOL_UNDECIDED;
3710 int this_eol_type;
3711 int msb, lsb;
3712
3713 if (big_endian_p)
3714 msb = 0, lsb = 1;
3715 else
3716 msb = 1, lsb = 0;
3717
3718 *skip = 0;
3719
3720 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
3721 {
3722 c1 = (src[msb] << 8) | (src[lsb]);
3723 src += 2;
3724
3725 if (c1 == '\n' || c1 == '\r')
3726 {
3727 if (*skip == 0)
3728 *skip = src - 2 - source;
3729 total++;
3730 if (c1 == '\n')
3731 {
3732 this_eol_type = CODING_EOL_LF;
3733 }
3734 else
3735 {
3736 if ((src + 1) >= src_end)
3737 {
3738 this_eol_type = CODING_EOL_CR;
3739 }
3740 else
3741 {
3742 c2 = (src[msb] << 8) | (src[lsb]);
3743 if (c2 == '\n')
3744 this_eol_type = CODING_EOL_CRLF, src += 2;
3745 else
3746 this_eol_type = CODING_EOL_CR;
3747 }
3748 }
3749
3750 if (eol_type == CODING_EOL_UNDECIDED)
3751 /* This is the first end-of-line. */
3752 eol_type = this_eol_type;
3753 else if (eol_type != this_eol_type)
3754 {
3755 /* The found type is different from what found before. */
3756 eol_type = CODING_EOL_INCONSISTENT;
3757 break;
3758 }
3759 }
3760 }
3761
3762 if (*skip == 0)
3763 *skip = src_end - source;
3764 return eol_type;
3765 }
3766
3767 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
3768 is encoded. If it detects an appropriate format of end-of-line, it
3769 sets the information in *CODING. */
3770
3771 void
3772 detect_eol (coding, src, src_bytes)
3773 struct coding_system *coding;
3774 unsigned char *src;
3775 int src_bytes;
3776 {
3777 Lisp_Object val;
3778 int skip;
3779 int eol_type;
3780
3781 switch (coding->category_idx)
3782 {
3783 case CODING_CATEGORY_IDX_UTF_16_BE:
3784 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
3785 break;
3786 case CODING_CATEGORY_IDX_UTF_16_LE:
3787 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
3788 break;
3789 default:
3790 eol_type = detect_eol_type (src, src_bytes, &skip);
3791 break;
3792 }
3793
3794 if (coding->heading_ascii > skip)
3795 coding->heading_ascii = skip;
3796 else
3797 skip = coding->heading_ascii;
3798
3799 if (eol_type == CODING_EOL_UNDECIDED)
3800 return;
3801 if (eol_type == CODING_EOL_INCONSISTENT)
3802 {
3803 #if 0
3804 /* This code is suppressed until we find a better way to
3805 distinguish raw text file and binary file. */
3806
3807 /* If we have already detected that the coding is raw-text, the
3808 coding should actually be no-conversion. */
3809 if (coding->type == coding_type_raw_text)
3810 {
3811 setup_coding_system (Qno_conversion, coding);
3812 return;
3813 }
3814 /* Else, let's decode only text code anyway. */
3815 #endif /* 0 */
3816 eol_type = CODING_EOL_LF;
3817 }
3818
3819 val = Fget (coding->symbol, Qeol_type);
3820 if (VECTORP (val) && XVECTOR (val)->size == 3)
3821 {
3822 int src_multibyte = coding->src_multibyte;
3823 int dst_multibyte = coding->dst_multibyte;
3824
3825 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
3826 coding->src_multibyte = src_multibyte;
3827 coding->dst_multibyte = dst_multibyte;
3828 coding->heading_ascii = skip;
3829 }
3830 }
3831
3832 #define CONVERSION_BUFFER_EXTRA_ROOM 256
3833
3834 #define DECODING_BUFFER_MAG(coding) \
3835 (coding->type == coding_type_iso2022 \
3836 ? 3 \
3837 : (coding->type == coding_type_ccl \
3838 ? coding->spec.ccl.decoder.buf_magnification \
3839 : 2))
3840
3841 /* Return maximum size (bytes) of a buffer enough for decoding
3842 SRC_BYTES of text encoded in CODING. */
3843
3844 int
3845 decoding_buffer_size (coding, src_bytes)
3846 struct coding_system *coding;
3847 int src_bytes;
3848 {
3849 return (src_bytes * DECODING_BUFFER_MAG (coding)
3850 + CONVERSION_BUFFER_EXTRA_ROOM);
3851 }
3852
3853 /* Return maximum size (bytes) of a buffer enough for encoding
3854 SRC_BYTES of text to CODING. */
3855
3856 int
3857 encoding_buffer_size (coding, src_bytes)
3858 struct coding_system *coding;
3859 int src_bytes;
3860 {
3861 int magnification;
3862
3863 if (coding->type == coding_type_ccl)
3864 magnification = coding->spec.ccl.encoder.buf_magnification;
3865 else if (CODING_REQUIRE_ENCODING (coding))
3866 magnification = 3;
3867 else
3868 magnification = 1;
3869
3870 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
3871 }
3872
3873 #ifndef MINIMUM_CONVERSION_BUFFER_SIZE
3874 #define MINIMUM_CONVERSION_BUFFER_SIZE 1024
3875 #endif
3876
3877 char *conversion_buffer;
3878 int conversion_buffer_size;
3879
3880 /* Return a pointer to a SIZE bytes of buffer to be used for encoding
3881 or decoding. Sufficient memory is allocated automatically. If we
3882 run out of memory, return NULL. */
3883
3884 char *
3885 get_conversion_buffer (size)
3886 int size;
3887 {
3888 if (size > conversion_buffer_size)
3889 {
3890 char *buf;
3891 int real_size = conversion_buffer_size * 2;
3892
3893 while (real_size < size) real_size *= 2;
3894 buf = (char *) xmalloc (real_size);
3895 xfree (conversion_buffer);
3896 conversion_buffer = buf;
3897 conversion_buffer_size = real_size;
3898 }
3899 return conversion_buffer;
3900 }
3901
3902 int
3903 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
3904 struct coding_system *coding;
3905 unsigned char *source, *destination;
3906 int src_bytes, dst_bytes, encodep;
3907 {
3908 struct ccl_program *ccl
3909 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
3910 int result;
3911
3912 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
3913 if (encodep)
3914 ccl->eol_type = coding->eol_type;
3915 coding->produced = ccl_driver (ccl, source, destination,
3916 src_bytes, dst_bytes, &(coding->consumed));
3917 if (encodep)
3918 coding->produced_char = coding->produced;
3919 else
3920 {
3921 int bytes
3922 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
3923 coding->produced = str_as_multibyte (destination, bytes,
3924 coding->produced,
3925 &(coding->produced_char));
3926 }
3927
3928 switch (ccl->status)
3929 {
3930 case CCL_STAT_SUSPEND_BY_SRC:
3931 result = CODING_FINISH_INSUFFICIENT_SRC;
3932 break;
3933 case CCL_STAT_SUSPEND_BY_DST:
3934 result = CODING_FINISH_INSUFFICIENT_DST;
3935 break;
3936 case CCL_STAT_QUIT:
3937 case CCL_STAT_INVALID_CMD:
3938 result = CODING_FINISH_INTERRUPT;
3939 break;
3940 default:
3941 result = CODING_FINISH_NORMAL;
3942 break;
3943 }
3944 return result;
3945 }
3946
3947 /* Decode EOL format of the text at PTR of BYTES length destructively
3948 according to CODING->eol_type. This is called after the CCL
3949 program produced a decoded text at PTR. If we do CRLF->LF
3950 conversion, update CODING->produced and CODING->produced_char. */
3951
3952 static void
3953 decode_eol_post_ccl (coding, ptr, bytes)
3954 struct coding_system *coding;
3955 unsigned char *ptr;
3956 int bytes;
3957 {
3958 Lisp_Object val, saved_coding_symbol;
3959 unsigned char *pend = ptr + bytes;
3960 int dummy;
3961
3962 /* Remember the current coding system symbol. We set it back when
3963 an inconsistent EOL is found so that `last-coding-system-used' is
3964 set to the coding system that doesn't specify EOL conversion. */
3965 saved_coding_symbol = coding->symbol;
3966
3967 coding->spec.ccl.cr_carryover = 0;
3968 if (coding->eol_type == CODING_EOL_UNDECIDED)
3969 {
3970 /* Here, to avoid the call of setup_coding_system, we directly
3971 call detect_eol_type. */
3972 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
3973 if (coding->eol_type == CODING_EOL_INCONSISTENT)
3974 coding->eol_type = CODING_EOL_LF;
3975 if (coding->eol_type != CODING_EOL_UNDECIDED)
3976 {
3977 val = Fget (coding->symbol, Qeol_type);
3978 if (VECTORP (val) && XVECTOR (val)->size == 3)
3979 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
3980 }
3981 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
3982 }
3983
3984 if (coding->eol_type == CODING_EOL_LF
3985 || coding->eol_type == CODING_EOL_UNDECIDED)
3986 {
3987 /* We have nothing to do. */
3988 ptr = pend;
3989 }
3990 else if (coding->eol_type == CODING_EOL_CRLF)
3991 {
3992 unsigned char *pstart = ptr, *p = ptr;
3993
3994 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
3995 && *(pend - 1) == '\r')
3996 {
3997 /* If the last character is CR, we can't handle it here
3998 because LF will be in the not-yet-decoded source text.
3999 Recorded that the CR is not yet processed. */
4000 coding->spec.ccl.cr_carryover = 1;
4001 coding->produced--;
4002 coding->produced_char--;
4003 pend--;
4004 }
4005 while (ptr < pend)
4006 {
4007 if (*ptr == '\r')
4008 {
4009 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4010 {
4011 *p++ = '\n';
4012 ptr += 2;
4013 }
4014 else
4015 {
4016 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4017 goto undo_eol_conversion;
4018 *p++ = *ptr++;
4019 }
4020 }
4021 else if (*ptr == '\n'
4022 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4023 goto undo_eol_conversion;
4024 else
4025 *p++ = *ptr++;
4026 continue;
4027
4028 undo_eol_conversion:
4029 /* We have faced with inconsistent EOL format at PTR.
4030 Convert all LFs before PTR back to CRLFs. */
4031 for (p--, ptr--; p >= pstart; p--)
4032 {
4033 if (*p == '\n')
4034 *ptr-- = '\n', *ptr-- = '\r';
4035 else
4036 *ptr-- = *p;
4037 }
4038 /* If carryover is recorded, cancel it because we don't
4039 convert CRLF anymore. */
4040 if (coding->spec.ccl.cr_carryover)
4041 {
4042 coding->spec.ccl.cr_carryover = 0;
4043 coding->produced++;
4044 coding->produced_char++;
4045 pend++;
4046 }
4047 p = ptr = pend;
4048 coding->eol_type = CODING_EOL_LF;
4049 coding->symbol = saved_coding_symbol;
4050 }
4051 if (p < pend)
4052 {
4053 /* As each two-byte sequence CRLF was converted to LF, (PEND
4054 - P) is the number of deleted characters. */
4055 coding->produced -= pend - p;
4056 coding->produced_char -= pend - p;
4057 }
4058 }
4059 else /* i.e. coding->eol_type == CODING_EOL_CR */
4060 {
4061 unsigned char *p = ptr;
4062
4063 for (; ptr < pend; ptr++)
4064 {
4065 if (*ptr == '\r')
4066 *ptr = '\n';
4067 else if (*ptr == '\n'
4068 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4069 {
4070 for (; p < ptr; p++)
4071 {
4072 if (*p == '\n')
4073 *p = '\r';
4074 }
4075 ptr = pend;
4076 coding->eol_type = CODING_EOL_LF;
4077 coding->symbol = saved_coding_symbol;
4078 }
4079 }
4080 }
4081 }
4082
4083 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4084 decoding, it may detect coding system and format of end-of-line if
4085 those are not yet decided. The source should be unibyte, the
4086 result is multibyte if CODING->dst_multibyte is nonzero, else
4087 unibyte. */
4088
4089 int
4090 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4091 struct coding_system *coding;
4092 unsigned char *source, *destination;
4093 int src_bytes, dst_bytes;
4094 {
4095 if (coding->type == coding_type_undecided)
4096 detect_coding (coding, source, src_bytes);
4097
4098 if (coding->eol_type == CODING_EOL_UNDECIDED
4099 && coding->type != coding_type_ccl)
4100 detect_eol (coding, source, src_bytes);
4101
4102 coding->produced = coding->produced_char = 0;
4103 coding->consumed = coding->consumed_char = 0;
4104 coding->errors = 0;
4105 coding->result = CODING_FINISH_NORMAL;
4106
4107 switch (coding->type)
4108 {
4109 case coding_type_sjis:
4110 decode_coding_sjis_big5 (coding, source, destination,
4111 src_bytes, dst_bytes, 1);
4112 break;
4113
4114 case coding_type_iso2022:
4115 decode_coding_iso2022 (coding, source, destination,
4116 src_bytes, dst_bytes);
4117 break;
4118
4119 case coding_type_big5:
4120 decode_coding_sjis_big5 (coding, source, destination,
4121 src_bytes, dst_bytes, 0);
4122 break;
4123
4124 case coding_type_emacs_mule:
4125 decode_coding_emacs_mule (coding, source, destination,
4126 src_bytes, dst_bytes);
4127 break;
4128
4129 case coding_type_ccl:
4130 if (coding->spec.ccl.cr_carryover)
4131 {
4132 /* Set the CR which is not processed by the previous call of
4133 decode_eol_post_ccl in DESTINATION. */
4134 *destination = '\r';
4135 coding->produced++;
4136 coding->produced_char++;
4137 dst_bytes--;
4138 }
4139 ccl_coding_driver (coding, source,
4140 destination + coding->spec.ccl.cr_carryover,
4141 src_bytes, dst_bytes, 0);
4142 if (coding->eol_type != CODING_EOL_LF)
4143 decode_eol_post_ccl (coding, destination, coding->produced);
4144 break;
4145
4146 default:
4147 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4148 }
4149
4150 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4151 && coding->consumed == src_bytes)
4152 coding->result = CODING_FINISH_NORMAL;
4153
4154 if (coding->mode & CODING_MODE_LAST_BLOCK
4155 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4156 {
4157 unsigned char *src = source + coding->consumed;
4158 unsigned char *dst = destination + coding->produced;
4159
4160 src_bytes -= coding->consumed;
4161 coding->errors++;
4162 if (COMPOSING_P (coding))
4163 DECODE_COMPOSITION_END ('1');
4164 while (src_bytes--)
4165 {
4166 int c = *src++;
4167 dst += CHAR_STRING (c, dst);
4168 coding->produced_char++;
4169 }
4170 coding->consumed = coding->consumed_char = src - source;
4171 coding->produced = dst - destination;
4172 }
4173
4174 if (!coding->dst_multibyte)
4175 {
4176 coding->produced = str_as_unibyte (destination, coding->produced);
4177 coding->produced_char = coding->produced;
4178 }
4179
4180 return coding->result;
4181 }
4182
4183 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4184 multibyteness of the source is CODING->src_multibyte, the
4185 multibyteness of the result is always unibyte. */
4186
4187 int
4188 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4189 struct coding_system *coding;
4190 unsigned char *source, *destination;
4191 int src_bytes, dst_bytes;
4192 {
4193 coding->produced = coding->produced_char = 0;
4194 coding->consumed = coding->consumed_char = 0;
4195 coding->errors = 0;
4196 coding->result = CODING_FINISH_NORMAL;
4197
4198 switch (coding->type)
4199 {
4200 case coding_type_sjis:
4201 encode_coding_sjis_big5 (coding, source, destination,
4202 src_bytes, dst_bytes, 1);
4203 break;
4204
4205 case coding_type_iso2022:
4206 encode_coding_iso2022 (coding, source, destination,
4207 src_bytes, dst_bytes);
4208 break;
4209
4210 case coding_type_big5:
4211 encode_coding_sjis_big5 (coding, source, destination,
4212 src_bytes, dst_bytes, 0);
4213 break;
4214
4215 case coding_type_emacs_mule:
4216 encode_coding_emacs_mule (coding, source, destination,
4217 src_bytes, dst_bytes);
4218 break;
4219
4220 case coding_type_ccl:
4221 ccl_coding_driver (coding, source, destination,
4222 src_bytes, dst_bytes, 1);
4223 break;
4224
4225 default:
4226 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4227 }
4228
4229 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4230 && coding->consumed == src_bytes)
4231 coding->result = CODING_FINISH_NORMAL;
4232
4233 if (coding->mode & CODING_MODE_LAST_BLOCK)
4234 {
4235 unsigned char *src = source + coding->consumed;
4236 unsigned char *src_end = src + src_bytes;
4237 unsigned char *dst = destination + coding->produced;
4238
4239 if (coding->type == coding_type_iso2022)
4240 ENCODE_RESET_PLANE_AND_REGISTER;
4241 if (COMPOSING_P (coding))
4242 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4243 if (coding->consumed < src_bytes)
4244 {
4245 int len = src_bytes - coding->consumed;
4246
4247 BCOPY_SHORT (source + coding->consumed, dst, len);
4248 if (coding->src_multibyte)
4249 len = str_as_unibyte (dst, len);
4250 dst += len;
4251 coding->consumed = src_bytes;
4252 }
4253 coding->produced = coding->produced_char = dst - destination;
4254 }
4255
4256 return coding->result;
4257 }
4258
4259 /* Scan text in the region between *BEG and *END (byte positions),
4260 skip characters which we don't have to decode by coding system
4261 CODING at the head and tail, then set *BEG and *END to the region
4262 of the text we actually have to convert. The caller should move
4263 the gap out of the region in advance if the region is from a
4264 buffer.
4265
4266 If STR is not NULL, *BEG and *END are indices into STR. */
4267
4268 static void
4269 shrink_decoding_region (beg, end, coding, str)
4270 int *beg, *end;
4271 struct coding_system *coding;
4272 unsigned char *str;
4273 {
4274 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4275 int eol_conversion;
4276 Lisp_Object translation_table;
4277
4278 if (coding->type == coding_type_ccl
4279 || coding->type == coding_type_undecided
4280 || coding->eol_type != CODING_EOL_LF
4281 || !NILP (coding->post_read_conversion)
4282 || coding->composing != COMPOSITION_DISABLED)
4283 {
4284 /* We can't skip any data. */
4285 return;
4286 }
4287 if (coding->type == coding_type_no_conversion
4288 || coding->type == coding_type_raw_text
4289 || coding->type == coding_type_emacs_mule)
4290 {
4291 /* We need no conversion, but don't have to skip any data here.
4292 Decoding routine handles them effectively anyway. */
4293 return;
4294 }
4295
4296 translation_table = coding->translation_table_for_decode;
4297 if (NILP (translation_table) && !NILP (Venable_character_translation))
4298 translation_table = Vstandard_translation_table_for_decode;
4299 if (CHAR_TABLE_P (translation_table))
4300 {
4301 int i;
4302 for (i = 0; i < 128; i++)
4303 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4304 break;
4305 if (i < 128)
4306 /* Some ASCII character should be translated. We give up
4307 shrinking. */
4308 return;
4309 }
4310
4311 if (coding->heading_ascii >= 0)
4312 /* Detection routine has already found how much we can skip at the
4313 head. */
4314 *beg += coding->heading_ascii;
4315
4316 if (str)
4317 {
4318 begp_orig = begp = str + *beg;
4319 endp_orig = endp = str + *end;
4320 }
4321 else
4322 {
4323 begp_orig = begp = BYTE_POS_ADDR (*beg);
4324 endp_orig = endp = begp + *end - *beg;
4325 }
4326
4327 eol_conversion = (coding->eol_type == CODING_EOL_CR
4328 || coding->eol_type == CODING_EOL_CRLF);
4329
4330 switch (coding->type)
4331 {
4332 case coding_type_sjis:
4333 case coding_type_big5:
4334 /* We can skip all ASCII characters at the head. */
4335 if (coding->heading_ascii < 0)
4336 {
4337 if (eol_conversion)
4338 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4339 else
4340 while (begp < endp && *begp < 0x80) begp++;
4341 }
4342 /* We can skip all ASCII characters at the tail except for the
4343 second byte of SJIS or BIG5 code. */
4344 if (eol_conversion)
4345 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4346 else
4347 while (begp < endp && endp[-1] < 0x80) endp--;
4348 /* Do not consider LF as ascii if preceded by CR, since that
4349 confuses eol decoding. */
4350 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4351 endp++;
4352 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4353 endp++;
4354 break;
4355
4356 case coding_type_iso2022:
4357 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4358 /* We can't skip any data. */
4359 break;
4360 if (coding->heading_ascii < 0)
4361 {
4362 /* We can skip all ASCII characters at the head except for a
4363 few control codes. */
4364 while (begp < endp && (c = *begp) < 0x80
4365 && c != ISO_CODE_CR && c != ISO_CODE_SO
4366 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4367 && (!eol_conversion || c != ISO_CODE_LF))
4368 begp++;
4369 }
4370 switch (coding->category_idx)
4371 {
4372 case CODING_CATEGORY_IDX_ISO_8_1:
4373 case CODING_CATEGORY_IDX_ISO_8_2:
4374 /* We can skip all ASCII characters at the tail. */
4375 if (eol_conversion)
4376 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4377 else
4378 while (begp < endp && endp[-1] < 0x80) endp--;
4379 /* Do not consider LF as ascii if preceded by CR, since that
4380 confuses eol decoding. */
4381 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4382 endp++;
4383 break;
4384
4385 case CODING_CATEGORY_IDX_ISO_7:
4386 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4387 {
4388 /* We can skip all charactes at the tail except for 8-bit
4389 codes and ESC and the following 2-byte at the tail. */
4390 unsigned char *eight_bit = NULL;
4391
4392 if (eol_conversion)
4393 while (begp < endp
4394 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4395 {
4396 if (!eight_bit && c & 0x80) eight_bit = endp;
4397 endp--;
4398 }
4399 else
4400 while (begp < endp
4401 && (c = endp[-1]) != ISO_CODE_ESC)
4402 {
4403 if (!eight_bit && c & 0x80) eight_bit = endp;
4404 endp--;
4405 }
4406 /* Do not consider LF as ascii if preceded by CR, since that
4407 confuses eol decoding. */
4408 if (begp < endp && endp < endp_orig
4409 && endp[-1] == '\r' && endp[0] == '\n')
4410 endp++;
4411 if (begp < endp && endp[-1] == ISO_CODE_ESC)
4412 {
4413 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
4414 /* This is an ASCII designation sequence. We can
4415 surely skip the tail. But, if we have
4416 encountered an 8-bit code, skip only the codes
4417 after that. */
4418 endp = eight_bit ? eight_bit : endp + 2;
4419 else
4420 /* Hmmm, we can't skip the tail. */
4421 endp = endp_orig;
4422 }
4423 else if (eight_bit)
4424 endp = eight_bit;
4425 }
4426 }
4427 break;
4428
4429 default:
4430 abort ();
4431 }
4432 *beg += begp - begp_orig;
4433 *end += endp - endp_orig;
4434 return;
4435 }
4436
4437 /* Like shrink_decoding_region but for encoding. */
4438
4439 static void
4440 shrink_encoding_region (beg, end, coding, str)
4441 int *beg, *end;
4442 struct coding_system *coding;
4443 unsigned char *str;
4444 {
4445 unsigned char *begp_orig, *begp, *endp_orig, *endp;
4446 int eol_conversion;
4447 Lisp_Object translation_table;
4448
4449 if (coding->type == coding_type_ccl
4450 || coding->eol_type == CODING_EOL_CRLF
4451 || coding->eol_type == CODING_EOL_CR
4452 || coding->cmp_data && coding->cmp_data->used > 0)
4453 {
4454 /* We can't skip any data. */
4455 return;
4456 }
4457 if (coding->type == coding_type_no_conversion
4458 || coding->type == coding_type_raw_text
4459 || coding->type == coding_type_emacs_mule
4460 || coding->type == coding_type_undecided)
4461 {
4462 /* We need no conversion, but don't have to skip any data here.
4463 Encoding routine handles them effectively anyway. */
4464 return;
4465 }
4466
4467 translation_table = coding->translation_table_for_encode;
4468 if (NILP (translation_table) && !NILP (Venable_character_translation))
4469 translation_table = Vstandard_translation_table_for_encode;
4470 if (CHAR_TABLE_P (translation_table))
4471 {
4472 int i;
4473 for (i = 0; i < 128; i++)
4474 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4475 break;
4476 if (i < 128)
4477 /* Some ASCII character should be tranlsated. We give up
4478 shrinking. */
4479 return;
4480 }
4481
4482 if (str)
4483 {
4484 begp_orig = begp = str + *beg;
4485 endp_orig = endp = str + *end;
4486 }
4487 else
4488 {
4489 begp_orig = begp = BYTE_POS_ADDR (*beg);
4490 endp_orig = endp = begp + *end - *beg;
4491 }
4492
4493 eol_conversion = (coding->eol_type == CODING_EOL_CR
4494 || coding->eol_type == CODING_EOL_CRLF);
4495
4496 /* Here, we don't have to check coding->pre_write_conversion because
4497 the caller is expected to have handled it already. */
4498 switch (coding->type)
4499 {
4500 case coding_type_iso2022:
4501 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4502 /* We can't skip any data. */
4503 break;
4504 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
4505 {
4506 unsigned char *bol = begp;
4507 while (begp < endp && *begp < 0x80)
4508 {
4509 begp++;
4510 if (begp[-1] == '\n')
4511 bol = begp;
4512 }
4513 begp = bol;
4514 goto label_skip_tail;
4515 }
4516 /* fall down ... */
4517
4518 case coding_type_sjis:
4519 case coding_type_big5:
4520 /* We can skip all ASCII characters at the head and tail. */
4521 if (eol_conversion)
4522 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
4523 else
4524 while (begp < endp && *begp < 0x80) begp++;
4525 label_skip_tail:
4526 if (eol_conversion)
4527 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
4528 else
4529 while (begp < endp && *(endp - 1) < 0x80) endp--;
4530 break;
4531
4532 default:
4533 abort ();
4534 }
4535
4536 *beg += begp - begp_orig;
4537 *end += endp - endp_orig;
4538 return;
4539 }
4540
4541 /* As shrinking conversion region requires some overhead, we don't try
4542 shrinking if the length of conversion region is less than this
4543 value. */
4544 static int shrink_conversion_region_threshhold = 1024;
4545
4546 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
4547 do { \
4548 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
4549 { \
4550 if (encodep) shrink_encoding_region (beg, end, coding, str); \
4551 else shrink_decoding_region (beg, end, coding, str); \
4552 } \
4553 } while (0)
4554
4555 static Lisp_Object
4556 code_convert_region_unwind (dummy)
4557 Lisp_Object dummy;
4558 {
4559 inhibit_pre_post_conversion = 0;
4560 return Qnil;
4561 }
4562
4563 /* Store information about all compositions in the range FROM and TO
4564 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
4565 buffer or a string, defaults to the current buffer. */
4566
4567 void
4568 coding_save_composition (coding, from, to, obj)
4569 struct coding_system *coding;
4570 int from, to;
4571 Lisp_Object obj;
4572 {
4573 Lisp_Object prop;
4574 int start, end;
4575
4576 if (coding->composing == COMPOSITION_DISABLED)
4577 return;
4578 if (!coding->cmp_data)
4579 coding_allocate_composition_data (coding, from);
4580 if (!find_composition (from, to, &start, &end, &prop, obj)
4581 || end > to)
4582 return;
4583 if (start < from
4584 && (!find_composition (end, to, &start, &end, &prop, obj)
4585 || end > to))
4586 return;
4587 coding->composing = COMPOSITION_NO;
4588 do
4589 {
4590 if (COMPOSITION_VALID_P (start, end, prop))
4591 {
4592 enum composition_method method = COMPOSITION_METHOD (prop);
4593 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
4594 >= COMPOSITION_DATA_SIZE)
4595 coding_allocate_composition_data (coding, from);
4596 /* For relative composition, we remember start and end
4597 positions, for the other compositions, we also remember
4598 components. */
4599 CODING_ADD_COMPOSITION_START (coding, start - from, method);
4600 if (method != COMPOSITION_RELATIVE)
4601 {
4602 /* We must store a*/
4603 Lisp_Object val, ch;
4604
4605 val = COMPOSITION_COMPONENTS (prop);
4606 if (CONSP (val))
4607 while (CONSP (val))
4608 {
4609 ch = XCAR (val), val = XCDR (val);
4610 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
4611 }
4612 else if (VECTORP (val) || STRINGP (val))
4613 {
4614 int len = (VECTORP (val)
4615 ? XVECTOR (val)->size : XSTRING (val)->size);
4616 int i;
4617 for (i = 0; i < len; i++)
4618 {
4619 ch = (STRINGP (val)
4620 ? Faref (val, make_number (i))
4621 : XVECTOR (val)->contents[i]);
4622 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
4623 }
4624 }
4625 else /* INTEGERP (val) */
4626 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
4627 }
4628 CODING_ADD_COMPOSITION_END (coding, end - from);
4629 }
4630 start = end;
4631 }
4632 while (start < to
4633 && find_composition (start, to, &start, &end, &prop, obj)
4634 && end <= to);
4635
4636 /* Make coding->cmp_data point to the first memory block. */
4637 while (coding->cmp_data->prev)
4638 coding->cmp_data = coding->cmp_data->prev;
4639 coding->cmp_data_start = 0;
4640 }
4641
4642 /* Reflect the saved information about compositions to OBJ.
4643 CODING->cmp_data points to a memory block for the informaiton. OBJ
4644 is a buffer or a string, defaults to the current buffer. */
4645
4646 void
4647 coding_restore_composition (coding, obj)
4648 struct coding_system *coding;
4649 Lisp_Object obj;
4650 {
4651 struct composition_data *cmp_data = coding->cmp_data;
4652
4653 if (!cmp_data)
4654 return;
4655
4656 while (cmp_data->prev)
4657 cmp_data = cmp_data->prev;
4658
4659 while (cmp_data)
4660 {
4661 int i;
4662
4663 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
4664 i += cmp_data->data[i])
4665 {
4666 int *data = cmp_data->data + i;
4667 enum composition_method method = (enum composition_method) data[3];
4668 Lisp_Object components;
4669
4670 if (method == COMPOSITION_RELATIVE)
4671 components = Qnil;
4672 else
4673 {
4674 int len = data[0] - 4, j;
4675 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
4676
4677 for (j = 0; j < len; j++)
4678 args[j] = make_number (data[4 + j]);
4679 components = (method == COMPOSITION_WITH_ALTCHARS
4680 ? Fstring (len, args) : Fvector (len, args));
4681 }
4682 compose_text (data[1], data[2], components, Qnil, obj);
4683 }
4684 cmp_data = cmp_data->next;
4685 }
4686 }
4687
4688 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
4689 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
4690 coding system CODING, and return the status code of code conversion
4691 (currently, this value has no meaning).
4692
4693 How many characters (and bytes) are converted to how many
4694 characters (and bytes) are recorded in members of the structure
4695 CODING.
4696
4697 If REPLACE is nonzero, we do various things as if the original text
4698 is deleted and a new text is inserted. See the comments in
4699 replace_range (insdel.c) to know what we are doing.
4700
4701 If REPLACE is zero, it is assumed that the source text is unibyte.
4702 Otherwize, it is assumed that the source text is multibyte. */
4703
4704 int
4705 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
4706 int from, from_byte, to, to_byte, encodep, replace;
4707 struct coding_system *coding;
4708 {
4709 int len = to - from, len_byte = to_byte - from_byte;
4710 int require, inserted, inserted_byte;
4711 int head_skip, tail_skip, total_skip = 0;
4712 Lisp_Object saved_coding_symbol;
4713 int first = 1;
4714 unsigned char *src, *dst;
4715 Lisp_Object deletion;
4716 int orig_point = PT, orig_len = len;
4717 int prev_Z;
4718 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
4719
4720 coding->src_multibyte = replace && multibyte_p;
4721 coding->dst_multibyte = multibyte_p;
4722
4723 deletion = Qnil;
4724 saved_coding_symbol = Qnil;
4725
4726 if (from < PT && PT < to)
4727 {
4728 TEMP_SET_PT_BOTH (from, from_byte);
4729 orig_point = from;
4730 }
4731
4732 if (replace)
4733 {
4734 int saved_from = from;
4735 int saved_inhibit_modification_hooks;
4736
4737 prepare_to_modify_buffer (from, to, &from);
4738 if (saved_from != from)
4739 {
4740 to = from + len;
4741 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
4742 len_byte = to_byte - from_byte;
4743 }
4744
4745 /* The code conversion routine can not preserve text properties
4746 for now. So, we must remove all text properties in the
4747 region. Here, we must suppress all modification hooks. */
4748 saved_inhibit_modification_hooks = inhibit_modification_hooks;
4749 inhibit_modification_hooks = 1;
4750 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
4751 inhibit_modification_hooks = saved_inhibit_modification_hooks;
4752 }
4753
4754 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4755 {
4756 /* We must detect encoding of text and eol format. */
4757
4758 if (from < GPT && to > GPT)
4759 move_gap_both (from, from_byte);
4760 if (coding->type == coding_type_undecided)
4761 {
4762 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
4763 if (coding->type == coding_type_undecided)
4764 /* It seems that the text contains only ASCII, but we
4765 should not left it undecided because the deeper
4766 decoding routine (decode_coding) tries to detect the
4767 encodings again in vain. */
4768 coding->type = coding_type_emacs_mule;
4769 }
4770 if (coding->eol_type == CODING_EOL_UNDECIDED
4771 && coding->type != coding_type_ccl)
4772 {
4773 saved_coding_symbol = coding->symbol;
4774 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
4775 if (coding->eol_type == CODING_EOL_UNDECIDED)
4776 coding->eol_type = CODING_EOL_LF;
4777 /* We had better recover the original eol format if we
4778 encounter an inconsitent eol format while decoding. */
4779 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4780 }
4781 }
4782
4783 /* Now we convert the text. */
4784
4785 /* For encoding, we must process pre-write-conversion in advance. */
4786 if (! inhibit_pre_post_conversion
4787 && encodep
4788 && SYMBOLP (coding->pre_write_conversion)
4789 && ! NILP (Ffboundp (coding->pre_write_conversion)))
4790 {
4791 /* The function in pre-write-conversion may put a new text in a
4792 new buffer. */
4793 struct buffer *prev = current_buffer;
4794 Lisp_Object new;
4795 int count = specpdl_ptr - specpdl;
4796
4797 record_unwind_protect (code_convert_region_unwind, Qnil);
4798 /* We should not call any more pre-write/post-read-conversion
4799 functions while this pre-write-conversion is running. */
4800 inhibit_pre_post_conversion = 1;
4801 call2 (coding->pre_write_conversion,
4802 make_number (from), make_number (to));
4803 inhibit_pre_post_conversion = 0;
4804 /* Discard the unwind protect. */
4805 specpdl_ptr--;
4806
4807 if (current_buffer != prev)
4808 {
4809 len = ZV - BEGV;
4810 new = Fcurrent_buffer ();
4811 set_buffer_internal_1 (prev);
4812 del_range_2 (from, from_byte, to, to_byte, 0);
4813 TEMP_SET_PT_BOTH (from, from_byte);
4814 insert_from_buffer (XBUFFER (new), 1, len, 0);
4815 Fkill_buffer (new);
4816 if (orig_point >= to)
4817 orig_point += len - orig_len;
4818 else if (orig_point > from)
4819 orig_point = from;
4820 orig_len = len;
4821 to = from + len;
4822 from_byte = CHAR_TO_BYTE (from);
4823 to_byte = CHAR_TO_BYTE (to);
4824 len_byte = to_byte - from_byte;
4825 TEMP_SET_PT_BOTH (from, from_byte);
4826 }
4827 }
4828
4829 if (replace)
4830 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
4831
4832 if (coding->composing != COMPOSITION_DISABLED)
4833 {
4834 if (encodep)
4835 coding_save_composition (coding, from, to, Fcurrent_buffer ());
4836 else
4837 coding_allocate_composition_data (coding, from);
4838 }
4839
4840 /* Try to skip the heading and tailing ASCIIs. */
4841 if (coding->type != coding_type_ccl)
4842 {
4843 int from_byte_orig = from_byte, to_byte_orig = to_byte;
4844
4845 if (from < GPT && GPT < to)
4846 move_gap_both (from, from_byte);
4847 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
4848 if (from_byte == to_byte
4849 && (encodep || NILP (coding->post_read_conversion))
4850 && ! CODING_REQUIRE_FLUSHING (coding))
4851 {
4852 coding->produced = len_byte;
4853 coding->produced_char = len;
4854 if (!replace)
4855 /* We must record and adjust for this new text now. */
4856 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
4857 return 0;
4858 }
4859
4860 head_skip = from_byte - from_byte_orig;
4861 tail_skip = to_byte_orig - to_byte;
4862 total_skip = head_skip + tail_skip;
4863 from += head_skip;
4864 to -= tail_skip;
4865 len -= total_skip; len_byte -= total_skip;
4866 }
4867
4868 /* For converion, we must put the gap before the text in addition to
4869 making the gap larger for efficient decoding. The required gap
4870 size starts from 2000 which is the magic number used in make_gap.
4871 But, after one batch of conversion, it will be incremented if we
4872 find that it is not enough . */
4873 require = 2000;
4874
4875 if (GAP_SIZE < require)
4876 make_gap (require - GAP_SIZE);
4877 move_gap_both (from, from_byte);
4878
4879 inserted = inserted_byte = 0;
4880
4881 GAP_SIZE += len_byte;
4882 ZV -= len;
4883 Z -= len;
4884 ZV_BYTE -= len_byte;
4885 Z_BYTE -= len_byte;
4886
4887 if (GPT - BEG < BEG_UNCHANGED)
4888 BEG_UNCHANGED = GPT - BEG;
4889 if (Z - GPT < END_UNCHANGED)
4890 END_UNCHANGED = Z - GPT;
4891
4892 if (!encodep && coding->src_multibyte)
4893 {
4894 /* Decoding routines expects that the source text is unibyte.
4895 We must convert 8-bit characters of multibyte form to
4896 unibyte. */
4897 int len_byte_orig = len_byte;
4898 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
4899 if (len_byte < len_byte_orig)
4900 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
4901 len_byte);
4902 coding->src_multibyte = 0;
4903 }
4904
4905 for (;;)
4906 {
4907 int result;
4908
4909 /* The buffer memory is now:
4910 +--------+converted-text+---------+-------original-text-------+---+
4911 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
4912 |<---------------------- GAP ----------------------->| */
4913 src = GAP_END_ADDR - len_byte;
4914 dst = GPT_ADDR + inserted_byte;
4915
4916 if (encodep)
4917 result = encode_coding (coding, src, dst, len_byte, 0);
4918 else
4919 result = decode_coding (coding, src, dst, len_byte, 0);
4920
4921 /* The buffer memory is now:
4922 +--------+-------converted-text----+--+------original-text----+---+
4923 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
4924 |<---------------------- GAP ----------------------->| */
4925
4926 inserted += coding->produced_char;
4927 inserted_byte += coding->produced;
4928 len_byte -= coding->consumed;
4929
4930 if (result == CODING_FINISH_INSUFFICIENT_CMP)
4931 {
4932 coding_allocate_composition_data (coding, from + inserted);
4933 continue;
4934 }
4935
4936 src += coding->consumed;
4937 dst += coding->produced;
4938
4939 if (result == CODING_FINISH_NORMAL)
4940 {
4941 src += len_byte;
4942 break;
4943 }
4944 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
4945 {
4946 unsigned char *pend = dst, *p = pend - inserted_byte;
4947 Lisp_Object eol_type;
4948
4949 /* Encode LFs back to the original eol format (CR or CRLF). */
4950 if (coding->eol_type == CODING_EOL_CR)
4951 {
4952 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
4953 }
4954 else
4955 {
4956 int count = 0;
4957
4958 while (p < pend) if (*p++ == '\n') count++;
4959 if (src - dst < count)
4960 {
4961 /* We don't have sufficient room for encoding LFs
4962 back to CRLF. We must record converted and
4963 not-yet-converted text back to the buffer
4964 content, enlarge the gap, then record them out of
4965 the buffer contents again. */
4966 int add = len_byte + inserted_byte;
4967
4968 GAP_SIZE -= add;
4969 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
4970 GPT += inserted_byte; GPT_BYTE += inserted_byte;
4971 make_gap (count - GAP_SIZE);
4972 GAP_SIZE += add;
4973 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
4974 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
4975 /* Don't forget to update SRC, DST, and PEND. */
4976 src = GAP_END_ADDR - len_byte;
4977 dst = GPT_ADDR + inserted_byte;
4978 pend = dst;
4979 }
4980 inserted += count;
4981 inserted_byte += count;
4982 coding->produced += count;
4983 p = dst = pend + count;
4984 while (count)
4985 {
4986 *--p = *--pend;
4987 if (*p == '\n') count--, *--p = '\r';
4988 }
4989 }
4990
4991 /* Suppress eol-format conversion in the further conversion. */
4992 coding->eol_type = CODING_EOL_LF;
4993
4994 /* Set the coding system symbol to that for Unix-like EOL. */
4995 eol_type = Fget (saved_coding_symbol, Qeol_type);
4996 if (VECTORP (eol_type)
4997 && XVECTOR (eol_type)->size == 3
4998 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
4999 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5000 else
5001 coding->symbol = saved_coding_symbol;
5002
5003 continue;
5004 }
5005 if (len_byte <= 0)
5006 {
5007 if (coding->type != coding_type_ccl
5008 || coding->mode & CODING_MODE_LAST_BLOCK)
5009 break;
5010 coding->mode |= CODING_MODE_LAST_BLOCK;
5011 continue;
5012 }
5013 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5014 {
5015 /* The source text ends in invalid codes. Let's just
5016 make them valid buffer contents, and finish conversion. */
5017 inserted += len_byte;
5018 inserted_byte += len_byte;
5019 while (len_byte--)
5020 *dst++ = *src++;
5021 break;
5022 }
5023 if (result == CODING_FINISH_INTERRUPT)
5024 {
5025 /* The conversion procedure was interrupted by a user. */
5026 break;
5027 }
5028 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5029 if (coding->consumed < 1)
5030 {
5031 /* It's quite strange to require more memory without
5032 consuming any bytes. Perhaps CCL program bug. */
5033 break;
5034 }
5035 if (first)
5036 {
5037 /* We have just done the first batch of conversion which was
5038 stoped because of insufficient gap. Let's reconsider the
5039 required gap size (i.e. SRT - DST) now.
5040
5041 We have converted ORIG bytes (== coding->consumed) into
5042 NEW bytes (coding->produced). To convert the remaining
5043 LEN bytes, we may need REQUIRE bytes of gap, where:
5044 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5045 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5046 Here, we are sure that NEW >= ORIG. */
5047 float ratio = coding->produced - coding->consumed;
5048 ratio /= coding->consumed;
5049 require = len_byte * ratio;
5050 first = 0;
5051 }
5052 if ((src - dst) < (require + 2000))
5053 {
5054 /* See the comment above the previous call of make_gap. */
5055 int add = len_byte + inserted_byte;
5056
5057 GAP_SIZE -= add;
5058 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5059 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5060 make_gap (require + 2000);
5061 GAP_SIZE += add;
5062 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5063 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5064 }
5065 }
5066 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5067
5068 if (encodep && coding->dst_multibyte)
5069 {
5070 /* The output is unibyte. We must convert 8-bit characters to
5071 multibyte form. */
5072 if (inserted_byte * 2 > GAP_SIZE)
5073 {
5074 GAP_SIZE -= inserted_byte;
5075 ZV += inserted_byte; Z += inserted_byte;
5076 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5077 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5078 make_gap (inserted_byte - GAP_SIZE);
5079 GAP_SIZE += inserted_byte;
5080 ZV -= inserted_byte; Z -= inserted_byte;
5081 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5082 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5083 }
5084 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5085 }
5086
5087 /* If we have shrinked the conversion area, adjust it now. */
5088 if (total_skip > 0)
5089 {
5090 if (tail_skip > 0)
5091 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5092 inserted += total_skip; inserted_byte += total_skip;
5093 GAP_SIZE += total_skip;
5094 GPT -= head_skip; GPT_BYTE -= head_skip;
5095 ZV -= total_skip; ZV_BYTE -= total_skip;
5096 Z -= total_skip; Z_BYTE -= total_skip;
5097 from -= head_skip; from_byte -= head_skip;
5098 to += tail_skip; to_byte += tail_skip;
5099 }
5100
5101 prev_Z = Z;
5102 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5103 inserted = Z - prev_Z;
5104
5105 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5106 coding_restore_composition (coding, Fcurrent_buffer ());
5107 coding_free_composition_data (coding);
5108
5109 if (! inhibit_pre_post_conversion
5110 && ! encodep && ! NILP (coding->post_read_conversion))
5111 {
5112 Lisp_Object val;
5113 int count = specpdl_ptr - specpdl;
5114
5115 if (from != PT)
5116 TEMP_SET_PT_BOTH (from, from_byte);
5117 prev_Z = Z;
5118 record_unwind_protect (code_convert_region_unwind, Qnil);
5119 /* We should not call any more pre-write/post-read-conversion
5120 functions while this post-read-conversion is running. */
5121 inhibit_pre_post_conversion = 1;
5122 val = call1 (coding->post_read_conversion, make_number (inserted));
5123 inhibit_pre_post_conversion = 0;
5124 /* Discard the unwind protect. */
5125 specpdl_ptr--;
5126 CHECK_NUMBER (val, 0);
5127 inserted += Z - prev_Z;
5128 }
5129
5130 if (orig_point >= from)
5131 {
5132 if (orig_point >= from + orig_len)
5133 orig_point += inserted - orig_len;
5134 else
5135 orig_point = from;
5136 TEMP_SET_PT (orig_point);
5137 }
5138
5139 if (replace)
5140 {
5141 signal_after_change (from, to - from, inserted);
5142 update_compositions (from, from + inserted, CHECK_BORDER);
5143 }
5144
5145 {
5146 coding->consumed = to_byte - from_byte;
5147 coding->consumed_char = to - from;
5148 coding->produced = inserted_byte;
5149 coding->produced_char = inserted;
5150 }
5151
5152 return 0;
5153 }
5154
5155 Lisp_Object
5156 run_pre_post_conversion_on_str (str, coding, encodep)
5157 Lisp_Object str;
5158 struct coding_system *coding;
5159 int encodep;
5160 {
5161 int count = specpdl_ptr - specpdl;
5162 struct gcpro gcpro1;
5163 struct buffer *prev = current_buffer;
5164 int multibyte = STRING_MULTIBYTE (str);
5165
5166 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5167 record_unwind_protect (code_convert_region_unwind, Qnil);
5168 GCPRO1 (str);
5169 temp_output_buffer_setup (" *code-converting-work*");
5170 set_buffer_internal (XBUFFER (Vstandard_output));
5171 /* We must insert the contents of STR as is without
5172 unibyte<->multibyte conversion. For that, we adjust the
5173 multibyteness of the working buffer to that of STR. */
5174 Ferase_buffer ();
5175 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
5176 insert_from_string (str, 0, 0,
5177 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5178 UNGCPRO;
5179 inhibit_pre_post_conversion = 1;
5180 if (encodep)
5181 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5182 else
5183 {
5184 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5185 call1 (coding->post_read_conversion, make_number (Z - BEG));
5186 }
5187 inhibit_pre_post_conversion = 0;
5188 str = make_buffer_string (BEG, Z, 1);
5189 return unbind_to (count, str);
5190 }
5191
5192 Lisp_Object
5193 decode_coding_string (str, coding, nocopy)
5194 Lisp_Object str;
5195 struct coding_system *coding;
5196 int nocopy;
5197 {
5198 int len;
5199 char *buf;
5200 int from, to, to_byte;
5201 struct gcpro gcpro1;
5202 Lisp_Object saved_coding_symbol;
5203 int result;
5204 int require_decoding;
5205
5206 from = 0;
5207 to = XSTRING (str)->size;
5208 to_byte = STRING_BYTES (XSTRING (str));
5209
5210 saved_coding_symbol = Qnil;
5211 if (CODING_REQUIRE_DETECTION (coding))
5212 {
5213 /* See the comments in code_convert_region. */
5214 if (coding->type == coding_type_undecided)
5215 {
5216 detect_coding (coding, XSTRING (str)->data, to_byte);
5217 if (coding->type == coding_type_undecided)
5218 coding->type = coding_type_emacs_mule;
5219 }
5220 if (coding->eol_type == CODING_EOL_UNDECIDED
5221 && coding->type != coding_type_ccl)
5222 {
5223 saved_coding_symbol = coding->symbol;
5224 detect_eol (coding, XSTRING (str)->data, to_byte);
5225 if (coding->eol_type == CODING_EOL_UNDECIDED)
5226 coding->eol_type = CODING_EOL_LF;
5227 /* We had better recover the original eol format if we
5228 encounter an inconsitent eol format while decoding. */
5229 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5230 }
5231 }
5232
5233 require_decoding = CODING_REQUIRE_DECODING (coding);
5234
5235 if (STRING_MULTIBYTE (str))
5236 {
5237 /* Decoding routines expect the source text to be unibyte. */
5238 str = Fstring_as_unibyte (str);
5239 to_byte = STRING_BYTES (XSTRING (str));
5240 nocopy = 1;
5241 }
5242 coding->src_multibyte = 0;
5243 coding->dst_multibyte = (coding->type != coding_type_no_conversion
5244 && coding->type != coding_type_raw_text);
5245
5246 /* Try to skip the heading and tailing ASCIIs. */
5247 if (require_decoding && coding->type != coding_type_ccl)
5248 {
5249 int from_orig = from;
5250
5251 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5252 0);
5253 if (from == to_byte)
5254 require_decoding = 0;
5255 }
5256
5257 if (!require_decoding)
5258 {
5259 coding->consumed = STRING_BYTES (XSTRING (str));
5260 coding->consumed_char = XSTRING (str)->size;
5261 if (coding->dst_multibyte)
5262 {
5263 str = Fstring_as_multibyte (str);
5264 nocopy = 1;
5265 }
5266 coding->produced = STRING_BYTES (XSTRING (str));
5267 coding->produced_char = XSTRING (str)->size;
5268 return (nocopy ? str : Fcopy_sequence (str));
5269 }
5270
5271 if (coding->composing != COMPOSITION_DISABLED)
5272 coding_allocate_composition_data (coding, from);
5273
5274 len = decoding_buffer_size (coding, to_byte - from);
5275 len += from + STRING_BYTES (XSTRING (str)) - to_byte;
5276 GCPRO1 (str);
5277 buf = get_conversion_buffer (len);
5278 UNGCPRO;
5279
5280 if (from > 0)
5281 bcopy (XSTRING (str)->data, buf, from);
5282 result = decode_coding (coding, XSTRING (str)->data + from,
5283 buf + from, to_byte - from, len);
5284 if (result == CODING_FINISH_INCONSISTENT_EOL)
5285 {
5286 /* We simply try to decode the whole string again but without
5287 eol-conversion this time. */
5288 coding->eol_type = CODING_EOL_LF;
5289 coding->symbol = saved_coding_symbol;
5290 coding_free_composition_data (coding);
5291 return decode_coding_string (str, coding, nocopy);
5292 }
5293
5294 bcopy (XSTRING (str)->data + to_byte, buf + from + coding->produced,
5295 STRING_BYTES (XSTRING (str)) - to_byte);
5296
5297 len = from + STRING_BYTES (XSTRING (str)) - to_byte;
5298 if (coding->dst_multibyte)
5299 str = make_multibyte_string (buf, len + coding->produced_char,
5300 len + coding->produced);
5301 else
5302 str = make_unibyte_string (buf, len + coding->produced);
5303
5304 if (coding->cmp_data && coding->cmp_data->used)
5305 coding_restore_composition (coding, str);
5306 coding_free_composition_data (coding);
5307
5308 if (SYMBOLP (coding->post_read_conversion)
5309 && !NILP (Ffboundp (coding->post_read_conversion)))
5310 str = run_pre_post_conversion_on_str (str, coding, 0);
5311
5312 return str;
5313 }
5314
5315 Lisp_Object
5316 encode_coding_string (str, coding, nocopy)
5317 Lisp_Object str;
5318 struct coding_system *coding;
5319 int nocopy;
5320 {
5321 int len;
5322 char *buf;
5323 int from, to, to_byte;
5324 struct gcpro gcpro1;
5325 Lisp_Object saved_coding_symbol;
5326 int result;
5327
5328 if (SYMBOLP (coding->pre_write_conversion)
5329 && !NILP (Ffboundp (coding->pre_write_conversion)))
5330 str = run_pre_post_conversion_on_str (str, coding, 1);
5331
5332 from = 0;
5333 to = XSTRING (str)->size;
5334 to_byte = STRING_BYTES (XSTRING (str));
5335
5336 saved_coding_symbol = Qnil;
5337 if (! CODING_REQUIRE_ENCODING (coding))
5338 {
5339 if (STRING_MULTIBYTE (str))
5340 {
5341 str = Fstring_as_unibyte (str);
5342 nocopy = 1;
5343 }
5344 return (nocopy ? str : Fcopy_sequence (str));
5345 }
5346
5347 /* Encoding routines determine the multibyteness of the source text
5348 by coding->src_multibyte. */
5349 coding->src_multibyte = STRING_MULTIBYTE (str);
5350 coding->dst_multibyte = 0;
5351
5352 if (coding->composing != COMPOSITION_DISABLED)
5353 coding_save_composition (coding, from, to, str);
5354
5355 /* Try to skip the heading and tailing ASCIIs. */
5356 if (coding->type != coding_type_ccl)
5357 {
5358 int from_orig = from;
5359
5360 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5361 1);
5362 if (from == to_byte)
5363 return (nocopy ? str : Fcopy_sequence (str));
5364 }
5365
5366 len = encoding_buffer_size (coding, to_byte - from);
5367 len += from + STRING_BYTES (XSTRING (str)) - to_byte;
5368 GCPRO1 (str);
5369 buf = get_conversion_buffer (len);
5370 UNGCPRO;
5371
5372 if (from > 0)
5373 bcopy (XSTRING (str)->data, buf, from);
5374 result = encode_coding (coding, XSTRING (str)->data + from,
5375 buf + from, to_byte - from, len);
5376 bcopy (XSTRING (str)->data + to_byte, buf + from + coding->produced,
5377 STRING_BYTES (XSTRING (str)) - to_byte);
5378
5379 len = from + STRING_BYTES (XSTRING (str)) - to_byte;
5380 str = make_unibyte_string (buf, len + coding->produced);
5381 coding_free_composition_data (coding);
5382
5383 return str;
5384 }
5385
5386 \f
5387 #ifdef emacs
5388 /*** 8. Emacs Lisp library functions ***/
5389
5390 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
5391 "Return t if OBJECT is nil or a coding-system.\n\
5392 See the documentation of `make-coding-system' for information\n\
5393 about coding-system objects.")
5394 (obj)
5395 Lisp_Object obj;
5396 {
5397 if (NILP (obj))
5398 return Qt;
5399 if (!SYMBOLP (obj))
5400 return Qnil;
5401 /* Get coding-spec vector for OBJ. */
5402 obj = Fget (obj, Qcoding_system);
5403 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
5404 ? Qt : Qnil);
5405 }
5406
5407 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
5408 Sread_non_nil_coding_system, 1, 1, 0,
5409 "Read a coding system from the minibuffer, prompting with string PROMPT.")
5410 (prompt)
5411 Lisp_Object prompt;
5412 {
5413 Lisp_Object val;
5414 do
5415 {
5416 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
5417 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
5418 }
5419 while (XSTRING (val)->size == 0);
5420 return (Fintern (val, Qnil));
5421 }
5422
5423 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
5424 "Read a coding system from the minibuffer, prompting with string PROMPT.\n\
5425 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.")
5426 (prompt, default_coding_system)
5427 Lisp_Object prompt, default_coding_system;
5428 {
5429 Lisp_Object val;
5430 if (SYMBOLP (default_coding_system))
5431 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
5432 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
5433 Qt, Qnil, Qcoding_system_history,
5434 default_coding_system, Qnil);
5435 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
5436 }
5437
5438 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
5439 1, 1, 0,
5440 "Check validity of CODING-SYSTEM.\n\
5441 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.\n\
5442 It is valid if it is a symbol with a non-nil `coding-system' property.\n\
5443 The value of property should be a vector of length 5.")
5444 (coding_system)
5445 Lisp_Object coding_system;
5446 {
5447 CHECK_SYMBOL (coding_system, 0);
5448 if (!NILP (Fcoding_system_p (coding_system)))
5449 return coding_system;
5450 while (1)
5451 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5452 }
5453 \f
5454 Lisp_Object
5455 detect_coding_system (src, src_bytes, highest)
5456 unsigned char *src;
5457 int src_bytes, highest;
5458 {
5459 int coding_mask, eol_type;
5460 Lisp_Object val, tmp;
5461 int dummy;
5462
5463 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy);
5464 eol_type = detect_eol_type (src, src_bytes, &dummy);
5465 if (eol_type == CODING_EOL_INCONSISTENT)
5466 eol_type = CODING_EOL_UNDECIDED;
5467
5468 if (!coding_mask)
5469 {
5470 val = Qundecided;
5471 if (eol_type != CODING_EOL_UNDECIDED)
5472 {
5473 Lisp_Object val2;
5474 val2 = Fget (Qundecided, Qeol_type);
5475 if (VECTORP (val2))
5476 val = XVECTOR (val2)->contents[eol_type];
5477 }
5478 return (highest ? val : Fcons (val, Qnil));
5479 }
5480
5481 /* At first, gather possible coding systems in VAL. */
5482 val = Qnil;
5483 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
5484 {
5485 Lisp_Object category_val, category_index;
5486
5487 category_index = Fget (XCAR (tmp), Qcoding_category_index);
5488 category_val = Fsymbol_value (XCAR (tmp));
5489 if (!NILP (category_val)
5490 && NATNUMP (category_index)
5491 && (coding_mask & (1 << XFASTINT (category_index))))
5492 {
5493 val = Fcons (category_val, val);
5494 if (highest)
5495 break;
5496 }
5497 }
5498 if (!highest)
5499 val = Fnreverse (val);
5500
5501 /* Then, replace the elements with subsidiary coding systems. */
5502 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
5503 {
5504 if (eol_type != CODING_EOL_UNDECIDED
5505 && eol_type != CODING_EOL_INCONSISTENT)
5506 {
5507 Lisp_Object eol;
5508 eol = Fget (XCAR (tmp), Qeol_type);
5509 if (VECTORP (eol))
5510 XCAR (tmp) = XVECTOR (eol)->contents[eol_type];
5511 }
5512 }
5513 return (highest ? XCAR (val) : val);
5514 }
5515
5516 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
5517 2, 3, 0,
5518 "Detect coding system of the text in the region between START and END.\n\
5519 Return a list of possible coding systems ordered by priority.\n\
5520 \n\
5521 If only ASCII characters are found, it returns a list of single element\n\
5522 `undecided' or its subsidiary coding system according to a detected\n\
5523 end-of-line format.\n\
5524 \n\
5525 If optional argument HIGHEST is non-nil, return the coding system of\n\
5526 highest priority.")
5527 (start, end, highest)
5528 Lisp_Object start, end, highest;
5529 {
5530 int from, to;
5531 int from_byte, to_byte;
5532
5533 CHECK_NUMBER_COERCE_MARKER (start, 0);
5534 CHECK_NUMBER_COERCE_MARKER (end, 1);
5535
5536 validate_region (&start, &end);
5537 from = XINT (start), to = XINT (end);
5538 from_byte = CHAR_TO_BYTE (from);
5539 to_byte = CHAR_TO_BYTE (to);
5540
5541 if (from < GPT && to >= GPT)
5542 move_gap_both (to, to_byte);
5543
5544 return detect_coding_system (BYTE_POS_ADDR (from_byte),
5545 to_byte - from_byte,
5546 !NILP (highest));
5547 }
5548
5549 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
5550 1, 2, 0,
5551 "Detect coding system of the text in STRING.\n\
5552 Return a list of possible coding systems ordered by priority.\n\
5553 \n\
5554 If only ASCII characters are found, it returns a list of single element\n\
5555 `undecided' or its subsidiary coding system according to a detected\n\
5556 end-of-line format.\n\
5557 \n\
5558 If optional argument HIGHEST is non-nil, return the coding system of\n\
5559 highest priority.")
5560 (string, highest)
5561 Lisp_Object string, highest;
5562 {
5563 CHECK_STRING (string, 0);
5564
5565 return detect_coding_system (XSTRING (string)->data,
5566 STRING_BYTES (XSTRING (string)),
5567 !NILP (highest));
5568 }
5569
5570 /* Return an intersection of lists L1 and L2. */
5571
5572 static Lisp_Object
5573 intersection (l1, l2)
5574 Lisp_Object l1, l2;
5575 {
5576 Lisp_Object val;
5577
5578 for (val = Qnil; CONSP (l1); l1 = XCDR (l1))
5579 {
5580 if (!NILP (Fmemq (XCAR (l1), l2)))
5581 val = Fcons (XCAR (l1), val);
5582 }
5583 return val;
5584 }
5585
5586
5587 /* Subroutine for Fsafe_coding_systems_region_internal.
5588
5589 Return a list of coding systems that safely encode the multibyte
5590 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
5591 possible coding systems. If it is nil, it means that we have not
5592 yet found any coding systems.
5593
5594 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
5595 element of WORK_TABLE is set to t once the element is looked up.
5596
5597 If a non-ASCII single byte char is found, set
5598 *single_byte_char_found to 1. */
5599
5600 static Lisp_Object
5601 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
5602 unsigned char *p, *pend;
5603 Lisp_Object safe_codings, work_table;
5604 int *single_byte_char_found;
5605 {
5606 int c, len, idx;
5607 Lisp_Object val;
5608
5609 while (p < pend)
5610 {
5611 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
5612 p += len;
5613 if (ASCII_BYTE_P (c))
5614 /* We can ignore ASCII characters here. */
5615 continue;
5616 if (SINGLE_BYTE_CHAR_P (c))
5617 *single_byte_char_found = 1;
5618 if (NILP (safe_codings))
5619 continue;
5620 /* Check the safe coding systems for C. */
5621 val = char_table_ref_and_index (work_table, c, &idx);
5622 if (EQ (val, Qt))
5623 /* This element was already checked. Ignore it. */
5624 continue;
5625 /* Remember that we checked this element. */
5626 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
5627
5628 /* If there are some safe coding systems for C and we have
5629 already found the other set of coding systems for the
5630 different characters, get the intersection of them. */
5631 if (!EQ (safe_codings, Qt) && !NILP (val))
5632 val = intersection (safe_codings, val);
5633 safe_codings = val;
5634 }
5635 return safe_codings;
5636 }
5637
5638
5639 /* Return a list of coding systems that safely encode the text between
5640 START and END. If the text contains only ASCII or is unibyte,
5641 return t. */
5642
5643 DEFUN ("find-coding-systems-region-internal",
5644 Ffind_coding_systems_region_internal,
5645 Sfind_coding_systems_region_internal, 2, 2, 0,
5646 "Internal use only.")
5647 (start, end)
5648 Lisp_Object start, end;
5649 {
5650 Lisp_Object work_table, safe_codings;
5651 int non_ascii_p = 0;
5652 int single_byte_char_found = 0;
5653 unsigned char *p1, *p1end, *p2, *p2end, *p;
5654 Lisp_Object args[2];
5655
5656 if (STRINGP (start))
5657 {
5658 if (!STRING_MULTIBYTE (start))
5659 return Qt;
5660 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
5661 p2 = p2end = p1end;
5662 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
5663 non_ascii_p = 1;
5664 }
5665 else
5666 {
5667 int from, to, stop;
5668
5669 CHECK_NUMBER_COERCE_MARKER (start, 0);
5670 CHECK_NUMBER_COERCE_MARKER (end, 1);
5671 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
5672 args_out_of_range (start, end);
5673 if (NILP (current_buffer->enable_multibyte_characters))
5674 return Qt;
5675 from = CHAR_TO_BYTE (XINT (start));
5676 to = CHAR_TO_BYTE (XINT (end));
5677 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
5678 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
5679 if (stop == to)
5680 p2 = p2end = p1end;
5681 else
5682 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
5683 if (XINT (end) - XINT (start) != to - from)
5684 non_ascii_p = 1;
5685 }
5686
5687 if (!non_ascii_p)
5688 {
5689 /* We are sure that the text contains no multibyte character.
5690 Check if it contains eight-bit-graphic. */
5691 p = p1;
5692 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
5693 if (p == p1end)
5694 {
5695 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
5696 if (p == p2end)
5697 return Qt;
5698 }
5699 }
5700
5701 /* The text contains non-ASCII characters. */
5702 work_table = Fcopy_sequence (Vchar_coding_system_table);
5703 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
5704 &single_byte_char_found);
5705 if (p2 < p2end)
5706 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
5707 &single_byte_char_found);
5708
5709 if (!single_byte_char_found)
5710 {
5711 /* Append generic coding systems. */
5712 Lisp_Object args[2];
5713 args[0] = safe_codings;
5714 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
5715 make_number (0));
5716 safe_codings = Fappend (2, args);
5717 }
5718 else
5719 safe_codings = Fcons (Qraw_text, Fcons (Qemacs_mule, safe_codings));
5720 return safe_codings;
5721 }
5722
5723
5724 Lisp_Object
5725 code_convert_region1 (start, end, coding_system, encodep)
5726 Lisp_Object start, end, coding_system;
5727 int encodep;
5728 {
5729 struct coding_system coding;
5730 int from, to, len;
5731
5732 CHECK_NUMBER_COERCE_MARKER (start, 0);
5733 CHECK_NUMBER_COERCE_MARKER (end, 1);
5734 CHECK_SYMBOL (coding_system, 2);
5735
5736 validate_region (&start, &end);
5737 from = XFASTINT (start);
5738 to = XFASTINT (end);
5739
5740 if (NILP (coding_system))
5741 return make_number (to - from);
5742
5743 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
5744 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
5745
5746 coding.mode |= CODING_MODE_LAST_BLOCK;
5747 coding.src_multibyte = coding.dst_multibyte
5748 = !NILP (current_buffer->enable_multibyte_characters);
5749 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
5750 &coding, encodep, 1);
5751 Vlast_coding_system_used = coding.symbol;
5752 return make_number (coding.produced_char);
5753 }
5754
5755 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
5756 3, 3, "r\nzCoding system: ",
5757 "Decode the current region by specified coding system.\n\
5758 When called from a program, takes three arguments:\n\
5759 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
5760 This function sets `last-coding-system-used' to the precise coding system\n\
5761 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5762 not fully specified.)\n\
5763 It returns the length of the decoded text.")
5764 (start, end, coding_system)
5765 Lisp_Object start, end, coding_system;
5766 {
5767 return code_convert_region1 (start, end, coding_system, 0);
5768 }
5769
5770 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
5771 3, 3, "r\nzCoding system: ",
5772 "Encode the current region by specified coding system.\n\
5773 When called from a program, takes three arguments:\n\
5774 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
5775 This function sets `last-coding-system-used' to the precise coding system\n\
5776 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5777 not fully specified.)\n\
5778 It returns the length of the encoded text.")
5779 (start, end, coding_system)
5780 Lisp_Object start, end, coding_system;
5781 {
5782 return code_convert_region1 (start, end, coding_system, 1);
5783 }
5784
5785 Lisp_Object
5786 code_convert_string1 (string, coding_system, nocopy, encodep)
5787 Lisp_Object string, coding_system, nocopy;
5788 int encodep;
5789 {
5790 struct coding_system coding;
5791
5792 CHECK_STRING (string, 0);
5793 CHECK_SYMBOL (coding_system, 1);
5794
5795 if (NILP (coding_system))
5796 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
5797
5798 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
5799 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
5800
5801 coding.mode |= CODING_MODE_LAST_BLOCK;
5802 string = (encodep
5803 ? encode_coding_string (string, &coding, !NILP (nocopy))
5804 : decode_coding_string (string, &coding, !NILP (nocopy)));
5805 Vlast_coding_system_used = coding.symbol;
5806
5807 return string;
5808 }
5809
5810 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
5811 2, 3, 0,
5812 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
5813 Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
5814 if the decoding operation is trivial.\n\
5815 This function sets `last-coding-system-used' to the precise coding system\n\
5816 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5817 not fully specified.)")
5818 (string, coding_system, nocopy)
5819 Lisp_Object string, coding_system, nocopy;
5820 {
5821 return code_convert_string1 (string, coding_system, nocopy, 0);
5822 }
5823
5824 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
5825 2, 3, 0,
5826 "Encode STRING to CODING-SYSTEM, and return the result.\n\
5827 Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
5828 if the encoding operation is trivial.\n\
5829 This function sets `last-coding-system-used' to the precise coding system\n\
5830 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5831 not fully specified.)")
5832 (string, coding_system, nocopy)
5833 Lisp_Object string, coding_system, nocopy;
5834 {
5835 return code_convert_string1 (string, coding_system, nocopy, 1);
5836 }
5837
5838 /* Encode or decode STRING according to CODING_SYSTEM.
5839 Do not set Vlast_coding_system_used.
5840
5841 This function is called only from macros DECODE_FILE and
5842 ENCODE_FILE, thus we ignore character composition. */
5843
5844 Lisp_Object
5845 code_convert_string_norecord (string, coding_system, encodep)
5846 Lisp_Object string, coding_system;
5847 int encodep;
5848 {
5849 struct coding_system coding;
5850
5851 CHECK_STRING (string, 0);
5852 CHECK_SYMBOL (coding_system, 1);
5853
5854 if (NILP (coding_system))
5855 return string;
5856
5857 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
5858 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
5859
5860 coding.composing = COMPOSITION_DISABLED;
5861 coding.mode |= CODING_MODE_LAST_BLOCK;
5862 return (encodep
5863 ? encode_coding_string (string, &coding, 1)
5864 : decode_coding_string (string, &coding, 1));
5865 }
5866 \f
5867 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
5868 "Decode a Japanese character which has CODE in shift_jis encoding.\n\
5869 Return the corresponding character.")
5870 (code)
5871 Lisp_Object code;
5872 {
5873 unsigned char c1, c2, s1, s2;
5874 Lisp_Object val;
5875
5876 CHECK_NUMBER (code, 0);
5877 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
5878 if (s1 == 0)
5879 {
5880 if (s2 < 0x80)
5881 XSETFASTINT (val, s2);
5882 else if (s2 >= 0xA0 || s2 <= 0xDF)
5883 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
5884 else
5885 error ("Invalid Shift JIS code: %x", XFASTINT (code));
5886 }
5887 else
5888 {
5889 if ((s1 < 0x80 || s1 > 0x9F && s1 < 0xE0 || s1 > 0xEF)
5890 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
5891 error ("Invalid Shift JIS code: %x", XFASTINT (code));
5892 DECODE_SJIS (s1, s2, c1, c2);
5893 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
5894 }
5895 return val;
5896 }
5897
5898 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
5899 "Encode a Japanese character CHAR to shift_jis encoding.\n\
5900 Return the corresponding code in SJIS.")
5901 (ch)
5902 Lisp_Object ch;
5903 {
5904 int charset, c1, c2, s1, s2;
5905 Lisp_Object val;
5906
5907 CHECK_NUMBER (ch, 0);
5908 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
5909 if (charset == CHARSET_ASCII)
5910 {
5911 val = ch;
5912 }
5913 else if (charset == charset_jisx0208
5914 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
5915 {
5916 ENCODE_SJIS (c1, c2, s1, s2);
5917 XSETFASTINT (val, (s1 << 8) | s2);
5918 }
5919 else if (charset == charset_katakana_jisx0201
5920 && c1 > 0x20 && c2 < 0xE0)
5921 {
5922 XSETFASTINT (val, c1 | 0x80);
5923 }
5924 else
5925 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
5926 return val;
5927 }
5928
5929 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
5930 "Decode a Big5 character which has CODE in BIG5 coding system.\n\
5931 Return the corresponding character.")
5932 (code)
5933 Lisp_Object code;
5934 {
5935 int charset;
5936 unsigned char b1, b2, c1, c2;
5937 Lisp_Object val;
5938
5939 CHECK_NUMBER (code, 0);
5940 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
5941 if (b1 == 0)
5942 {
5943 if (b2 >= 0x80)
5944 error ("Invalid BIG5 code: %x", XFASTINT (code));
5945 val = code;
5946 }
5947 else
5948 {
5949 if ((b1 < 0xA1 || b1 > 0xFE)
5950 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
5951 error ("Invalid BIG5 code: %x", XFASTINT (code));
5952 DECODE_BIG5 (b1, b2, charset, c1, c2);
5953 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
5954 }
5955 return val;
5956 }
5957
5958 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
5959 "Encode the Big5 character CHAR to BIG5 coding system.\n\
5960 Return the corresponding character code in Big5.")
5961 (ch)
5962 Lisp_Object ch;
5963 {
5964 int charset, c1, c2, b1, b2;
5965 Lisp_Object val;
5966
5967 CHECK_NUMBER (ch, 0);
5968 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
5969 if (charset == CHARSET_ASCII)
5970 {
5971 val = ch;
5972 }
5973 else if ((charset == charset_big5_1
5974 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
5975 || (charset == charset_big5_2
5976 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
5977 {
5978 ENCODE_BIG5 (charset, c1, c2, b1, b2);
5979 XSETFASTINT (val, (b1 << 8) | b2);
5980 }
5981 else
5982 error ("Can't encode to Big5: %d", XFASTINT (ch));
5983 return val;
5984 }
5985 \f
5986 DEFUN ("set-terminal-coding-system-internal",
5987 Fset_terminal_coding_system_internal,
5988 Sset_terminal_coding_system_internal, 1, 1, 0, "")
5989 (coding_system)
5990 Lisp_Object coding_system;
5991 {
5992 CHECK_SYMBOL (coding_system, 0);
5993 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
5994 /* We had better not send unsafe characters to terminal. */
5995 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
5996 /* Characer composition should be disabled. */
5997 terminal_coding.composing = COMPOSITION_DISABLED;
5998 terminal_coding.src_multibyte = 1;
5999 terminal_coding.dst_multibyte = 0;
6000 return Qnil;
6001 }
6002
6003 DEFUN ("set-safe-terminal-coding-system-internal",
6004 Fset_safe_terminal_coding_system_internal,
6005 Sset_safe_terminal_coding_system_internal, 1, 1, 0, "")
6006 (coding_system)
6007 Lisp_Object coding_system;
6008 {
6009 CHECK_SYMBOL (coding_system, 0);
6010 setup_coding_system (Fcheck_coding_system (coding_system),
6011 &safe_terminal_coding);
6012 /* Characer composition should be disabled. */
6013 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6014 safe_terminal_coding.src_multibyte = 1;
6015 safe_terminal_coding.dst_multibyte = 0;
6016 return Qnil;
6017 }
6018
6019 DEFUN ("terminal-coding-system",
6020 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6021 "Return coding system specified for terminal output.")
6022 ()
6023 {
6024 return terminal_coding.symbol;
6025 }
6026
6027 DEFUN ("set-keyboard-coding-system-internal",
6028 Fset_keyboard_coding_system_internal,
6029 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
6030 (coding_system)
6031 Lisp_Object coding_system;
6032 {
6033 CHECK_SYMBOL (coding_system, 0);
6034 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6035 /* Characer composition should be disabled. */
6036 keyboard_coding.composing = COMPOSITION_DISABLED;
6037 return Qnil;
6038 }
6039
6040 DEFUN ("keyboard-coding-system",
6041 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6042 "Return coding system specified for decoding keyboard input.")
6043 ()
6044 {
6045 return keyboard_coding.symbol;
6046 }
6047
6048 \f
6049 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6050 Sfind_operation_coding_system, 1, MANY, 0,
6051 "Choose a coding system for an operation based on the target name.\n\
6052 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).\n\
6053 DECODING-SYSTEM is the coding system to use for decoding\n\
6054 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
6055 for encoding (in case OPERATION does encoding).\n\
6056 \n\
6057 The first argument OPERATION specifies an I/O primitive:\n\
6058 For file I/O, `insert-file-contents' or `write-region'.\n\
6059 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
6060 For network I/O, `open-network-stream'.\n\
6061 \n\
6062 The remaining arguments should be the same arguments that were passed\n\
6063 to the primitive. Depending on which primitive, one of those arguments\n\
6064 is selected as the TARGET. For example, if OPERATION does file I/O,\n\
6065 whichever argument specifies the file name is TARGET.\n\
6066 \n\
6067 TARGET has a meaning which depends on OPERATION:\n\
6068 For file I/O, TARGET is a file name.\n\
6069 For process I/O, TARGET is a process name.\n\
6070 For network I/O, TARGET is a service name or a port number\n\
6071 \n\
6072 This function looks up what specified for TARGET in,\n\
6073 `file-coding-system-alist', `process-coding-system-alist',\n\
6074 or `network-coding-system-alist' depending on OPERATION.\n\
6075 They may specify a coding system, a cons of coding systems,\n\
6076 or a function symbol to call.\n\
6077 In the last case, we call the function with one argument,\n\
6078 which is a list of all the arguments given to this function.")
6079 (nargs, args)
6080 int nargs;
6081 Lisp_Object *args;
6082 {
6083 Lisp_Object operation, target_idx, target, val;
6084 register Lisp_Object chain;
6085
6086 if (nargs < 2)
6087 error ("Too few arguments");
6088 operation = args[0];
6089 if (!SYMBOLP (operation)
6090 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6091 error ("Invalid first arguement");
6092 if (nargs < 1 + XINT (target_idx))
6093 error ("Too few arguments for operation: %s",
6094 XSYMBOL (operation)->name->data);
6095 target = args[XINT (target_idx) + 1];
6096 if (!(STRINGP (target)
6097 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6098 error ("Invalid %dth argument", XINT (target_idx) + 1);
6099
6100 chain = ((EQ (operation, Qinsert_file_contents)
6101 || EQ (operation, Qwrite_region))
6102 ? Vfile_coding_system_alist
6103 : (EQ (operation, Qopen_network_stream)
6104 ? Vnetwork_coding_system_alist
6105 : Vprocess_coding_system_alist));
6106 if (NILP (chain))
6107 return Qnil;
6108
6109 for (; CONSP (chain); chain = XCDR (chain))
6110 {
6111 Lisp_Object elt;
6112 elt = XCAR (chain);
6113
6114 if (CONSP (elt)
6115 && ((STRINGP (target)
6116 && STRINGP (XCAR (elt))
6117 && fast_string_match (XCAR (elt), target) >= 0)
6118 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6119 {
6120 val = XCDR (elt);
6121 /* Here, if VAL is both a valid coding system and a valid
6122 function symbol, we return VAL as a coding system. */
6123 if (CONSP (val))
6124 return val;
6125 if (! SYMBOLP (val))
6126 return Qnil;
6127 if (! NILP (Fcoding_system_p (val)))
6128 return Fcons (val, val);
6129 if (! NILP (Ffboundp (val)))
6130 {
6131 val = call1 (val, Flist (nargs, args));
6132 if (CONSP (val))
6133 return val;
6134 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6135 return Fcons (val, val);
6136 }
6137 return Qnil;
6138 }
6139 }
6140 return Qnil;
6141 }
6142
6143 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6144 Supdate_coding_systems_internal, 0, 0, 0,
6145 "Update internal database for ISO2022 and CCL based coding systems.\n\
6146 When values of any coding categories are changed, you must\n\
6147 call this function")
6148 ()
6149 {
6150 int i;
6151
6152 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6153 {
6154 Lisp_Object val;
6155
6156 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[i])->value;
6157 if (!NILP (val))
6158 {
6159 if (! coding_system_table[i])
6160 coding_system_table[i] = ((struct coding_system *)
6161 xmalloc (sizeof (struct coding_system)));
6162 setup_coding_system (val, coding_system_table[i]);
6163 }
6164 else if (coding_system_table[i])
6165 {
6166 xfree (coding_system_table[i]);
6167 coding_system_table[i] = NULL;
6168 }
6169 }
6170
6171 return Qnil;
6172 }
6173
6174 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6175 Sset_coding_priority_internal, 0, 0, 0,
6176 "Update internal database for the current value of `coding-category-list'.\n\
6177 This function is internal use only.")
6178 ()
6179 {
6180 int i = 0, idx;
6181 Lisp_Object val;
6182
6183 val = Vcoding_category_list;
6184
6185 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6186 {
6187 if (! SYMBOLP (XCAR (val)))
6188 break;
6189 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6190 if (idx >= CODING_CATEGORY_IDX_MAX)
6191 break;
6192 coding_priorities[i++] = (1 << idx);
6193 val = XCDR (val);
6194 }
6195 /* If coding-category-list is valid and contains all coding
6196 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6197 the following code saves Emacs from crashing. */
6198 while (i < CODING_CATEGORY_IDX_MAX)
6199 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6200
6201 return Qnil;
6202 }
6203
6204 #endif /* emacs */
6205
6206 \f
6207 /*** 9. Post-amble ***/
6208
6209 void
6210 init_coding ()
6211 {
6212 conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE);
6213 }
6214
6215 void
6216 init_coding_once ()
6217 {
6218 int i;
6219
6220 /* Emacs' internal format specific initialize routine. */
6221 for (i = 0; i <= 0x20; i++)
6222 emacs_code_class[i] = EMACS_control_code;
6223 emacs_code_class[0x0A] = EMACS_linefeed_code;
6224 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6225 for (i = 0x21 ; i < 0x7F; i++)
6226 emacs_code_class[i] = EMACS_ascii_code;
6227 emacs_code_class[0x7F] = EMACS_control_code;
6228 for (i = 0x80; i < 0xFF; i++)
6229 emacs_code_class[i] = EMACS_invalid_code;
6230 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
6231 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
6232 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
6233 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
6234
6235 /* ISO2022 specific initialize routine. */
6236 for (i = 0; i < 0x20; i++)
6237 iso_code_class[i] = ISO_control_0;
6238 for (i = 0x21; i < 0x7F; i++)
6239 iso_code_class[i] = ISO_graphic_plane_0;
6240 for (i = 0x80; i < 0xA0; i++)
6241 iso_code_class[i] = ISO_control_1;
6242 for (i = 0xA1; i < 0xFF; i++)
6243 iso_code_class[i] = ISO_graphic_plane_1;
6244 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
6245 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
6246 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
6247 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
6248 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
6249 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
6250 iso_code_class[ISO_CODE_ESC] = ISO_escape;
6251 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
6252 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
6253 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
6254
6255 conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE;
6256
6257 setup_coding_system (Qnil, &keyboard_coding);
6258 setup_coding_system (Qnil, &terminal_coding);
6259 setup_coding_system (Qnil, &safe_terminal_coding);
6260 setup_coding_system (Qnil, &default_buffer_file_coding);
6261
6262 bzero (coding_system_table, sizeof coding_system_table);
6263
6264 bzero (ascii_skip_code, sizeof ascii_skip_code);
6265 for (i = 0; i < 128; i++)
6266 ascii_skip_code[i] = 1;
6267
6268 #if defined (MSDOS) || defined (WINDOWSNT)
6269 system_eol_type = CODING_EOL_CRLF;
6270 #else
6271 system_eol_type = CODING_EOL_LF;
6272 #endif
6273
6274 inhibit_pre_post_conversion = 0;
6275 }
6276
6277 #ifdef emacs
6278
6279 void
6280 syms_of_coding ()
6281 {
6282 Qtarget_idx = intern ("target-idx");
6283 staticpro (&Qtarget_idx);
6284
6285 Qcoding_system_history = intern ("coding-system-history");
6286 staticpro (&Qcoding_system_history);
6287 Fset (Qcoding_system_history, Qnil);
6288
6289 /* Target FILENAME is the first argument. */
6290 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
6291 /* Target FILENAME is the third argument. */
6292 Fput (Qwrite_region, Qtarget_idx, make_number (2));
6293
6294 Qcall_process = intern ("call-process");
6295 staticpro (&Qcall_process);
6296 /* Target PROGRAM is the first argument. */
6297 Fput (Qcall_process, Qtarget_idx, make_number (0));
6298
6299 Qcall_process_region = intern ("call-process-region");
6300 staticpro (&Qcall_process_region);
6301 /* Target PROGRAM is the third argument. */
6302 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
6303
6304 Qstart_process = intern ("start-process");
6305 staticpro (&Qstart_process);
6306 /* Target PROGRAM is the third argument. */
6307 Fput (Qstart_process, Qtarget_idx, make_number (2));
6308
6309 Qopen_network_stream = intern ("open-network-stream");
6310 staticpro (&Qopen_network_stream);
6311 /* Target SERVICE is the fourth argument. */
6312 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
6313
6314 Qcoding_system = intern ("coding-system");
6315 staticpro (&Qcoding_system);
6316
6317 Qeol_type = intern ("eol-type");
6318 staticpro (&Qeol_type);
6319
6320 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
6321 staticpro (&Qbuffer_file_coding_system);
6322
6323 Qpost_read_conversion = intern ("post-read-conversion");
6324 staticpro (&Qpost_read_conversion);
6325
6326 Qpre_write_conversion = intern ("pre-write-conversion");
6327 staticpro (&Qpre_write_conversion);
6328
6329 Qno_conversion = intern ("no-conversion");
6330 staticpro (&Qno_conversion);
6331
6332 Qundecided = intern ("undecided");
6333 staticpro (&Qundecided);
6334
6335 Qcoding_system_p = intern ("coding-system-p");
6336 staticpro (&Qcoding_system_p);
6337
6338 Qcoding_system_error = intern ("coding-system-error");
6339 staticpro (&Qcoding_system_error);
6340
6341 Fput (Qcoding_system_error, Qerror_conditions,
6342 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
6343 Fput (Qcoding_system_error, Qerror_message,
6344 build_string ("Invalid coding system"));
6345
6346 Qcoding_category = intern ("coding-category");
6347 staticpro (&Qcoding_category);
6348 Qcoding_category_index = intern ("coding-category-index");
6349 staticpro (&Qcoding_category_index);
6350
6351 Vcoding_category_table
6352 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
6353 staticpro (&Vcoding_category_table);
6354 {
6355 int i;
6356 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
6357 {
6358 XVECTOR (Vcoding_category_table)->contents[i]
6359 = intern (coding_category_name[i]);
6360 Fput (XVECTOR (Vcoding_category_table)->contents[i],
6361 Qcoding_category_index, make_number (i));
6362 }
6363 }
6364
6365 Qtranslation_table = intern ("translation-table");
6366 staticpro (&Qtranslation_table);
6367 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
6368
6369 Qtranslation_table_id = intern ("translation-table-id");
6370 staticpro (&Qtranslation_table_id);
6371
6372 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
6373 staticpro (&Qtranslation_table_for_decode);
6374
6375 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
6376 staticpro (&Qtranslation_table_for_encode);
6377
6378 Qsafe_chars = intern ("safe-chars");
6379 staticpro (&Qsafe_chars);
6380
6381 Qchar_coding_system = intern ("char-coding-system");
6382 staticpro (&Qchar_coding_system);
6383
6384 /* Intern this now in case it isn't already done.
6385 Setting this variable twice is harmless.
6386 But don't staticpro it here--that is done in alloc.c. */
6387 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6388 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
6389 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (1));
6390
6391 Qvalid_codes = intern ("valid-codes");
6392 staticpro (&Qvalid_codes);
6393
6394 Qemacs_mule = intern ("emacs-mule");
6395 staticpro (&Qemacs_mule);
6396
6397 Qraw_text = intern ("raw-text");
6398 staticpro (&Qraw_text);
6399
6400 defsubr (&Scoding_system_p);
6401 defsubr (&Sread_coding_system);
6402 defsubr (&Sread_non_nil_coding_system);
6403 defsubr (&Scheck_coding_system);
6404 defsubr (&Sdetect_coding_region);
6405 defsubr (&Sdetect_coding_string);
6406 defsubr (&Sfind_coding_systems_region_internal);
6407 defsubr (&Sdecode_coding_region);
6408 defsubr (&Sencode_coding_region);
6409 defsubr (&Sdecode_coding_string);
6410 defsubr (&Sencode_coding_string);
6411 defsubr (&Sdecode_sjis_char);
6412 defsubr (&Sencode_sjis_char);
6413 defsubr (&Sdecode_big5_char);
6414 defsubr (&Sencode_big5_char);
6415 defsubr (&Sset_terminal_coding_system_internal);
6416 defsubr (&Sset_safe_terminal_coding_system_internal);
6417 defsubr (&Sterminal_coding_system);
6418 defsubr (&Sset_keyboard_coding_system_internal);
6419 defsubr (&Skeyboard_coding_system);
6420 defsubr (&Sfind_operation_coding_system);
6421 defsubr (&Supdate_coding_systems_internal);
6422 defsubr (&Sset_coding_priority_internal);
6423
6424 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
6425 "List of coding systems.\n\
6426 \n\
6427 Do not alter the value of this variable manually. This variable should be\n\
6428 updated by the functions `make-coding-system' and\n\
6429 `define-coding-system-alias'.");
6430 Vcoding_system_list = Qnil;
6431
6432 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
6433 "Alist of coding system names.\n\
6434 Each element is one element list of coding system name.\n\
6435 This variable is given to `completing-read' as TABLE argument.\n\
6436 \n\
6437 Do not alter the value of this variable manually. This variable should be\n\
6438 updated by the functions `make-coding-system' and\n\
6439 `define-coding-system-alias'.");
6440 Vcoding_system_alist = Qnil;
6441
6442 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
6443 "List of coding-categories (symbols) ordered by priority.");
6444 {
6445 int i;
6446
6447 Vcoding_category_list = Qnil;
6448 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
6449 Vcoding_category_list
6450 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
6451 Vcoding_category_list);
6452 }
6453
6454 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
6455 "Specify the coding system for read operations.\n\
6456 It is useful to bind this variable with `let', but do not set it globally.\n\
6457 If the value is a coding system, it is used for decoding on read operation.\n\
6458 If not, an appropriate element is used from one of the coding system alists:\n\
6459 There are three such tables, `file-coding-system-alist',\n\
6460 `process-coding-system-alist', and `network-coding-system-alist'.");
6461 Vcoding_system_for_read = Qnil;
6462
6463 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
6464 "Specify the coding system for write operations.\n\
6465 Programs bind this variable with `let', but you should not set it globally.\n\
6466 If the value is a coding system, it is used for encoding of output,\n\
6467 when writing it to a file and when sending it to a file or subprocess.\n\
6468 \n\
6469 If this does not specify a coding system, an appropriate element\n\
6470 is used from one of the coding system alists:\n\
6471 There are three such tables, `file-coding-system-alist',\n\
6472 `process-coding-system-alist', and `network-coding-system-alist'.\n\
6473 For output to files, if the above procedure does not specify a coding system,\n\
6474 the value of `buffer-file-coding-system' is used.");
6475 Vcoding_system_for_write = Qnil;
6476
6477 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
6478 "Coding system used in the latest file or process I/O.");
6479 Vlast_coding_system_used = Qnil;
6480
6481 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
6482 "*Non-nil means always inhibit code conversion of end-of-line format.\n\
6483 See info node `Coding Systems' and info node `Text and Binary' concerning\n\
6484 such conversion.");
6485 inhibit_eol_conversion = 0;
6486
6487 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
6488 "Non-nil means process buffer inherits coding system of process output.\n\
6489 Bind it to t if the process output is to be treated as if it were a file\n\
6490 read from some filesystem.");
6491 inherit_process_coding_system = 0;
6492
6493 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
6494 "Alist to decide a coding system to use for a file I/O operation.\n\
6495 The format is ((PATTERN . VAL) ...),\n\
6496 where PATTERN is a regular expression matching a file name,\n\
6497 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
6498 If VAL is a coding system, it is used for both decoding and encoding\n\
6499 the file contents.\n\
6500 If VAL is a cons of coding systems, the car part is used for decoding,\n\
6501 and the cdr part is used for encoding.\n\
6502 If VAL is a function symbol, the function must return a coding system\n\
6503 or a cons of coding systems which are used as above.\n\
6504 \n\
6505 See also the function `find-operation-coding-system'\n\
6506 and the variable `auto-coding-alist'.");
6507 Vfile_coding_system_alist = Qnil;
6508
6509 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
6510 "Alist to decide a coding system to use for a process I/O operation.\n\
6511 The format is ((PATTERN . VAL) ...),\n\
6512 where PATTERN is a regular expression matching a program name,\n\
6513 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
6514 If VAL is a coding system, it is used for both decoding what received\n\
6515 from the program and encoding what sent to the program.\n\
6516 If VAL is a cons of coding systems, the car part is used for decoding,\n\
6517 and the cdr part is used for encoding.\n\
6518 If VAL is a function symbol, the function must return a coding system\n\
6519 or a cons of coding systems which are used as above.\n\
6520 \n\
6521 See also the function `find-operation-coding-system'.");
6522 Vprocess_coding_system_alist = Qnil;
6523
6524 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
6525 "Alist to decide a coding system to use for a network I/O operation.\n\
6526 The format is ((PATTERN . VAL) ...),\n\
6527 where PATTERN is a regular expression matching a network service name\n\
6528 or is a port number to connect to,\n\
6529 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
6530 If VAL is a coding system, it is used for both decoding what received\n\
6531 from the network stream and encoding what sent to the network stream.\n\
6532 If VAL is a cons of coding systems, the car part is used for decoding,\n\
6533 and the cdr part is used for encoding.\n\
6534 If VAL is a function symbol, the function must return a coding system\n\
6535 or a cons of coding systems which are used as above.\n\
6536 \n\
6537 See also the function `find-operation-coding-system'.");
6538 Vnetwork_coding_system_alist = Qnil;
6539
6540 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
6541 "Coding system to use with system messages.");
6542 Vlocale_coding_system = Qnil;
6543
6544 /* The eol mnemonics are reset in startup.el system-dependently. */
6545 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
6546 "*String displayed in mode line for UNIX-like (LF) end-of-line format.");
6547 eol_mnemonic_unix = build_string (":");
6548
6549 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
6550 "*String displayed in mode line for DOS-like (CRLF) end-of-line format.");
6551 eol_mnemonic_dos = build_string ("\\");
6552
6553 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
6554 "*String displayed in mode line for MAC-like (CR) end-of-line format.");
6555 eol_mnemonic_mac = build_string ("/");
6556
6557 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
6558 "*String displayed in mode line when end-of-line format is not yet determined.");
6559 eol_mnemonic_undecided = build_string (":");
6560
6561 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
6562 "*Non-nil enables character translation while encoding and decoding.");
6563 Venable_character_translation = Qt;
6564
6565 DEFVAR_LISP ("standard-translation-table-for-decode",
6566 &Vstandard_translation_table_for_decode,
6567 "Table for translating characters while decoding.");
6568 Vstandard_translation_table_for_decode = Qnil;
6569
6570 DEFVAR_LISP ("standard-translation-table-for-encode",
6571 &Vstandard_translation_table_for_encode,
6572 "Table for translationg characters while encoding.");
6573 Vstandard_translation_table_for_encode = Qnil;
6574
6575 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
6576 "Alist of charsets vs revision numbers.\n\
6577 While encoding, if a charset (car part of an element) is found,\n\
6578 designate it with the escape sequence identifing revision (cdr part of the element).");
6579 Vcharset_revision_alist = Qnil;
6580
6581 DEFVAR_LISP ("default-process-coding-system",
6582 &Vdefault_process_coding_system,
6583 "Cons of coding systems used for process I/O by default.\n\
6584 The car part is used for decoding a process output,\n\
6585 the cdr part is used for encoding a text to be sent to a process.");
6586 Vdefault_process_coding_system = Qnil;
6587
6588 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
6589 "Table of extra Latin codes in the range 128..159 (inclusive).\n\
6590 This is a vector of length 256.\n\
6591 If Nth element is non-nil, the existence of code N in a file\n\
6592 \(or output of subprocess) doesn't prevent it to be detected as\n\
6593 a coding system of ISO 2022 variant which has a flag\n\
6594 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\
6595 or reading output of a subprocess.\n\
6596 Only 128th through 159th elements has a meaning.");
6597 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
6598
6599 DEFVAR_LISP ("select-safe-coding-system-function",
6600 &Vselect_safe_coding_system_function,
6601 "Function to call to select safe coding system for encoding a text.\n\
6602 \n\
6603 If set, this function is called to force a user to select a proper\n\
6604 coding system which can encode the text in the case that a default\n\
6605 coding system used in each operation can't encode the text.\n\
6606 \n\
6607 The default value is `select-safe-coding-system' (which see).");
6608 Vselect_safe_coding_system_function = Qnil;
6609
6610 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
6611 "Char-table containing safe coding systems of each characters.\n\
6612 Each element doesn't include such generic coding systems that can\n\
6613 encode any characters. They are in the first extra slot.");
6614 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
6615
6616 DEFVAR_BOOL ("inhibit-iso-escape-detection",
6617 &inhibit_iso_escape_detection,
6618 "If non-nil, Emacs ignores ISO2022's escape sequence on code detection.\n\
6619 \n\
6620 By default, on reading a file, Emacs tries to detect how the text is\n\
6621 encoded. This code detection is sensitive to escape sequences. If\n\
6622 the sequence is valid as ISO2022, the code is determined as one of\n\
6623 the ISO2022 encodings, and the file is decoded by the corresponding\n\
6624 coding system (e.g. `iso-2022-7bit').\n\
6625 \n\
6626 However, there may be a case that you want to read escape sequences in\n\
6627 a file as is. In such a case, you can set this variable to non-nil.\n\
6628 Then, as the code detection ignores any escape sequences, no file is\n\
6629 detected as encoded in some ISO2022 encoding. The result is that all\n\
6630 escape sequences become visible in a buffer.\n\
6631 \n\
6632 The default value is nil, and it is strongly recommended not to change\n\
6633 it. That is because many Emacs Lisp source files that contain\n\
6634 non-ASCII characters are encoded by the coding system `iso-2022-7bit'\n\
6635 in Emacs's distribution, and they won't be decoded correctly on\n\
6636 reading if you suppress escape sequence detection.\n\
6637 \n\
6638 The other way to read escape sequences in a file without decoding is\n\
6639 to explicitly specify some coding system that doesn't use ISO2022's\n\
6640 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument].");
6641 inhibit_iso_escape_detection = 0;
6642 }
6643
6644 char *
6645 emacs_strerror (error_number)
6646 int error_number;
6647 {
6648 char *str;
6649
6650 synchronize_system_messages_locale ();
6651 str = strerror (error_number);
6652
6653 if (! NILP (Vlocale_coding_system))
6654 {
6655 Lisp_Object dec = code_convert_string_norecord (build_string (str),
6656 Vlocale_coding_system,
6657 0);
6658 str = (char *) XSTRING (dec)->data;
6659 }
6660
6661 return str;
6662 }
6663
6664 #endif /* emacs */
6665