]> code.delx.au - gnu-emacs/blob - src/fns.c
* xterm.c:
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #ifdef HAVE_UNISTD_H
24 #include <unistd.h>
25 #endif
26 #include <time.h>
27 #include <setjmp.h>
28
29 /* Note on some machines this defines `vector' as a typedef,
30 so make sure we don't use that name in this file. */
31 #undef vector
32 #define vector *****
33
34 #include "lisp.h"
35 #include "commands.h"
36 #include "character.h"
37 #include "coding.h"
38 #include "buffer.h"
39 #include "keyboard.h"
40 #include "keymap.h"
41 #include "intervals.h"
42 #include "frame.h"
43 #include "window.h"
44 #include "blockinput.h"
45 #ifdef HAVE_MENUS
46 #if defined (HAVE_X_WINDOWS)
47 #include "xterm.h"
48 #elif defined (MAC_OS)
49 #include "macterm.h"
50 #endif
51 #endif
52
53 #ifndef NULL
54 #define NULL ((POINTER_TYPE *)0)
55 #endif
56
57 /* Nonzero enables use of dialog boxes for questions
58 asked by mouse commands. */
59 int use_dialog_box;
60
61 /* Nonzero enables use of a file dialog for file name
62 questions asked by mouse commands. */
63 int use_file_dialog;
64
65 extern int minibuffer_auto_raise;
66 extern Lisp_Object minibuf_window;
67 extern Lisp_Object Vlocale_coding_system;
68 extern int load_in_progress;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
79
80 extern long get_random ();
81 extern void seed_random P_ ((long));
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer LIMIT, return random number in interval [0,LIMIT).
100 With argument t, set the random number seed from the current time and pid.
101 Other values of LIMIT are ignored. */)
102 (limit)
103 Lisp_Object limit;
104 {
105 EMACS_INT val;
106 Lisp_Object lispy_val;
107 unsigned long denominator;
108
109 if (EQ (limit, Qt))
110 seed_random (getpid () + time (NULL));
111 if (NATNUMP (limit) && XFASTINT (limit) != 0)
112 {
113 /* Try to take our random number from the higher bits of VAL,
114 not the lower, since (says Gentzel) the low bits of `random'
115 are less random than the higher ones. We do this by using the
116 quotient rather than the remainder. At the high end of the RNG
117 it's possible to get a quotient larger than n; discarding
118 these values eliminates the bias that would otherwise appear
119 when using a large n. */
120 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
121 do
122 val = get_random () / denominator;
123 while (val >= XFASTINT (limit));
124 }
125 else
126 val = get_random ();
127 XSETINT (lispy_val, val);
128 return lispy_val;
129 }
130 \f
131 /* Random data-structure functions */
132
133 DEFUN ("length", Flength, Slength, 1, 1, 0,
134 doc: /* Return the length of vector, list or string SEQUENCE.
135 A byte-code function object is also allowed.
136 If the string contains multibyte characters, this is not necessarily
137 the number of bytes in the string; it is the number of characters.
138 To get the number of bytes, use `string-bytes'. */)
139 (sequence)
140 register Lisp_Object sequence;
141 {
142 register Lisp_Object val;
143 register int i;
144
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, ASIZE (sequence));
149 else if (CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, MAX_CHAR);
151 else if (BOOL_VECTOR_P (sequence))
152 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
153 else if (COMPILEDP (sequence))
154 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
155 else if (CONSP (sequence))
156 {
157 i = 0;
158 while (CONSP (sequence))
159 {
160 sequence = XCDR (sequence);
161 ++i;
162
163 if (!CONSP (sequence))
164 break;
165
166 sequence = XCDR (sequence);
167 ++i;
168 QUIT;
169 }
170
171 CHECK_LIST_END (sequence, sequence);
172
173 val = make_number (i);
174 }
175 else if (NILP (sequence))
176 XSETFASTINT (val, 0);
177 else
178 wrong_type_argument (Qsequencep, sequence);
179
180 return val;
181 }
182
183 /* This does not check for quits. That is safe since it must terminate. */
184
185 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
186 doc: /* Return the length of a list, but avoid error or infinite loop.
187 This function never gets an error. If LIST is not really a list,
188 it returns 0. If LIST is circular, it returns a finite value
189 which is at least the number of distinct elements. */)
190 (list)
191 Lisp_Object list;
192 {
193 Lisp_Object tail, halftail, length;
194 int len = 0;
195
196 /* halftail is used to detect circular lists. */
197 halftail = list;
198 for (tail = list; CONSP (tail); tail = XCDR (tail))
199 {
200 if (EQ (tail, halftail) && len != 0)
201 break;
202 len++;
203 if ((len & 1) == 0)
204 halftail = XCDR (halftail);
205 }
206
207 XSETINT (length, len);
208 return length;
209 }
210
211 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
212 doc: /* Return the number of bytes in STRING.
213 If STRING is multibyte, this may be greater than the length of STRING. */)
214 (string)
215 Lisp_Object string;
216 {
217 CHECK_STRING (string);
218 return make_number (SBYTES (string));
219 }
220
221 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
222 doc: /* Return t if two strings have identical contents.
223 Case is significant, but text properties are ignored.
224 Symbols are also allowed; their print names are used instead. */)
225 (s1, s2)
226 register Lisp_Object s1, s2;
227 {
228 if (SYMBOLP (s1))
229 s1 = SYMBOL_NAME (s1);
230 if (SYMBOLP (s2))
231 s2 = SYMBOL_NAME (s2);
232 CHECK_STRING (s1);
233 CHECK_STRING (s2);
234
235 if (SCHARS (s1) != SCHARS (s2)
236 || SBYTES (s1) != SBYTES (s2)
237 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
238 return Qnil;
239 return Qt;
240 }
241
242 DEFUN ("compare-strings", Fcompare_strings,
243 Scompare_strings, 6, 7, 0,
244 doc: /* Compare the contents of two strings, converting to multibyte if needed.
245 In string STR1, skip the first START1 characters and stop at END1.
246 In string STR2, skip the first START2 characters and stop at END2.
247 END1 and END2 default to the full lengths of the respective strings.
248
249 Case is significant in this comparison if IGNORE-CASE is nil.
250 Unibyte strings are converted to multibyte for comparison.
251
252 The value is t if the strings (or specified portions) match.
253 If string STR1 is less, the value is a negative number N;
254 - 1 - N is the number of characters that match at the beginning.
255 If string STR1 is greater, the value is a positive number N;
256 N - 1 is the number of characters that match at the beginning. */)
257 (str1, start1, end1, str2, start2, end2, ignore_case)
258 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
259 {
260 register int end1_char, end2_char;
261 register int i1, i1_byte, i2, i2_byte;
262
263 CHECK_STRING (str1);
264 CHECK_STRING (str2);
265 if (NILP (start1))
266 start1 = make_number (0);
267 if (NILP (start2))
268 start2 = make_number (0);
269 CHECK_NATNUM (start1);
270 CHECK_NATNUM (start2);
271 if (! NILP (end1))
272 CHECK_NATNUM (end1);
273 if (! NILP (end2))
274 CHECK_NATNUM (end2);
275
276 i1 = XINT (start1);
277 i2 = XINT (start2);
278
279 i1_byte = string_char_to_byte (str1, i1);
280 i2_byte = string_char_to_byte (str2, i2);
281
282 end1_char = SCHARS (str1);
283 if (! NILP (end1) && end1_char > XINT (end1))
284 end1_char = XINT (end1);
285
286 end2_char = SCHARS (str2);
287 if (! NILP (end2) && end2_char > XINT (end2))
288 end2_char = XINT (end2);
289
290 while (i1 < end1_char && i2 < end2_char)
291 {
292 /* When we find a mismatch, we must compare the
293 characters, not just the bytes. */
294 int c1, c2;
295
296 if (STRING_MULTIBYTE (str1))
297 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
298 else
299 {
300 c1 = SREF (str1, i1++);
301 MAKE_CHAR_MULTIBYTE (c1);
302 }
303
304 if (STRING_MULTIBYTE (str2))
305 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
306 else
307 {
308 c2 = SREF (str2, i2++);
309 MAKE_CHAR_MULTIBYTE (c2);
310 }
311
312 if (c1 == c2)
313 continue;
314
315 if (! NILP (ignore_case))
316 {
317 Lisp_Object tem;
318
319 tem = Fupcase (make_number (c1));
320 c1 = XINT (tem);
321 tem = Fupcase (make_number (c2));
322 c2 = XINT (tem);
323 }
324
325 if (c1 == c2)
326 continue;
327
328 /* Note that I1 has already been incremented
329 past the character that we are comparing;
330 hence we don't add or subtract 1 here. */
331 if (c1 < c2)
332 return make_number (- i1 + XINT (start1));
333 else
334 return make_number (i1 - XINT (start1));
335 }
336
337 if (i1 < end1_char)
338 return make_number (i1 - XINT (start1) + 1);
339 if (i2 < end2_char)
340 return make_number (- i1 + XINT (start1) - 1);
341
342 return Qt;
343 }
344
345 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
346 doc: /* Return t if first arg string is less than second in lexicographic order.
347 Case is significant.
348 Symbols are also allowed; their print names are used instead. */)
349 (s1, s2)
350 register Lisp_Object s1, s2;
351 {
352 register int end;
353 register int i1, i1_byte, i2, i2_byte;
354
355 if (SYMBOLP (s1))
356 s1 = SYMBOL_NAME (s1);
357 if (SYMBOLP (s2))
358 s2 = SYMBOL_NAME (s2);
359 CHECK_STRING (s1);
360 CHECK_STRING (s2);
361
362 i1 = i1_byte = i2 = i2_byte = 0;
363
364 end = SCHARS (s1);
365 if (end > SCHARS (s2))
366 end = SCHARS (s2);
367
368 while (i1 < end)
369 {
370 /* When we find a mismatch, we must compare the
371 characters, not just the bytes. */
372 int c1, c2;
373
374 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
375 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
376
377 if (c1 != c2)
378 return c1 < c2 ? Qt : Qnil;
379 }
380 return i1 < SCHARS (s2) ? Qt : Qnil;
381 }
382 \f
383 #if __GNUC__
384 /* "gcc -O3" enables automatic function inlining, which optimizes out
385 the arguments for the invocations of this function, whereas it
386 expects these values on the stack. */
387 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
388 #else /* !__GNUC__ */
389 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
390 #endif
391
392 /* ARGSUSED */
393 Lisp_Object
394 concat2 (s1, s2)
395 Lisp_Object s1, s2;
396 {
397 #ifdef NO_ARG_ARRAY
398 Lisp_Object args[2];
399 args[0] = s1;
400 args[1] = s2;
401 return concat (2, args, Lisp_String, 0);
402 #else
403 return concat (2, &s1, Lisp_String, 0);
404 #endif /* NO_ARG_ARRAY */
405 }
406
407 /* ARGSUSED */
408 Lisp_Object
409 concat3 (s1, s2, s3)
410 Lisp_Object s1, s2, s3;
411 {
412 #ifdef NO_ARG_ARRAY
413 Lisp_Object args[3];
414 args[0] = s1;
415 args[1] = s2;
416 args[2] = s3;
417 return concat (3, args, Lisp_String, 0);
418 #else
419 return concat (3, &s1, Lisp_String, 0);
420 #endif /* NO_ARG_ARRAY */
421 }
422
423 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
424 doc: /* Concatenate all the arguments and make the result a list.
425 The result is a list whose elements are the elements of all the arguments.
426 Each argument may be a list, vector or string.
427 The last argument is not copied, just used as the tail of the new list.
428 usage: (append &rest SEQUENCES) */)
429 (nargs, args)
430 int nargs;
431 Lisp_Object *args;
432 {
433 return concat (nargs, args, Lisp_Cons, 1);
434 }
435
436 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
437 doc: /* Concatenate all the arguments and make the result a string.
438 The result is a string whose elements are the elements of all the arguments.
439 Each argument may be a string or a list or vector of characters (integers).
440 usage: (concat &rest SEQUENCES) */)
441 (nargs, args)
442 int nargs;
443 Lisp_Object *args;
444 {
445 return concat (nargs, args, Lisp_String, 0);
446 }
447
448 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
449 doc: /* Concatenate all the arguments and make the result a vector.
450 The result is a vector whose elements are the elements of all the arguments.
451 Each argument may be a list, vector or string.
452 usage: (vconcat &rest SEQUENCES) */)
453 (nargs, args)
454 int nargs;
455 Lisp_Object *args;
456 {
457 return concat (nargs, args, Lisp_Vectorlike, 0);
458 }
459
460
461 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
462 doc: /* Return a copy of a list, vector, string or char-table.
463 The elements of a list or vector are not copied; they are shared
464 with the original. */)
465 (arg)
466 Lisp_Object arg;
467 {
468 if (NILP (arg)) return arg;
469
470 if (CHAR_TABLE_P (arg))
471 {
472 return copy_char_table (arg);
473 }
474
475 if (BOOL_VECTOR_P (arg))
476 {
477 Lisp_Object val;
478 int size_in_chars
479 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
480 / BOOL_VECTOR_BITS_PER_CHAR);
481
482 val = Fmake_bool_vector (Flength (arg), Qnil);
483 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
484 size_in_chars);
485 return val;
486 }
487
488 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
489 wrong_type_argument (Qsequencep, arg);
490
491 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
492 }
493
494 /* This structure holds information of an argument of `concat' that is
495 a string and has text properties to be copied. */
496 struct textprop_rec
497 {
498 int argnum; /* refer to ARGS (arguments of `concat') */
499 int from; /* refer to ARGS[argnum] (argument string) */
500 int to; /* refer to VAL (the target string) */
501 };
502
503 static Lisp_Object
504 concat (nargs, args, target_type, last_special)
505 int nargs;
506 Lisp_Object *args;
507 enum Lisp_Type target_type;
508 int last_special;
509 {
510 Lisp_Object val;
511 register Lisp_Object tail;
512 register Lisp_Object this;
513 int toindex;
514 int toindex_byte = 0;
515 register int result_len;
516 register int result_len_byte;
517 register int argnum;
518 Lisp_Object last_tail;
519 Lisp_Object prev;
520 int some_multibyte;
521 /* When we make a multibyte string, we can't copy text properties
522 while concatinating each string because the length of resulting
523 string can't be decided until we finish the whole concatination.
524 So, we record strings that have text properties to be copied
525 here, and copy the text properties after the concatination. */
526 struct textprop_rec *textprops = NULL;
527 /* Number of elments in textprops. */
528 int num_textprops = 0;
529 USE_SAFE_ALLOCA;
530
531 tail = Qnil;
532
533 /* In append, the last arg isn't treated like the others */
534 if (last_special && nargs > 0)
535 {
536 nargs--;
537 last_tail = args[nargs];
538 }
539 else
540 last_tail = Qnil;
541
542 /* Check each argument. */
543 for (argnum = 0; argnum < nargs; argnum++)
544 {
545 this = args[argnum];
546 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
547 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
548 wrong_type_argument (Qsequencep, this);
549 }
550
551 /* Compute total length in chars of arguments in RESULT_LEN.
552 If desired output is a string, also compute length in bytes
553 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
554 whether the result should be a multibyte string. */
555 result_len_byte = 0;
556 result_len = 0;
557 some_multibyte = 0;
558 for (argnum = 0; argnum < nargs; argnum++)
559 {
560 int len;
561 this = args[argnum];
562 len = XFASTINT (Flength (this));
563 if (target_type == Lisp_String)
564 {
565 /* We must count the number of bytes needed in the string
566 as well as the number of characters. */
567 int i;
568 Lisp_Object ch;
569 int this_len_byte;
570
571 if (VECTORP (this))
572 for (i = 0; i < len; i++)
573 {
574 ch = AREF (this, i);
575 CHECK_CHARACTER (ch);
576 this_len_byte = CHAR_BYTES (XINT (ch));
577 result_len_byte += this_len_byte;
578 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
579 some_multibyte = 1;
580 }
581 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
582 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
583 else if (CONSP (this))
584 for (; CONSP (this); this = XCDR (this))
585 {
586 ch = XCAR (this);
587 CHECK_CHARACTER (ch);
588 this_len_byte = CHAR_BYTES (XINT (ch));
589 result_len_byte += this_len_byte;
590 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
591 some_multibyte = 1;
592 }
593 else if (STRINGP (this))
594 {
595 if (STRING_MULTIBYTE (this))
596 {
597 some_multibyte = 1;
598 result_len_byte += SBYTES (this);
599 }
600 else
601 result_len_byte += count_size_as_multibyte (SDATA (this),
602 SCHARS (this));
603 }
604 }
605
606 result_len += len;
607 if (result_len < 0)
608 error ("String overflow");
609 }
610
611 if (! some_multibyte)
612 result_len_byte = result_len;
613
614 /* Create the output object. */
615 if (target_type == Lisp_Cons)
616 val = Fmake_list (make_number (result_len), Qnil);
617 else if (target_type == Lisp_Vectorlike)
618 val = Fmake_vector (make_number (result_len), Qnil);
619 else if (some_multibyte)
620 val = make_uninit_multibyte_string (result_len, result_len_byte);
621 else
622 val = make_uninit_string (result_len);
623
624 /* In `append', if all but last arg are nil, return last arg. */
625 if (target_type == Lisp_Cons && EQ (val, Qnil))
626 return last_tail;
627
628 /* Copy the contents of the args into the result. */
629 if (CONSP (val))
630 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
631 else
632 toindex = 0, toindex_byte = 0;
633
634 prev = Qnil;
635 if (STRINGP (val))
636 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
637
638 for (argnum = 0; argnum < nargs; argnum++)
639 {
640 Lisp_Object thislen;
641 int thisleni = 0;
642 register unsigned int thisindex = 0;
643 register unsigned int thisindex_byte = 0;
644
645 this = args[argnum];
646 if (!CONSP (this))
647 thislen = Flength (this), thisleni = XINT (thislen);
648
649 /* Between strings of the same kind, copy fast. */
650 if (STRINGP (this) && STRINGP (val)
651 && STRING_MULTIBYTE (this) == some_multibyte)
652 {
653 int thislen_byte = SBYTES (this);
654
655 bcopy (SDATA (this), SDATA (val) + toindex_byte,
656 SBYTES (this));
657 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
658 {
659 textprops[num_textprops].argnum = argnum;
660 textprops[num_textprops].from = 0;
661 textprops[num_textprops++].to = toindex;
662 }
663 toindex_byte += thislen_byte;
664 toindex += thisleni;
665 }
666 /* Copy a single-byte string to a multibyte string. */
667 else if (STRINGP (this) && STRINGP (val))
668 {
669 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
670 {
671 textprops[num_textprops].argnum = argnum;
672 textprops[num_textprops].from = 0;
673 textprops[num_textprops++].to = toindex;
674 }
675 toindex_byte += copy_text (SDATA (this),
676 SDATA (val) + toindex_byte,
677 SCHARS (this), 0, 1);
678 toindex += thisleni;
679 }
680 else
681 /* Copy element by element. */
682 while (1)
683 {
684 register Lisp_Object elt;
685
686 /* Fetch next element of `this' arg into `elt', or break if
687 `this' is exhausted. */
688 if (NILP (this)) break;
689 if (CONSP (this))
690 elt = XCAR (this), this = XCDR (this);
691 else if (thisindex >= thisleni)
692 break;
693 else if (STRINGP (this))
694 {
695 int c;
696 if (STRING_MULTIBYTE (this))
697 {
698 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
699 thisindex,
700 thisindex_byte);
701 XSETFASTINT (elt, c);
702 }
703 else
704 {
705 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
706 if (some_multibyte
707 && !ASCII_CHAR_P (XINT (elt))
708 && XINT (elt) < 0400)
709 {
710 c = BYTE8_TO_CHAR (XINT (elt));
711 XSETINT (elt, c);
712 }
713 }
714 }
715 else if (BOOL_VECTOR_P (this))
716 {
717 int byte;
718 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
719 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
720 elt = Qt;
721 else
722 elt = Qnil;
723 thisindex++;
724 }
725 else
726 {
727 elt = AREF (this, thisindex);
728 thisindex++;
729 }
730
731 /* Store this element into the result. */
732 if (toindex < 0)
733 {
734 XSETCAR (tail, elt);
735 prev = tail;
736 tail = XCDR (tail);
737 }
738 else if (VECTORP (val))
739 {
740 ASET (val, toindex, elt);
741 toindex++;
742 }
743 else
744 {
745 CHECK_NUMBER (elt);
746 if (some_multibyte)
747 toindex_byte += CHAR_STRING (XINT (elt),
748 SDATA (val) + toindex_byte);
749 else
750 SSET (val, toindex_byte++, XINT (elt));
751 toindex++;
752 }
753 }
754 }
755 if (!NILP (prev))
756 XSETCDR (prev, last_tail);
757
758 if (num_textprops > 0)
759 {
760 Lisp_Object props;
761 int last_to_end = -1;
762
763 for (argnum = 0; argnum < num_textprops; argnum++)
764 {
765 this = args[textprops[argnum].argnum];
766 props = text_property_list (this,
767 make_number (0),
768 make_number (SCHARS (this)),
769 Qnil);
770 /* If successive arguments have properites, be sure that the
771 value of `composition' property be the copy. */
772 if (last_to_end == textprops[argnum].to)
773 make_composition_value_copy (props);
774 add_text_properties_from_list (val, props,
775 make_number (textprops[argnum].to));
776 last_to_end = textprops[argnum].to + SCHARS (this);
777 }
778 }
779
780 SAFE_FREE ();
781 return val;
782 }
783 \f
784 static Lisp_Object string_char_byte_cache_string;
785 static EMACS_INT string_char_byte_cache_charpos;
786 static EMACS_INT string_char_byte_cache_bytepos;
787
788 void
789 clear_string_char_byte_cache ()
790 {
791 string_char_byte_cache_string = Qnil;
792 }
793
794 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
795
796 EMACS_INT
797 string_char_to_byte (string, char_index)
798 Lisp_Object string;
799 EMACS_INT char_index;
800 {
801 EMACS_INT i_byte;
802 EMACS_INT best_below, best_below_byte;
803 EMACS_INT best_above, best_above_byte;
804
805 best_below = best_below_byte = 0;
806 best_above = SCHARS (string);
807 best_above_byte = SBYTES (string);
808 if (best_above == best_above_byte)
809 return char_index;
810
811 if (EQ (string, string_char_byte_cache_string))
812 {
813 if (string_char_byte_cache_charpos < char_index)
814 {
815 best_below = string_char_byte_cache_charpos;
816 best_below_byte = string_char_byte_cache_bytepos;
817 }
818 else
819 {
820 best_above = string_char_byte_cache_charpos;
821 best_above_byte = string_char_byte_cache_bytepos;
822 }
823 }
824
825 if (char_index - best_below < best_above - char_index)
826 {
827 unsigned char *p = SDATA (string) + best_below_byte;
828
829 while (best_below < char_index)
830 {
831 p += BYTES_BY_CHAR_HEAD (*p);
832 best_below++;
833 }
834 i_byte = p - SDATA (string);
835 }
836 else
837 {
838 unsigned char *p = SDATA (string) + best_above_byte;
839
840 while (best_above > char_index)
841 {
842 p--;
843 while (!CHAR_HEAD_P (*p)) p--;
844 best_above--;
845 }
846 i_byte = p - SDATA (string);
847 }
848
849 string_char_byte_cache_bytepos = i_byte;
850 string_char_byte_cache_charpos = char_index;
851 string_char_byte_cache_string = string;
852
853 return i_byte;
854 }
855 \f
856 /* Return the character index corresponding to BYTE_INDEX in STRING. */
857
858 EMACS_INT
859 string_byte_to_char (string, byte_index)
860 Lisp_Object string;
861 EMACS_INT byte_index;
862 {
863 EMACS_INT i, i_byte;
864 EMACS_INT best_below, best_below_byte;
865 EMACS_INT best_above, best_above_byte;
866
867 best_below = best_below_byte = 0;
868 best_above = SCHARS (string);
869 best_above_byte = SBYTES (string);
870 if (best_above == best_above_byte)
871 return byte_index;
872
873 if (EQ (string, string_char_byte_cache_string))
874 {
875 if (string_char_byte_cache_bytepos < byte_index)
876 {
877 best_below = string_char_byte_cache_charpos;
878 best_below_byte = string_char_byte_cache_bytepos;
879 }
880 else
881 {
882 best_above = string_char_byte_cache_charpos;
883 best_above_byte = string_char_byte_cache_bytepos;
884 }
885 }
886
887 if (byte_index - best_below_byte < best_above_byte - byte_index)
888 {
889 unsigned char *p = SDATA (string) + best_below_byte;
890 unsigned char *pend = SDATA (string) + byte_index;
891
892 while (p < pend)
893 {
894 p += BYTES_BY_CHAR_HEAD (*p);
895 best_below++;
896 }
897 i = best_below;
898 i_byte = p - SDATA (string);
899 }
900 else
901 {
902 unsigned char *p = SDATA (string) + best_above_byte;
903 unsigned char *pbeg = SDATA (string) + byte_index;
904
905 while (p > pbeg)
906 {
907 p--;
908 while (!CHAR_HEAD_P (*p)) p--;
909 best_above--;
910 }
911 i = best_above;
912 i_byte = p - SDATA (string);
913 }
914
915 string_char_byte_cache_bytepos = i_byte;
916 string_char_byte_cache_charpos = i;
917 string_char_byte_cache_string = string;
918
919 return i;
920 }
921 \f
922 /* Convert STRING to a multibyte string. */
923
924 Lisp_Object
925 string_make_multibyte (string)
926 Lisp_Object string;
927 {
928 unsigned char *buf;
929 EMACS_INT nbytes;
930 Lisp_Object ret;
931 USE_SAFE_ALLOCA;
932
933 if (STRING_MULTIBYTE (string))
934 return string;
935
936 nbytes = count_size_as_multibyte (SDATA (string),
937 SCHARS (string));
938 /* If all the chars are ASCII, they won't need any more bytes
939 once converted. In that case, we can return STRING itself. */
940 if (nbytes == SBYTES (string))
941 return string;
942
943 SAFE_ALLOCA (buf, unsigned char *, nbytes);
944 copy_text (SDATA (string), buf, SBYTES (string),
945 0, 1);
946
947 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
948 SAFE_FREE ();
949
950 return ret;
951 }
952
953
954 /* Convert STRING (if unibyte) to a multibyte string without changing
955 the number of characters. Characters 0200 trough 0237 are
956 converted to eight-bit characters. */
957
958 Lisp_Object
959 string_to_multibyte (string)
960 Lisp_Object string;
961 {
962 unsigned char *buf;
963 EMACS_INT nbytes;
964 Lisp_Object ret;
965 USE_SAFE_ALLOCA;
966
967 if (STRING_MULTIBYTE (string))
968 return string;
969
970 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
971 /* If all the chars are ASCII, they won't need any more bytes once
972 converted. */
973 if (nbytes == SBYTES (string))
974 return make_multibyte_string (SDATA (string), nbytes, nbytes);
975
976 SAFE_ALLOCA (buf, unsigned char *, nbytes);
977 bcopy (SDATA (string), buf, SBYTES (string));
978 str_to_multibyte (buf, nbytes, SBYTES (string));
979
980 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
981 SAFE_FREE ();
982
983 return ret;
984 }
985
986
987 /* Convert STRING to a single-byte string. */
988
989 Lisp_Object
990 string_make_unibyte (string)
991 Lisp_Object string;
992 {
993 int nchars;
994 unsigned char *buf;
995 Lisp_Object ret;
996 USE_SAFE_ALLOCA;
997
998 if (! STRING_MULTIBYTE (string))
999 return string;
1000
1001 nchars = SCHARS (string);
1002
1003 SAFE_ALLOCA (buf, unsigned char *, nchars);
1004 copy_text (SDATA (string), buf, SBYTES (string),
1005 1, 0);
1006
1007 ret = make_unibyte_string (buf, nchars);
1008 SAFE_FREE ();
1009
1010 return ret;
1011 }
1012
1013 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1014 1, 1, 0,
1015 doc: /* Return the multibyte equivalent of STRING.
1016 If STRING is unibyte and contains non-ASCII characters, the function
1017 `unibyte-char-to-multibyte' is used to convert each unibyte character
1018 to a multibyte character. In this case, the returned string is a
1019 newly created string with no text properties. If STRING is multibyte
1020 or entirely ASCII, it is returned unchanged. In particular, when
1021 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1022 \(When the characters are all ASCII, Emacs primitives will treat the
1023 string the same way whether it is unibyte or multibyte.) */)
1024 (string)
1025 Lisp_Object string;
1026 {
1027 CHECK_STRING (string);
1028
1029 return string_make_multibyte (string);
1030 }
1031
1032 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1033 1, 1, 0,
1034 doc: /* Return the unibyte equivalent of STRING.
1035 Multibyte character codes are converted to unibyte according to
1036 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1037 If the lookup in the translation table fails, this function takes just
1038 the low 8 bits of each character. */)
1039 (string)
1040 Lisp_Object string;
1041 {
1042 CHECK_STRING (string);
1043
1044 return string_make_unibyte (string);
1045 }
1046
1047 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1048 1, 1, 0,
1049 doc: /* Return a unibyte string with the same individual bytes as STRING.
1050 If STRING is unibyte, the result is STRING itself.
1051 Otherwise it is a newly created string, with no text properties.
1052 If STRING is multibyte and contains a character of charset
1053 `eight-bit', it is converted to the corresponding single byte. */)
1054 (string)
1055 Lisp_Object string;
1056 {
1057 CHECK_STRING (string);
1058
1059 if (STRING_MULTIBYTE (string))
1060 {
1061 int bytes = SBYTES (string);
1062 unsigned char *str = (unsigned char *) xmalloc (bytes);
1063
1064 bcopy (SDATA (string), str, bytes);
1065 bytes = str_as_unibyte (str, bytes);
1066 string = make_unibyte_string (str, bytes);
1067 xfree (str);
1068 }
1069 return string;
1070 }
1071
1072 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1073 1, 1, 0,
1074 doc: /* Return a multibyte string with the same individual bytes as STRING.
1075 If STRING is multibyte, the result is STRING itself.
1076 Otherwise it is a newly created string, with no text properties.
1077
1078 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1079 part of a correct utf-8 sequence), it is converted to the corresponding
1080 multibyte character of charset `eight-bit'.
1081 See also `string-to-multibyte'.
1082
1083 Beware, this often doesn't really do what you think it does.
1084 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1085 If you're not sure, whether to use `string-as-multibyte' or
1086 `string-to-multibyte', use `string-to-multibyte'. */)
1087 (string)
1088 Lisp_Object string;
1089 {
1090 CHECK_STRING (string);
1091
1092 if (! STRING_MULTIBYTE (string))
1093 {
1094 Lisp_Object new_string;
1095 int nchars, nbytes;
1096
1097 parse_str_as_multibyte (SDATA (string),
1098 SBYTES (string),
1099 &nchars, &nbytes);
1100 new_string = make_uninit_multibyte_string (nchars, nbytes);
1101 bcopy (SDATA (string), SDATA (new_string),
1102 SBYTES (string));
1103 if (nbytes != SBYTES (string))
1104 str_as_multibyte (SDATA (new_string), nbytes,
1105 SBYTES (string), NULL);
1106 string = new_string;
1107 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1108 }
1109 return string;
1110 }
1111
1112 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1113 1, 1, 0,
1114 doc: /* Return a multibyte string with the same individual chars as STRING.
1115 If STRING is multibyte, the result is STRING itself.
1116 Otherwise it is a newly created string, with no text properties.
1117
1118 If STRING is unibyte and contains an 8-bit byte, it is converted to
1119 the corresponding multibyte character of charset `eight-bit'.
1120
1121 This differs from `string-as-multibyte' by converting each byte of a correct
1122 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1123 correct sequence. */)
1124 (string)
1125 Lisp_Object string;
1126 {
1127 CHECK_STRING (string);
1128
1129 return string_to_multibyte (string);
1130 }
1131
1132 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1133 1, 1, 0,
1134 doc: /* Return a unibyte string with the same individual chars as STRING.
1135 If STRING is unibyte, the result is STRING itself.
1136 Otherwise it is a newly created string, with no text properties,
1137 where each `eight-bit' character is converted to the corresponding byte.
1138 If STRING contains a non-ASCII, non-`eight-bit' character,
1139 an error is signaled. */)
1140 (string)
1141 Lisp_Object string;
1142 {
1143 CHECK_STRING (string);
1144
1145 if (STRING_MULTIBYTE (string))
1146 {
1147 EMACS_INT chars = SCHARS (string);
1148 unsigned char *str = (unsigned char *) xmalloc (chars);
1149 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1150
1151 if (converted < chars)
1152 error ("Can't convert the %dth character to unibyte", converted);
1153 string = make_unibyte_string (str, chars);
1154 xfree (str);
1155 }
1156 return string;
1157 }
1158
1159 \f
1160 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1161 doc: /* Return a copy of ALIST.
1162 This is an alist which represents the same mapping from objects to objects,
1163 but does not share the alist structure with ALIST.
1164 The objects mapped (cars and cdrs of elements of the alist)
1165 are shared, however.
1166 Elements of ALIST that are not conses are also shared. */)
1167 (alist)
1168 Lisp_Object alist;
1169 {
1170 register Lisp_Object tem;
1171
1172 CHECK_LIST (alist);
1173 if (NILP (alist))
1174 return alist;
1175 alist = concat (1, &alist, Lisp_Cons, 0);
1176 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1177 {
1178 register Lisp_Object car;
1179 car = XCAR (tem);
1180
1181 if (CONSP (car))
1182 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1183 }
1184 return alist;
1185 }
1186
1187 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1188 doc: /* Return a new string whose contents are a substring of STRING.
1189 The returned string consists of the characters between index FROM
1190 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1191 zero-indexed: 0 means the first character of STRING. Negative values
1192 are counted from the end of STRING. If TO is nil, the substring runs
1193 to the end of STRING.
1194
1195 The STRING argument may also be a vector. In that case, the return
1196 value is a new vector that contains the elements between index FROM
1197 \(inclusive) and index TO (exclusive) of that vector argument. */)
1198 (string, from, to)
1199 Lisp_Object string;
1200 register Lisp_Object from, to;
1201 {
1202 Lisp_Object res;
1203 int size;
1204 int size_byte = 0;
1205 int from_char, to_char;
1206 int from_byte = 0, to_byte = 0;
1207
1208 CHECK_VECTOR_OR_STRING (string);
1209 CHECK_NUMBER (from);
1210
1211 if (STRINGP (string))
1212 {
1213 size = SCHARS (string);
1214 size_byte = SBYTES (string);
1215 }
1216 else
1217 size = ASIZE (string);
1218
1219 if (NILP (to))
1220 {
1221 to_char = size;
1222 to_byte = size_byte;
1223 }
1224 else
1225 {
1226 CHECK_NUMBER (to);
1227
1228 to_char = XINT (to);
1229 if (to_char < 0)
1230 to_char += size;
1231
1232 if (STRINGP (string))
1233 to_byte = string_char_to_byte (string, to_char);
1234 }
1235
1236 from_char = XINT (from);
1237 if (from_char < 0)
1238 from_char += size;
1239 if (STRINGP (string))
1240 from_byte = string_char_to_byte (string, from_char);
1241
1242 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1243 args_out_of_range_3 (string, make_number (from_char),
1244 make_number (to_char));
1245
1246 if (STRINGP (string))
1247 {
1248 res = make_specified_string (SDATA (string) + from_byte,
1249 to_char - from_char, to_byte - from_byte,
1250 STRING_MULTIBYTE (string));
1251 copy_text_properties (make_number (from_char), make_number (to_char),
1252 string, make_number (0), res, Qnil);
1253 }
1254 else
1255 res = Fvector (to_char - from_char, &AREF (string, from_char));
1256
1257 return res;
1258 }
1259
1260
1261 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1262 doc: /* Return a substring of STRING, without text properties.
1263 It starts at index FROM and ending before TO.
1264 TO may be nil or omitted; then the substring runs to the end of STRING.
1265 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1266 If FROM or TO is negative, it counts from the end.
1267
1268 With one argument, just copy STRING without its properties. */)
1269 (string, from, to)
1270 Lisp_Object string;
1271 register Lisp_Object from, to;
1272 {
1273 int size, size_byte;
1274 int from_char, to_char;
1275 int from_byte, to_byte;
1276
1277 CHECK_STRING (string);
1278
1279 size = SCHARS (string);
1280 size_byte = SBYTES (string);
1281
1282 if (NILP (from))
1283 from_char = from_byte = 0;
1284 else
1285 {
1286 CHECK_NUMBER (from);
1287 from_char = XINT (from);
1288 if (from_char < 0)
1289 from_char += size;
1290
1291 from_byte = string_char_to_byte (string, from_char);
1292 }
1293
1294 if (NILP (to))
1295 {
1296 to_char = size;
1297 to_byte = size_byte;
1298 }
1299 else
1300 {
1301 CHECK_NUMBER (to);
1302
1303 to_char = XINT (to);
1304 if (to_char < 0)
1305 to_char += size;
1306
1307 to_byte = string_char_to_byte (string, to_char);
1308 }
1309
1310 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1311 args_out_of_range_3 (string, make_number (from_char),
1312 make_number (to_char));
1313
1314 return make_specified_string (SDATA (string) + from_byte,
1315 to_char - from_char, to_byte - from_byte,
1316 STRING_MULTIBYTE (string));
1317 }
1318
1319 /* Extract a substring of STRING, giving start and end positions
1320 both in characters and in bytes. */
1321
1322 Lisp_Object
1323 substring_both (string, from, from_byte, to, to_byte)
1324 Lisp_Object string;
1325 int from, from_byte, to, to_byte;
1326 {
1327 Lisp_Object res;
1328 int size;
1329 int size_byte;
1330
1331 CHECK_VECTOR_OR_STRING (string);
1332
1333 if (STRINGP (string))
1334 {
1335 size = SCHARS (string);
1336 size_byte = SBYTES (string);
1337 }
1338 else
1339 size = ASIZE (string);
1340
1341 if (!(0 <= from && from <= to && to <= size))
1342 args_out_of_range_3 (string, make_number (from), make_number (to));
1343
1344 if (STRINGP (string))
1345 {
1346 res = make_specified_string (SDATA (string) + from_byte,
1347 to - from, to_byte - from_byte,
1348 STRING_MULTIBYTE (string));
1349 copy_text_properties (make_number (from), make_number (to),
1350 string, make_number (0), res, Qnil);
1351 }
1352 else
1353 res = Fvector (to - from, &AREF (string, from));
1354
1355 return res;
1356 }
1357 \f
1358 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1359 doc: /* Take cdr N times on LIST, returns the result. */)
1360 (n, list)
1361 Lisp_Object n;
1362 register Lisp_Object list;
1363 {
1364 register int i, num;
1365 CHECK_NUMBER (n);
1366 num = XINT (n);
1367 for (i = 0; i < num && !NILP (list); i++)
1368 {
1369 QUIT;
1370 CHECK_LIST_CONS (list, list);
1371 list = XCDR (list);
1372 }
1373 return list;
1374 }
1375
1376 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1377 doc: /* Return the Nth element of LIST.
1378 N counts from zero. If LIST is not that long, nil is returned. */)
1379 (n, list)
1380 Lisp_Object n, list;
1381 {
1382 return Fcar (Fnthcdr (n, list));
1383 }
1384
1385 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1386 doc: /* Return element of SEQUENCE at index N. */)
1387 (sequence, n)
1388 register Lisp_Object sequence, n;
1389 {
1390 CHECK_NUMBER (n);
1391 if (CONSP (sequence) || NILP (sequence))
1392 return Fcar (Fnthcdr (n, sequence));
1393
1394 /* Faref signals a "not array" error, so check here. */
1395 CHECK_ARRAY (sequence, Qsequencep);
1396 return Faref (sequence, n);
1397 }
1398
1399 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1400 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1401 The value is actually the tail of LIST whose car is ELT. */)
1402 (elt, list)
1403 register Lisp_Object elt;
1404 Lisp_Object list;
1405 {
1406 register Lisp_Object tail;
1407 for (tail = list; CONSP (tail); tail = XCDR (tail))
1408 {
1409 register Lisp_Object tem;
1410 CHECK_LIST_CONS (tail, list);
1411 tem = XCAR (tail);
1412 if (! NILP (Fequal (elt, tem)))
1413 return tail;
1414 QUIT;
1415 }
1416 return Qnil;
1417 }
1418
1419 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1420 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1421 The value is actually the tail of LIST whose car is ELT. */)
1422 (elt, list)
1423 register Lisp_Object elt, list;
1424 {
1425 while (1)
1426 {
1427 if (!CONSP (list) || EQ (XCAR (list), elt))
1428 break;
1429
1430 list = XCDR (list);
1431 if (!CONSP (list) || EQ (XCAR (list), elt))
1432 break;
1433
1434 list = XCDR (list);
1435 if (!CONSP (list) || EQ (XCAR (list), elt))
1436 break;
1437
1438 list = XCDR (list);
1439 QUIT;
1440 }
1441
1442 CHECK_LIST (list);
1443 return list;
1444 }
1445
1446 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1447 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1448 The value is actually the tail of LIST whose car is ELT. */)
1449 (elt, list)
1450 register Lisp_Object elt;
1451 Lisp_Object list;
1452 {
1453 register Lisp_Object tail;
1454
1455 if (!FLOATP (elt))
1456 return Fmemq (elt, list);
1457
1458 for (tail = list; CONSP (tail); tail = XCDR (tail))
1459 {
1460 register Lisp_Object tem;
1461 CHECK_LIST_CONS (tail, list);
1462 tem = XCAR (tail);
1463 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1464 return tail;
1465 QUIT;
1466 }
1467 return Qnil;
1468 }
1469
1470 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1471 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1472 The value is actually the first element of LIST whose car is KEY.
1473 Elements of LIST that are not conses are ignored. */)
1474 (key, list)
1475 Lisp_Object key, list;
1476 {
1477 while (1)
1478 {
1479 if (!CONSP (list)
1480 || (CONSP (XCAR (list))
1481 && EQ (XCAR (XCAR (list)), key)))
1482 break;
1483
1484 list = XCDR (list);
1485 if (!CONSP (list)
1486 || (CONSP (XCAR (list))
1487 && EQ (XCAR (XCAR (list)), key)))
1488 break;
1489
1490 list = XCDR (list);
1491 if (!CONSP (list)
1492 || (CONSP (XCAR (list))
1493 && EQ (XCAR (XCAR (list)), key)))
1494 break;
1495
1496 list = XCDR (list);
1497 QUIT;
1498 }
1499
1500 return CAR (list);
1501 }
1502
1503 /* Like Fassq but never report an error and do not allow quits.
1504 Use only on lists known never to be circular. */
1505
1506 Lisp_Object
1507 assq_no_quit (key, list)
1508 Lisp_Object key, list;
1509 {
1510 while (CONSP (list)
1511 && (!CONSP (XCAR (list))
1512 || !EQ (XCAR (XCAR (list)), key)))
1513 list = XCDR (list);
1514
1515 return CAR_SAFE (list);
1516 }
1517
1518 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1519 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1520 The value is actually the first element of LIST whose car equals KEY. */)
1521 (key, list)
1522 Lisp_Object key, list;
1523 {
1524 Lisp_Object car;
1525
1526 while (1)
1527 {
1528 if (!CONSP (list)
1529 || (CONSP (XCAR (list))
1530 && (car = XCAR (XCAR (list)),
1531 EQ (car, key) || !NILP (Fequal (car, key)))))
1532 break;
1533
1534 list = XCDR (list);
1535 if (!CONSP (list)
1536 || (CONSP (XCAR (list))
1537 && (car = XCAR (XCAR (list)),
1538 EQ (car, key) || !NILP (Fequal (car, key)))))
1539 break;
1540
1541 list = XCDR (list);
1542 if (!CONSP (list)
1543 || (CONSP (XCAR (list))
1544 && (car = XCAR (XCAR (list)),
1545 EQ (car, key) || !NILP (Fequal (car, key)))))
1546 break;
1547
1548 list = XCDR (list);
1549 QUIT;
1550 }
1551
1552 return CAR (list);
1553 }
1554
1555 /* Like Fassoc but never report an error and do not allow quits.
1556 Use only on lists known never to be circular. */
1557
1558 Lisp_Object
1559 assoc_no_quit (key, list)
1560 Lisp_Object key, list;
1561 {
1562 while (CONSP (list)
1563 && (!CONSP (XCAR (list))
1564 || (!EQ (XCAR (XCAR (list)), key)
1565 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1566 list = XCDR (list);
1567
1568 return CONSP (list) ? XCAR (list) : Qnil;
1569 }
1570
1571 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1572 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1573 The value is actually the first element of LIST whose cdr is KEY. */)
1574 (key, list)
1575 register Lisp_Object key;
1576 Lisp_Object list;
1577 {
1578 while (1)
1579 {
1580 if (!CONSP (list)
1581 || (CONSP (XCAR (list))
1582 && EQ (XCDR (XCAR (list)), key)))
1583 break;
1584
1585 list = XCDR (list);
1586 if (!CONSP (list)
1587 || (CONSP (XCAR (list))
1588 && EQ (XCDR (XCAR (list)), key)))
1589 break;
1590
1591 list = XCDR (list);
1592 if (!CONSP (list)
1593 || (CONSP (XCAR (list))
1594 && EQ (XCDR (XCAR (list)), key)))
1595 break;
1596
1597 list = XCDR (list);
1598 QUIT;
1599 }
1600
1601 return CAR (list);
1602 }
1603
1604 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr equals KEY. */)
1607 (key, list)
1608 Lisp_Object key, list;
1609 {
1610 Lisp_Object cdr;
1611
1612 while (1)
1613 {
1614 if (!CONSP (list)
1615 || (CONSP (XCAR (list))
1616 && (cdr = XCDR (XCAR (list)),
1617 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1618 break;
1619
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && (cdr = XCDR (XCAR (list)),
1624 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1625 break;
1626
1627 list = XCDR (list);
1628 if (!CONSP (list)
1629 || (CONSP (XCAR (list))
1630 && (cdr = XCDR (XCAR (list)),
1631 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1632 break;
1633
1634 list = XCDR (list);
1635 QUIT;
1636 }
1637
1638 return CAR (list);
1639 }
1640 \f
1641 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1642 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1643 The modified LIST is returned. Comparison is done with `eq'.
1644 If the first member of LIST is ELT, there is no way to remove it by side effect;
1645 therefore, write `(setq foo (delq element foo))'
1646 to be sure of changing the value of `foo'. */)
1647 (elt, list)
1648 register Lisp_Object elt;
1649 Lisp_Object list;
1650 {
1651 register Lisp_Object tail, prev;
1652 register Lisp_Object tem;
1653
1654 tail = list;
1655 prev = Qnil;
1656 while (!NILP (tail))
1657 {
1658 CHECK_LIST_CONS (tail, list);
1659 tem = XCAR (tail);
1660 if (EQ (elt, tem))
1661 {
1662 if (NILP (prev))
1663 list = XCDR (tail);
1664 else
1665 Fsetcdr (prev, XCDR (tail));
1666 }
1667 else
1668 prev = tail;
1669 tail = XCDR (tail);
1670 QUIT;
1671 }
1672 return list;
1673 }
1674
1675 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1676 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1677 SEQ must be a list, a vector, or a string.
1678 The modified SEQ is returned. Comparison is done with `equal'.
1679 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1680 is not a side effect; it is simply using a different sequence.
1681 Therefore, write `(setq foo (delete element foo))'
1682 to be sure of changing the value of `foo'. */)
1683 (elt, seq)
1684 Lisp_Object elt, seq;
1685 {
1686 if (VECTORP (seq))
1687 {
1688 EMACS_INT i, n;
1689
1690 for (i = n = 0; i < ASIZE (seq); ++i)
1691 if (NILP (Fequal (AREF (seq, i), elt)))
1692 ++n;
1693
1694 if (n != ASIZE (seq))
1695 {
1696 struct Lisp_Vector *p = allocate_vector (n);
1697
1698 for (i = n = 0; i < ASIZE (seq); ++i)
1699 if (NILP (Fequal (AREF (seq, i), elt)))
1700 p->contents[n++] = AREF (seq, i);
1701
1702 XSETVECTOR (seq, p);
1703 }
1704 }
1705 else if (STRINGP (seq))
1706 {
1707 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1708 int c;
1709
1710 for (i = nchars = nbytes = ibyte = 0;
1711 i < SCHARS (seq);
1712 ++i, ibyte += cbytes)
1713 {
1714 if (STRING_MULTIBYTE (seq))
1715 {
1716 c = STRING_CHAR (SDATA (seq) + ibyte,
1717 SBYTES (seq) - ibyte);
1718 cbytes = CHAR_BYTES (c);
1719 }
1720 else
1721 {
1722 c = SREF (seq, i);
1723 cbytes = 1;
1724 }
1725
1726 if (!INTEGERP (elt) || c != XINT (elt))
1727 {
1728 ++nchars;
1729 nbytes += cbytes;
1730 }
1731 }
1732
1733 if (nchars != SCHARS (seq))
1734 {
1735 Lisp_Object tem;
1736
1737 tem = make_uninit_multibyte_string (nchars, nbytes);
1738 if (!STRING_MULTIBYTE (seq))
1739 STRING_SET_UNIBYTE (tem);
1740
1741 for (i = nchars = nbytes = ibyte = 0;
1742 i < SCHARS (seq);
1743 ++i, ibyte += cbytes)
1744 {
1745 if (STRING_MULTIBYTE (seq))
1746 {
1747 c = STRING_CHAR (SDATA (seq) + ibyte,
1748 SBYTES (seq) - ibyte);
1749 cbytes = CHAR_BYTES (c);
1750 }
1751 else
1752 {
1753 c = SREF (seq, i);
1754 cbytes = 1;
1755 }
1756
1757 if (!INTEGERP (elt) || c != XINT (elt))
1758 {
1759 unsigned char *from = SDATA (seq) + ibyte;
1760 unsigned char *to = SDATA (tem) + nbytes;
1761 EMACS_INT n;
1762
1763 ++nchars;
1764 nbytes += cbytes;
1765
1766 for (n = cbytes; n--; )
1767 *to++ = *from++;
1768 }
1769 }
1770
1771 seq = tem;
1772 }
1773 }
1774 else
1775 {
1776 Lisp_Object tail, prev;
1777
1778 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1779 {
1780 CHECK_LIST_CONS (tail, seq);
1781
1782 if (!NILP (Fequal (elt, XCAR (tail))))
1783 {
1784 if (NILP (prev))
1785 seq = XCDR (tail);
1786 else
1787 Fsetcdr (prev, XCDR (tail));
1788 }
1789 else
1790 prev = tail;
1791 QUIT;
1792 }
1793 }
1794
1795 return seq;
1796 }
1797
1798 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1799 doc: /* Reverse LIST by modifying cdr pointers.
1800 Return the reversed list. */)
1801 (list)
1802 Lisp_Object list;
1803 {
1804 register Lisp_Object prev, tail, next;
1805
1806 if (NILP (list)) return list;
1807 prev = Qnil;
1808 tail = list;
1809 while (!NILP (tail))
1810 {
1811 QUIT;
1812 CHECK_LIST_CONS (tail, list);
1813 next = XCDR (tail);
1814 Fsetcdr (tail, prev);
1815 prev = tail;
1816 tail = next;
1817 }
1818 return prev;
1819 }
1820
1821 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1822 doc: /* Reverse LIST, copying. Return the reversed list.
1823 See also the function `nreverse', which is used more often. */)
1824 (list)
1825 Lisp_Object list;
1826 {
1827 Lisp_Object new;
1828
1829 for (new = Qnil; CONSP (list); list = XCDR (list))
1830 {
1831 QUIT;
1832 new = Fcons (XCAR (list), new);
1833 }
1834 CHECK_LIST_END (list, list);
1835 return new;
1836 }
1837 \f
1838 Lisp_Object merge ();
1839
1840 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1841 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1842 Returns the sorted list. LIST is modified by side effects.
1843 PREDICATE is called with two elements of LIST, and should return non-nil
1844 if the first element should sort before the second. */)
1845 (list, predicate)
1846 Lisp_Object list, predicate;
1847 {
1848 Lisp_Object front, back;
1849 register Lisp_Object len, tem;
1850 struct gcpro gcpro1, gcpro2;
1851 register int length;
1852
1853 front = list;
1854 len = Flength (list);
1855 length = XINT (len);
1856 if (length < 2)
1857 return list;
1858
1859 XSETINT (len, (length / 2) - 1);
1860 tem = Fnthcdr (len, list);
1861 back = Fcdr (tem);
1862 Fsetcdr (tem, Qnil);
1863
1864 GCPRO2 (front, back);
1865 front = Fsort (front, predicate);
1866 back = Fsort (back, predicate);
1867 UNGCPRO;
1868 return merge (front, back, predicate);
1869 }
1870
1871 Lisp_Object
1872 merge (org_l1, org_l2, pred)
1873 Lisp_Object org_l1, org_l2;
1874 Lisp_Object pred;
1875 {
1876 Lisp_Object value;
1877 register Lisp_Object tail;
1878 Lisp_Object tem;
1879 register Lisp_Object l1, l2;
1880 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1881
1882 l1 = org_l1;
1883 l2 = org_l2;
1884 tail = Qnil;
1885 value = Qnil;
1886
1887 /* It is sufficient to protect org_l1 and org_l2.
1888 When l1 and l2 are updated, we copy the new values
1889 back into the org_ vars. */
1890 GCPRO4 (org_l1, org_l2, pred, value);
1891
1892 while (1)
1893 {
1894 if (NILP (l1))
1895 {
1896 UNGCPRO;
1897 if (NILP (tail))
1898 return l2;
1899 Fsetcdr (tail, l2);
1900 return value;
1901 }
1902 if (NILP (l2))
1903 {
1904 UNGCPRO;
1905 if (NILP (tail))
1906 return l1;
1907 Fsetcdr (tail, l1);
1908 return value;
1909 }
1910 tem = call2 (pred, Fcar (l2), Fcar (l1));
1911 if (NILP (tem))
1912 {
1913 tem = l1;
1914 l1 = Fcdr (l1);
1915 org_l1 = l1;
1916 }
1917 else
1918 {
1919 tem = l2;
1920 l2 = Fcdr (l2);
1921 org_l2 = l2;
1922 }
1923 if (NILP (tail))
1924 value = tem;
1925 else
1926 Fsetcdr (tail, tem);
1927 tail = tem;
1928 }
1929 }
1930
1931 \f
1932 #if 0 /* Unsafe version. */
1933 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1934 doc: /* Extract a value from a property list.
1935 PLIST is a property list, which is a list of the form
1936 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1937 corresponding to the given PROP, or nil if PROP is not
1938 one of the properties on the list. */)
1939 (plist, prop)
1940 Lisp_Object plist;
1941 Lisp_Object prop;
1942 {
1943 Lisp_Object tail;
1944
1945 for (tail = plist;
1946 CONSP (tail) && CONSP (XCDR (tail));
1947 tail = XCDR (XCDR (tail)))
1948 {
1949 if (EQ (prop, XCAR (tail)))
1950 return XCAR (XCDR (tail));
1951
1952 /* This function can be called asynchronously
1953 (setup_coding_system). Don't QUIT in that case. */
1954 if (!interrupt_input_blocked)
1955 QUIT;
1956 }
1957
1958 CHECK_LIST_END (tail, prop);
1959
1960 return Qnil;
1961 }
1962 #endif
1963
1964 /* This does not check for quits. That is safe since it must terminate. */
1965
1966 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1967 doc: /* Extract a value from a property list.
1968 PLIST is a property list, which is a list of the form
1969 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1970 corresponding to the given PROP, or nil if PROP is not one of the
1971 properties on the list. This function never signals an error. */)
1972 (plist, prop)
1973 Lisp_Object plist;
1974 Lisp_Object prop;
1975 {
1976 Lisp_Object tail, halftail;
1977
1978 /* halftail is used to detect circular lists. */
1979 tail = halftail = plist;
1980 while (CONSP (tail) && CONSP (XCDR (tail)))
1981 {
1982 if (EQ (prop, XCAR (tail)))
1983 return XCAR (XCDR (tail));
1984
1985 tail = XCDR (XCDR (tail));
1986 halftail = XCDR (halftail);
1987 if (EQ (tail, halftail))
1988 break;
1989 }
1990
1991 return Qnil;
1992 }
1993
1994 DEFUN ("get", Fget, Sget, 2, 2, 0,
1995 doc: /* Return the value of SYMBOL's PROPNAME property.
1996 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1997 (symbol, propname)
1998 Lisp_Object symbol, propname;
1999 {
2000 CHECK_SYMBOL (symbol);
2001 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2002 }
2003
2004 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2005 doc: /* Change value in PLIST of PROP to VAL.
2006 PLIST is a property list, which is a list of the form
2007 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2008 If PROP is already a property on the list, its value is set to VAL,
2009 otherwise the new PROP VAL pair is added. The new plist is returned;
2010 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2011 The PLIST is modified by side effects. */)
2012 (plist, prop, val)
2013 Lisp_Object plist;
2014 register Lisp_Object prop;
2015 Lisp_Object val;
2016 {
2017 register Lisp_Object tail, prev;
2018 Lisp_Object newcell;
2019 prev = Qnil;
2020 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2021 tail = XCDR (XCDR (tail)))
2022 {
2023 if (EQ (prop, XCAR (tail)))
2024 {
2025 Fsetcar (XCDR (tail), val);
2026 return plist;
2027 }
2028
2029 prev = tail;
2030 QUIT;
2031 }
2032 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2033 if (NILP (prev))
2034 return newcell;
2035 else
2036 Fsetcdr (XCDR (prev), newcell);
2037 return plist;
2038 }
2039
2040 DEFUN ("put", Fput, Sput, 3, 3, 0,
2041 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2042 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2043 (symbol, propname, value)
2044 Lisp_Object symbol, propname, value;
2045 {
2046 CHECK_SYMBOL (symbol);
2047 XSYMBOL (symbol)->plist
2048 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2049 return value;
2050 }
2051 \f
2052 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2053 doc: /* Extract a value from a property list, comparing with `equal'.
2054 PLIST is a property list, which is a list of the form
2055 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2056 corresponding to the given PROP, or nil if PROP is not
2057 one of the properties on the list. */)
2058 (plist, prop)
2059 Lisp_Object plist;
2060 Lisp_Object prop;
2061 {
2062 Lisp_Object tail;
2063
2064 for (tail = plist;
2065 CONSP (tail) && CONSP (XCDR (tail));
2066 tail = XCDR (XCDR (tail)))
2067 {
2068 if (! NILP (Fequal (prop, XCAR (tail))))
2069 return XCAR (XCDR (tail));
2070
2071 QUIT;
2072 }
2073
2074 CHECK_LIST_END (tail, prop);
2075
2076 return Qnil;
2077 }
2078
2079 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2080 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2081 PLIST is a property list, which is a list of the form
2082 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2083 If PROP is already a property on the list, its value is set to VAL,
2084 otherwise the new PROP VAL pair is added. The new plist is returned;
2085 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2086 The PLIST is modified by side effects. */)
2087 (plist, prop, val)
2088 Lisp_Object plist;
2089 register Lisp_Object prop;
2090 Lisp_Object val;
2091 {
2092 register Lisp_Object tail, prev;
2093 Lisp_Object newcell;
2094 prev = Qnil;
2095 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2096 tail = XCDR (XCDR (tail)))
2097 {
2098 if (! NILP (Fequal (prop, XCAR (tail))))
2099 {
2100 Fsetcar (XCDR (tail), val);
2101 return plist;
2102 }
2103
2104 prev = tail;
2105 QUIT;
2106 }
2107 newcell = Fcons (prop, Fcons (val, Qnil));
2108 if (NILP (prev))
2109 return newcell;
2110 else
2111 Fsetcdr (XCDR (prev), newcell);
2112 return plist;
2113 }
2114 \f
2115 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2116 doc: /* Return t if the two args are the same Lisp object.
2117 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2118 (obj1, obj2)
2119 Lisp_Object obj1, obj2;
2120 {
2121 if (FLOATP (obj1))
2122 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2123 else
2124 return EQ (obj1, obj2) ? Qt : Qnil;
2125 }
2126
2127 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2128 doc: /* Return t if two Lisp objects have similar structure and contents.
2129 They must have the same data type.
2130 Conses are compared by comparing the cars and the cdrs.
2131 Vectors and strings are compared element by element.
2132 Numbers are compared by value, but integers cannot equal floats.
2133 (Use `=' if you want integers and floats to be able to be equal.)
2134 Symbols must match exactly. */)
2135 (o1, o2)
2136 register Lisp_Object o1, o2;
2137 {
2138 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2139 }
2140
2141 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2142 doc: /* Return t if two Lisp objects have similar structure and contents.
2143 This is like `equal' except that it compares the text properties
2144 of strings. (`equal' ignores text properties.) */)
2145 (o1, o2)
2146 register Lisp_Object o1, o2;
2147 {
2148 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2149 }
2150
2151 /* DEPTH is current depth of recursion. Signal an error if it
2152 gets too deep.
2153 PROPS, if non-nil, means compare string text properties too. */
2154
2155 static int
2156 internal_equal (o1, o2, depth, props)
2157 register Lisp_Object o1, o2;
2158 int depth, props;
2159 {
2160 if (depth > 200)
2161 error ("Stack overflow in equal");
2162
2163 tail_recurse:
2164 QUIT;
2165 if (EQ (o1, o2))
2166 return 1;
2167 if (XTYPE (o1) != XTYPE (o2))
2168 return 0;
2169
2170 switch (XTYPE (o1))
2171 {
2172 case Lisp_Float:
2173 {
2174 double d1, d2;
2175
2176 d1 = extract_float (o1);
2177 d2 = extract_float (o2);
2178 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2179 though they are not =. */
2180 return d1 == d2 || (d1 != d1 && d2 != d2);
2181 }
2182
2183 case Lisp_Cons:
2184 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2185 return 0;
2186 o1 = XCDR (o1);
2187 o2 = XCDR (o2);
2188 goto tail_recurse;
2189
2190 case Lisp_Misc:
2191 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2192 return 0;
2193 if (OVERLAYP (o1))
2194 {
2195 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2196 depth + 1, props)
2197 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2198 depth + 1, props))
2199 return 0;
2200 o1 = XOVERLAY (o1)->plist;
2201 o2 = XOVERLAY (o2)->plist;
2202 goto tail_recurse;
2203 }
2204 if (MARKERP (o1))
2205 {
2206 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2207 && (XMARKER (o1)->buffer == 0
2208 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2209 }
2210 break;
2211
2212 case Lisp_Vectorlike:
2213 {
2214 register int i;
2215 EMACS_INT size = ASIZE (o1);
2216 /* Pseudovectors have the type encoded in the size field, so this test
2217 actually checks that the objects have the same type as well as the
2218 same size. */
2219 if (ASIZE (o2) != size)
2220 return 0;
2221 /* Boolvectors are compared much like strings. */
2222 if (BOOL_VECTOR_P (o1))
2223 {
2224 int size_in_chars
2225 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2226 / BOOL_VECTOR_BITS_PER_CHAR);
2227
2228 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2229 return 0;
2230 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2231 size_in_chars))
2232 return 0;
2233 return 1;
2234 }
2235 if (WINDOW_CONFIGURATIONP (o1))
2236 return compare_window_configurations (o1, o2, 0);
2237
2238 /* Aside from them, only true vectors, char-tables, compiled
2239 functions, and fonts (font-spec, font-entity, font-ojbect)
2240 are sensible to compare, so eliminate the others now. */
2241 if (size & PSEUDOVECTOR_FLAG)
2242 {
2243 if (!(size & (PVEC_COMPILED
2244 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2245 return 0;
2246 size &= PSEUDOVECTOR_SIZE_MASK;
2247 }
2248 for (i = 0; i < size; i++)
2249 {
2250 Lisp_Object v1, v2;
2251 v1 = AREF (o1, i);
2252 v2 = AREF (o2, i);
2253 if (!internal_equal (v1, v2, depth + 1, props))
2254 return 0;
2255 }
2256 return 1;
2257 }
2258 break;
2259
2260 case Lisp_String:
2261 if (SCHARS (o1) != SCHARS (o2))
2262 return 0;
2263 if (SBYTES (o1) != SBYTES (o2))
2264 return 0;
2265 if (bcmp (SDATA (o1), SDATA (o2),
2266 SBYTES (o1)))
2267 return 0;
2268 if (props && !compare_string_intervals (o1, o2))
2269 return 0;
2270 return 1;
2271
2272 case Lisp_Int:
2273 case Lisp_Symbol:
2274 case Lisp_Type_Limit:
2275 break;
2276 }
2277
2278 return 0;
2279 }
2280 \f
2281 extern Lisp_Object Fmake_char_internal ();
2282
2283 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2284 doc: /* Store each element of ARRAY with ITEM.
2285 ARRAY is a vector, string, char-table, or bool-vector. */)
2286 (array, item)
2287 Lisp_Object array, item;
2288 {
2289 register int size, index, charval;
2290 if (VECTORP (array))
2291 {
2292 register Lisp_Object *p = XVECTOR (array)->contents;
2293 size = ASIZE (array);
2294 for (index = 0; index < size; index++)
2295 p[index] = item;
2296 }
2297 else if (CHAR_TABLE_P (array))
2298 {
2299 int i;
2300
2301 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2302 XCHAR_TABLE (array)->contents[i] = item;
2303 XCHAR_TABLE (array)->defalt = item;
2304 }
2305 else if (STRINGP (array))
2306 {
2307 register unsigned char *p = SDATA (array);
2308 CHECK_NUMBER (item);
2309 charval = XINT (item);
2310 size = SCHARS (array);
2311 if (STRING_MULTIBYTE (array))
2312 {
2313 unsigned char str[MAX_MULTIBYTE_LENGTH];
2314 int len = CHAR_STRING (charval, str);
2315 int size_byte = SBYTES (array);
2316 unsigned char *p1 = p, *endp = p + size_byte;
2317 int i;
2318
2319 if (size != size_byte)
2320 while (p1 < endp)
2321 {
2322 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2323 if (len != this_len)
2324 error ("Attempt to change byte length of a string");
2325 p1 += this_len;
2326 }
2327 for (i = 0; i < size_byte; i++)
2328 *p++ = str[i % len];
2329 }
2330 else
2331 for (index = 0; index < size; index++)
2332 p[index] = charval;
2333 }
2334 else if (BOOL_VECTOR_P (array))
2335 {
2336 register unsigned char *p = XBOOL_VECTOR (array)->data;
2337 int size_in_chars
2338 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2339 / BOOL_VECTOR_BITS_PER_CHAR);
2340
2341 charval = (! NILP (item) ? -1 : 0);
2342 for (index = 0; index < size_in_chars - 1; index++)
2343 p[index] = charval;
2344 if (index < size_in_chars)
2345 {
2346 /* Mask out bits beyond the vector size. */
2347 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2348 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2349 p[index] = charval;
2350 }
2351 }
2352 else
2353 wrong_type_argument (Qarrayp, array);
2354 return array;
2355 }
2356
2357 DEFUN ("clear-string", Fclear_string, Sclear_string,
2358 1, 1, 0,
2359 doc: /* Clear the contents of STRING.
2360 This makes STRING unibyte and may change its length. */)
2361 (string)
2362 Lisp_Object string;
2363 {
2364 int len;
2365 CHECK_STRING (string);
2366 len = SBYTES (string);
2367 bzero (SDATA (string), len);
2368 STRING_SET_CHARS (string, len);
2369 STRING_SET_UNIBYTE (string);
2370 return Qnil;
2371 }
2372 \f
2373 /* ARGSUSED */
2374 Lisp_Object
2375 nconc2 (s1, s2)
2376 Lisp_Object s1, s2;
2377 {
2378 #ifdef NO_ARG_ARRAY
2379 Lisp_Object args[2];
2380 args[0] = s1;
2381 args[1] = s2;
2382 return Fnconc (2, args);
2383 #else
2384 return Fnconc (2, &s1);
2385 #endif /* NO_ARG_ARRAY */
2386 }
2387
2388 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2389 doc: /* Concatenate any number of lists by altering them.
2390 Only the last argument is not altered, and need not be a list.
2391 usage: (nconc &rest LISTS) */)
2392 (nargs, args)
2393 int nargs;
2394 Lisp_Object *args;
2395 {
2396 register int argnum;
2397 register Lisp_Object tail, tem, val;
2398
2399 val = tail = Qnil;
2400
2401 for (argnum = 0; argnum < nargs; argnum++)
2402 {
2403 tem = args[argnum];
2404 if (NILP (tem)) continue;
2405
2406 if (NILP (val))
2407 val = tem;
2408
2409 if (argnum + 1 == nargs) break;
2410
2411 CHECK_LIST_CONS (tem, tem);
2412
2413 while (CONSP (tem))
2414 {
2415 tail = tem;
2416 tem = XCDR (tail);
2417 QUIT;
2418 }
2419
2420 tem = args[argnum + 1];
2421 Fsetcdr (tail, tem);
2422 if (NILP (tem))
2423 args[argnum + 1] = tail;
2424 }
2425
2426 return val;
2427 }
2428 \f
2429 /* This is the guts of all mapping functions.
2430 Apply FN to each element of SEQ, one by one,
2431 storing the results into elements of VALS, a C vector of Lisp_Objects.
2432 LENI is the length of VALS, which should also be the length of SEQ. */
2433
2434 static void
2435 mapcar1 (leni, vals, fn, seq)
2436 int leni;
2437 Lisp_Object *vals;
2438 Lisp_Object fn, seq;
2439 {
2440 register Lisp_Object tail;
2441 Lisp_Object dummy;
2442 register int i;
2443 struct gcpro gcpro1, gcpro2, gcpro3;
2444
2445 if (vals)
2446 {
2447 /* Don't let vals contain any garbage when GC happens. */
2448 for (i = 0; i < leni; i++)
2449 vals[i] = Qnil;
2450
2451 GCPRO3 (dummy, fn, seq);
2452 gcpro1.var = vals;
2453 gcpro1.nvars = leni;
2454 }
2455 else
2456 GCPRO2 (fn, seq);
2457 /* We need not explicitly protect `tail' because it is used only on lists, and
2458 1) lists are not relocated and 2) the list is marked via `seq' so will not
2459 be freed */
2460
2461 if (VECTORP (seq))
2462 {
2463 for (i = 0; i < leni; i++)
2464 {
2465 dummy = call1 (fn, AREF (seq, i));
2466 if (vals)
2467 vals[i] = dummy;
2468 }
2469 }
2470 else if (BOOL_VECTOR_P (seq))
2471 {
2472 for (i = 0; i < leni; i++)
2473 {
2474 int byte;
2475 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2476 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2477 dummy = call1 (fn, dummy);
2478 if (vals)
2479 vals[i] = dummy;
2480 }
2481 }
2482 else if (STRINGP (seq))
2483 {
2484 int i_byte;
2485
2486 for (i = 0, i_byte = 0; i < leni;)
2487 {
2488 int c;
2489 int i_before = i;
2490
2491 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2492 XSETFASTINT (dummy, c);
2493 dummy = call1 (fn, dummy);
2494 if (vals)
2495 vals[i_before] = dummy;
2496 }
2497 }
2498 else /* Must be a list, since Flength did not get an error */
2499 {
2500 tail = seq;
2501 for (i = 0; i < leni && CONSP (tail); i++)
2502 {
2503 dummy = call1 (fn, XCAR (tail));
2504 if (vals)
2505 vals[i] = dummy;
2506 tail = XCDR (tail);
2507 }
2508 }
2509
2510 UNGCPRO;
2511 }
2512
2513 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2514 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2515 In between each pair of results, stick in SEPARATOR. Thus, " " as
2516 SEPARATOR results in spaces between the values returned by FUNCTION.
2517 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2518 (function, sequence, separator)
2519 Lisp_Object function, sequence, separator;
2520 {
2521 Lisp_Object len;
2522 register int leni;
2523 int nargs;
2524 register Lisp_Object *args;
2525 register int i;
2526 struct gcpro gcpro1;
2527 Lisp_Object ret;
2528 USE_SAFE_ALLOCA;
2529
2530 len = Flength (sequence);
2531 if (CHAR_TABLE_P (sequence))
2532 wrong_type_argument (Qlistp, sequence);
2533 leni = XINT (len);
2534 nargs = leni + leni - 1;
2535 if (nargs < 0) return empty_unibyte_string;
2536
2537 SAFE_ALLOCA_LISP (args, nargs);
2538
2539 GCPRO1 (separator);
2540 mapcar1 (leni, args, function, sequence);
2541 UNGCPRO;
2542
2543 for (i = leni - 1; i > 0; i--)
2544 args[i + i] = args[i];
2545
2546 for (i = 1; i < nargs; i += 2)
2547 args[i] = separator;
2548
2549 ret = Fconcat (nargs, args);
2550 SAFE_FREE ();
2551
2552 return ret;
2553 }
2554
2555 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2556 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2557 The result is a list just as long as SEQUENCE.
2558 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2559 (function, sequence)
2560 Lisp_Object function, sequence;
2561 {
2562 register Lisp_Object len;
2563 register int leni;
2564 register Lisp_Object *args;
2565 Lisp_Object ret;
2566 USE_SAFE_ALLOCA;
2567
2568 len = Flength (sequence);
2569 if (CHAR_TABLE_P (sequence))
2570 wrong_type_argument (Qlistp, sequence);
2571 leni = XFASTINT (len);
2572
2573 SAFE_ALLOCA_LISP (args, leni);
2574
2575 mapcar1 (leni, args, function, sequence);
2576
2577 ret = Flist (leni, args);
2578 SAFE_FREE ();
2579
2580 return ret;
2581 }
2582
2583 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2584 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2585 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2586 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2587 (function, sequence)
2588 Lisp_Object function, sequence;
2589 {
2590 register int leni;
2591
2592 leni = XFASTINT (Flength (sequence));
2593 if (CHAR_TABLE_P (sequence))
2594 wrong_type_argument (Qlistp, sequence);
2595 mapcar1 (leni, 0, function, sequence);
2596
2597 return sequence;
2598 }
2599 \f
2600 /* Anything that calls this function must protect from GC! */
2601
2602 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2603 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2604 Takes one argument, which is the string to display to ask the question.
2605 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2606 No confirmation of the answer is requested; a single character is enough.
2607 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2608 the bindings in `query-replace-map'; see the documentation of that variable
2609 for more information. In this case, the useful bindings are `act', `skip',
2610 `recenter', and `quit'.\)
2611
2612 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2613 is nil and `use-dialog-box' is non-nil. */)
2614 (prompt)
2615 Lisp_Object prompt;
2616 {
2617 register Lisp_Object obj, key, def, map;
2618 register int answer;
2619 Lisp_Object xprompt;
2620 Lisp_Object args[2];
2621 struct gcpro gcpro1, gcpro2;
2622 int count = SPECPDL_INDEX ();
2623
2624 specbind (Qcursor_in_echo_area, Qt);
2625
2626 map = Fsymbol_value (intern ("query-replace-map"));
2627
2628 CHECK_STRING (prompt);
2629 xprompt = prompt;
2630 GCPRO2 (prompt, xprompt);
2631
2632 #ifdef HAVE_WINDOW_SYSTEM
2633 if (display_hourglass_p)
2634 cancel_hourglass ();
2635 #endif
2636
2637 while (1)
2638 {
2639
2640 #ifdef HAVE_MENUS
2641 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2642 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2643 && use_dialog_box
2644 && have_menus_p ())
2645 {
2646 Lisp_Object pane, menu;
2647 redisplay_preserve_echo_area (3);
2648 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2649 Fcons (Fcons (build_string ("No"), Qnil),
2650 Qnil));
2651 menu = Fcons (prompt, pane);
2652 obj = Fx_popup_dialog (Qt, menu, Qnil);
2653 answer = !NILP (obj);
2654 break;
2655 }
2656 #endif /* HAVE_MENUS */
2657 cursor_in_echo_area = 1;
2658 choose_minibuf_frame ();
2659
2660 {
2661 Lisp_Object pargs[3];
2662
2663 /* Colorize prompt according to `minibuffer-prompt' face. */
2664 pargs[0] = build_string ("%s(y or n) ");
2665 pargs[1] = intern ("face");
2666 pargs[2] = intern ("minibuffer-prompt");
2667 args[0] = Fpropertize (3, pargs);
2668 args[1] = xprompt;
2669 Fmessage (2, args);
2670 }
2671
2672 if (minibuffer_auto_raise)
2673 {
2674 Lisp_Object mini_frame;
2675
2676 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
2677
2678 Fraise_frame (mini_frame);
2679 }
2680
2681 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
2682 obj = read_filtered_event (1, 0, 0, 0, Qnil);
2683 cursor_in_echo_area = 0;
2684 /* If we need to quit, quit with cursor_in_echo_area = 0. */
2685 QUIT;
2686
2687 key = Fmake_vector (make_number (1), obj);
2688 def = Flookup_key (map, key, Qt);
2689
2690 if (EQ (def, intern ("skip")))
2691 {
2692 answer = 0;
2693 break;
2694 }
2695 else if (EQ (def, intern ("act")))
2696 {
2697 answer = 1;
2698 break;
2699 }
2700 else if (EQ (def, intern ("recenter")))
2701 {
2702 Frecenter (Qnil);
2703 xprompt = prompt;
2704 continue;
2705 }
2706 else if (EQ (def, intern ("quit")))
2707 Vquit_flag = Qt;
2708 /* We want to exit this command for exit-prefix,
2709 and this is the only way to do it. */
2710 else if (EQ (def, intern ("exit-prefix")))
2711 Vquit_flag = Qt;
2712
2713 QUIT;
2714
2715 /* If we don't clear this, then the next call to read_char will
2716 return quit_char again, and we'll enter an infinite loop. */
2717 Vquit_flag = Qnil;
2718
2719 Fding (Qnil);
2720 Fdiscard_input ();
2721 if (EQ (xprompt, prompt))
2722 {
2723 args[0] = build_string ("Please answer y or n. ");
2724 args[1] = prompt;
2725 xprompt = Fconcat (2, args);
2726 }
2727 }
2728 UNGCPRO;
2729
2730 if (! noninteractive)
2731 {
2732 cursor_in_echo_area = -1;
2733 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
2734 xprompt, 0);
2735 }
2736
2737 unbind_to (count, Qnil);
2738 return answer ? Qt : Qnil;
2739 }
2740 \f
2741 /* This is how C code calls `yes-or-no-p' and allows the user
2742 to redefined it.
2743
2744 Anything that calls this function must protect from GC! */
2745
2746 Lisp_Object
2747 do_yes_or_no_p (prompt)
2748 Lisp_Object prompt;
2749 {
2750 return call1 (intern ("yes-or-no-p"), prompt);
2751 }
2752
2753 /* Anything that calls this function must protect from GC! */
2754
2755 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2756 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2757 Takes one argument, which is the string to display to ask the question.
2758 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2759 The user must confirm the answer with RET,
2760 and can edit it until it has been confirmed.
2761
2762 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2763 is nil, and `use-dialog-box' is non-nil. */)
2764 (prompt)
2765 Lisp_Object prompt;
2766 {
2767 register Lisp_Object ans;
2768 Lisp_Object args[2];
2769 struct gcpro gcpro1;
2770
2771 CHECK_STRING (prompt);
2772
2773 #ifdef HAVE_MENUS
2774 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2775 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2776 && use_dialog_box
2777 && have_menus_p ())
2778 {
2779 Lisp_Object pane, menu, obj;
2780 redisplay_preserve_echo_area (4);
2781 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2782 Fcons (Fcons (build_string ("No"), Qnil),
2783 Qnil));
2784 GCPRO1 (pane);
2785 menu = Fcons (prompt, pane);
2786 obj = Fx_popup_dialog (Qt, menu, Qnil);
2787 UNGCPRO;
2788 return obj;
2789 }
2790 #endif /* HAVE_MENUS */
2791
2792 args[0] = prompt;
2793 args[1] = build_string ("(yes or no) ");
2794 prompt = Fconcat (2, args);
2795
2796 GCPRO1 (prompt);
2797
2798 while (1)
2799 {
2800 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2801 Qyes_or_no_p_history, Qnil,
2802 Qnil));
2803 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2804 {
2805 UNGCPRO;
2806 return Qt;
2807 }
2808 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2809 {
2810 UNGCPRO;
2811 return Qnil;
2812 }
2813
2814 Fding (Qnil);
2815 Fdiscard_input ();
2816 message ("Please answer yes or no.");
2817 Fsleep_for (make_number (2), Qnil);
2818 }
2819 }
2820 \f
2821 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2822 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2823
2824 Each of the three load averages is multiplied by 100, then converted
2825 to integer.
2826
2827 When USE-FLOATS is non-nil, floats will be used instead of integers.
2828 These floats are not multiplied by 100.
2829
2830 If the 5-minute or 15-minute load averages are not available, return a
2831 shortened list, containing only those averages which are available.
2832
2833 An error is thrown if the load average can't be obtained. In some
2834 cases making it work would require Emacs being installed setuid or
2835 setgid so that it can read kernel information, and that usually isn't
2836 advisable. */)
2837 (use_floats)
2838 Lisp_Object use_floats;
2839 {
2840 double load_ave[3];
2841 int loads = getloadavg (load_ave, 3);
2842 Lisp_Object ret = Qnil;
2843
2844 if (loads < 0)
2845 error ("load-average not implemented for this operating system");
2846
2847 while (loads-- > 0)
2848 {
2849 Lisp_Object load = (NILP (use_floats) ?
2850 make_number ((int) (100.0 * load_ave[loads]))
2851 : make_float (load_ave[loads]));
2852 ret = Fcons (load, ret);
2853 }
2854
2855 return ret;
2856 }
2857 \f
2858 Lisp_Object Vfeatures, Qsubfeatures;
2859 extern Lisp_Object Vafter_load_alist;
2860
2861 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2862 doc: /* Returns t if FEATURE is present in this Emacs.
2863
2864 Use this to conditionalize execution of lisp code based on the
2865 presence or absence of Emacs or environment extensions.
2866 Use `provide' to declare that a feature is available. This function
2867 looks at the value of the variable `features'. The optional argument
2868 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2869 (feature, subfeature)
2870 Lisp_Object feature, subfeature;
2871 {
2872 register Lisp_Object tem;
2873 CHECK_SYMBOL (feature);
2874 tem = Fmemq (feature, Vfeatures);
2875 if (!NILP (tem) && !NILP (subfeature))
2876 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2877 return (NILP (tem)) ? Qnil : Qt;
2878 }
2879
2880 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2881 doc: /* Announce that FEATURE is a feature of the current Emacs.
2882 The optional argument SUBFEATURES should be a list of symbols listing
2883 particular subfeatures supported in this version of FEATURE. */)
2884 (feature, subfeatures)
2885 Lisp_Object feature, subfeatures;
2886 {
2887 register Lisp_Object tem;
2888 CHECK_SYMBOL (feature);
2889 CHECK_LIST (subfeatures);
2890 if (!NILP (Vautoload_queue))
2891 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2892 Vautoload_queue);
2893 tem = Fmemq (feature, Vfeatures);
2894 if (NILP (tem))
2895 Vfeatures = Fcons (feature, Vfeatures);
2896 if (!NILP (subfeatures))
2897 Fput (feature, Qsubfeatures, subfeatures);
2898 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2899
2900 /* Run any load-hooks for this file. */
2901 tem = Fassq (feature, Vafter_load_alist);
2902 if (CONSP (tem))
2903 Fprogn (XCDR (tem));
2904
2905 return feature;
2906 }
2907 \f
2908 /* `require' and its subroutines. */
2909
2910 /* List of features currently being require'd, innermost first. */
2911
2912 Lisp_Object require_nesting_list;
2913
2914 Lisp_Object
2915 require_unwind (old_value)
2916 Lisp_Object old_value;
2917 {
2918 return require_nesting_list = old_value;
2919 }
2920
2921 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2922 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2923 If FEATURE is not a member of the list `features', then the feature
2924 is not loaded; so load the file FILENAME.
2925 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2926 and `load' will try to load this name appended with the suffix `.elc' or
2927 `.el', in that order. The name without appended suffix will not be used.
2928 If the optional third argument NOERROR is non-nil,
2929 then return nil if the file is not found instead of signaling an error.
2930 Normally the return value is FEATURE.
2931 The normal messages at start and end of loading FILENAME are suppressed. */)
2932 (feature, filename, noerror)
2933 Lisp_Object feature, filename, noerror;
2934 {
2935 register Lisp_Object tem;
2936 struct gcpro gcpro1, gcpro2;
2937 int from_file = load_in_progress;
2938
2939 CHECK_SYMBOL (feature);
2940
2941 /* Record the presence of `require' in this file
2942 even if the feature specified is already loaded.
2943 But not more than once in any file,
2944 and not when we aren't loading or reading from a file. */
2945 if (!from_file)
2946 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2947 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2948 from_file = 1;
2949
2950 if (from_file)
2951 {
2952 tem = Fcons (Qrequire, feature);
2953 if (NILP (Fmember (tem, Vcurrent_load_list)))
2954 LOADHIST_ATTACH (tem);
2955 }
2956 tem = Fmemq (feature, Vfeatures);
2957
2958 if (NILP (tem))
2959 {
2960 int count = SPECPDL_INDEX ();
2961 int nesting = 0;
2962
2963 /* This is to make sure that loadup.el gives a clear picture
2964 of what files are preloaded and when. */
2965 if (! NILP (Vpurify_flag))
2966 error ("(require %s) while preparing to dump",
2967 SDATA (SYMBOL_NAME (feature)));
2968
2969 /* A certain amount of recursive `require' is legitimate,
2970 but if we require the same feature recursively 3 times,
2971 signal an error. */
2972 tem = require_nesting_list;
2973 while (! NILP (tem))
2974 {
2975 if (! NILP (Fequal (feature, XCAR (tem))))
2976 nesting++;
2977 tem = XCDR (tem);
2978 }
2979 if (nesting > 3)
2980 error ("Recursive `require' for feature `%s'",
2981 SDATA (SYMBOL_NAME (feature)));
2982
2983 /* Update the list for any nested `require's that occur. */
2984 record_unwind_protect (require_unwind, require_nesting_list);
2985 require_nesting_list = Fcons (feature, require_nesting_list);
2986
2987 /* Value saved here is to be restored into Vautoload_queue */
2988 record_unwind_protect (un_autoload, Vautoload_queue);
2989 Vautoload_queue = Qt;
2990
2991 /* Load the file. */
2992 GCPRO2 (feature, filename);
2993 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2994 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2995 UNGCPRO;
2996
2997 /* If load failed entirely, return nil. */
2998 if (NILP (tem))
2999 return unbind_to (count, Qnil);
3000
3001 tem = Fmemq (feature, Vfeatures);
3002 if (NILP (tem))
3003 error ("Required feature `%s' was not provided",
3004 SDATA (SYMBOL_NAME (feature)));
3005
3006 /* Once loading finishes, don't undo it. */
3007 Vautoload_queue = Qt;
3008 feature = unbind_to (count, feature);
3009 }
3010
3011 return feature;
3012 }
3013 \f
3014 /* Primitives for work of the "widget" library.
3015 In an ideal world, this section would not have been necessary.
3016 However, lisp function calls being as slow as they are, it turns
3017 out that some functions in the widget library (wid-edit.el) are the
3018 bottleneck of Widget operation. Here is their translation to C,
3019 for the sole reason of efficiency. */
3020
3021 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3022 doc: /* Return non-nil if PLIST has the property PROP.
3023 PLIST is a property list, which is a list of the form
3024 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3025 Unlike `plist-get', this allows you to distinguish between a missing
3026 property and a property with the value nil.
3027 The value is actually the tail of PLIST whose car is PROP. */)
3028 (plist, prop)
3029 Lisp_Object plist, prop;
3030 {
3031 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3032 {
3033 QUIT;
3034 plist = XCDR (plist);
3035 plist = CDR (plist);
3036 }
3037 return plist;
3038 }
3039
3040 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3041 doc: /* In WIDGET, set PROPERTY to VALUE.
3042 The value can later be retrieved with `widget-get'. */)
3043 (widget, property, value)
3044 Lisp_Object widget, property, value;
3045 {
3046 CHECK_CONS (widget);
3047 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3048 return value;
3049 }
3050
3051 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3052 doc: /* In WIDGET, get the value of PROPERTY.
3053 The value could either be specified when the widget was created, or
3054 later with `widget-put'. */)
3055 (widget, property)
3056 Lisp_Object widget, property;
3057 {
3058 Lisp_Object tmp;
3059
3060 while (1)
3061 {
3062 if (NILP (widget))
3063 return Qnil;
3064 CHECK_CONS (widget);
3065 tmp = Fplist_member (XCDR (widget), property);
3066 if (CONSP (tmp))
3067 {
3068 tmp = XCDR (tmp);
3069 return CAR (tmp);
3070 }
3071 tmp = XCAR (widget);
3072 if (NILP (tmp))
3073 return Qnil;
3074 widget = Fget (tmp, Qwidget_type);
3075 }
3076 }
3077
3078 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3079 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3080 ARGS are passed as extra arguments to the function.
3081 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3082 (nargs, args)
3083 int nargs;
3084 Lisp_Object *args;
3085 {
3086 /* This function can GC. */
3087 Lisp_Object newargs[3];
3088 struct gcpro gcpro1, gcpro2;
3089 Lisp_Object result;
3090
3091 newargs[0] = Fwidget_get (args[0], args[1]);
3092 newargs[1] = args[0];
3093 newargs[2] = Flist (nargs - 2, args + 2);
3094 GCPRO2 (newargs[0], newargs[2]);
3095 result = Fapply (3, newargs);
3096 UNGCPRO;
3097 return result;
3098 }
3099
3100 #ifdef HAVE_LANGINFO_CODESET
3101 #include <langinfo.h>
3102 #endif
3103
3104 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3105 doc: /* Access locale data ITEM for the current C locale, if available.
3106 ITEM should be one of the following:
3107
3108 `codeset', returning the character set as a string (locale item CODESET);
3109
3110 `days', returning a 7-element vector of day names (locale items DAY_n);
3111
3112 `months', returning a 12-element vector of month names (locale items MON_n);
3113
3114 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3115 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3116
3117 If the system can't provide such information through a call to
3118 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3119
3120 See also Info node `(libc)Locales'.
3121
3122 The data read from the system are decoded using `locale-coding-system'. */)
3123 (item)
3124 Lisp_Object item;
3125 {
3126 char *str = NULL;
3127 #ifdef HAVE_LANGINFO_CODESET
3128 Lisp_Object val;
3129 if (EQ (item, Qcodeset))
3130 {
3131 str = nl_langinfo (CODESET);
3132 return build_string (str);
3133 }
3134 #ifdef DAY_1
3135 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3136 {
3137 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3138 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3139 int i;
3140 struct gcpro gcpro1;
3141 GCPRO1 (v);
3142 synchronize_system_time_locale ();
3143 for (i = 0; i < 7; i++)
3144 {
3145 str = nl_langinfo (days[i]);
3146 val = make_unibyte_string (str, strlen (str));
3147 /* Fixme: Is this coding system necessarily right, even if
3148 it is consistent with CODESET? If not, what to do? */
3149 Faset (v, make_number (i),
3150 code_convert_string_norecord (val, Vlocale_coding_system,
3151 0));
3152 }
3153 UNGCPRO;
3154 return v;
3155 }
3156 #endif /* DAY_1 */
3157 #ifdef MON_1
3158 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3159 {
3160 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
3161 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3162 MON_8, MON_9, MON_10, MON_11, MON_12};
3163 int i;
3164 struct gcpro gcpro1;
3165 GCPRO1 (v);
3166 synchronize_system_time_locale ();
3167 for (i = 0; i < 12; i++)
3168 {
3169 str = nl_langinfo (months[i]);
3170 val = make_unibyte_string (str, strlen (str));
3171 Faset (v, make_number (i),
3172 code_convert_string_norecord (val, Vlocale_coding_system, 0));
3173 }
3174 UNGCPRO;
3175 return v;
3176 }
3177 #endif /* MON_1 */
3178 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3179 but is in the locale files. This could be used by ps-print. */
3180 #ifdef PAPER_WIDTH
3181 else if (EQ (item, Qpaper))
3182 {
3183 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3184 make_number (nl_langinfo (PAPER_HEIGHT)));
3185 }
3186 #endif /* PAPER_WIDTH */
3187 #endif /* HAVE_LANGINFO_CODESET*/
3188 return Qnil;
3189 }
3190 \f
3191 /* base64 encode/decode functions (RFC 2045).
3192 Based on code from GNU recode. */
3193
3194 #define MIME_LINE_LENGTH 76
3195
3196 #define IS_ASCII(Character) \
3197 ((Character) < 128)
3198 #define IS_BASE64(Character) \
3199 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3200 #define IS_BASE64_IGNORABLE(Character) \
3201 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3202 || (Character) == '\f' || (Character) == '\r')
3203
3204 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3205 character or return retval if there are no characters left to
3206 process. */
3207 #define READ_QUADRUPLET_BYTE(retval) \
3208 do \
3209 { \
3210 if (i == length) \
3211 { \
3212 if (nchars_return) \
3213 *nchars_return = nchars; \
3214 return (retval); \
3215 } \
3216 c = from[i++]; \
3217 } \
3218 while (IS_BASE64_IGNORABLE (c))
3219
3220 /* Table of characters coding the 64 values. */
3221 static char base64_value_to_char[64] =
3222 {
3223 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3224 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3225 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3226 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3227 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3228 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3229 '8', '9', '+', '/' /* 60-63 */
3230 };
3231
3232 /* Table of base64 values for first 128 characters. */
3233 static short base64_char_to_value[128] =
3234 {
3235 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3236 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3237 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3238 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3239 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3240 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3241 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3242 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3243 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3244 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3245 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3246 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3247 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3248 };
3249
3250 /* The following diagram shows the logical steps by which three octets
3251 get transformed into four base64 characters.
3252
3253 .--------. .--------. .--------.
3254 |aaaaaabb| |bbbbcccc| |ccdddddd|
3255 `--------' `--------' `--------'
3256 6 2 4 4 2 6
3257 .--------+--------+--------+--------.
3258 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3259 `--------+--------+--------+--------'
3260
3261 .--------+--------+--------+--------.
3262 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3263 `--------+--------+--------+--------'
3264
3265 The octets are divided into 6 bit chunks, which are then encoded into
3266 base64 characters. */
3267
3268
3269 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3270 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3271
3272 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3273 2, 3, "r",
3274 doc: /* Base64-encode the region between BEG and END.
3275 Return the length of the encoded text.
3276 Optional third argument NO-LINE-BREAK means do not break long lines
3277 into shorter lines. */)
3278 (beg, end, no_line_break)
3279 Lisp_Object beg, end, no_line_break;
3280 {
3281 char *encoded;
3282 int allength, length;
3283 int ibeg, iend, encoded_length;
3284 int old_pos = PT;
3285 USE_SAFE_ALLOCA;
3286
3287 validate_region (&beg, &end);
3288
3289 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3290 iend = CHAR_TO_BYTE (XFASTINT (end));
3291 move_gap_both (XFASTINT (beg), ibeg);
3292
3293 /* We need to allocate enough room for encoding the text.
3294 We need 33 1/3% more space, plus a newline every 76
3295 characters, and then we round up. */
3296 length = iend - ibeg;
3297 allength = length + length/3 + 1;
3298 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3299
3300 SAFE_ALLOCA (encoded, char *, allength);
3301 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3302 NILP (no_line_break),
3303 !NILP (current_buffer->enable_multibyte_characters));
3304 if (encoded_length > allength)
3305 abort ();
3306
3307 if (encoded_length < 0)
3308 {
3309 /* The encoding wasn't possible. */
3310 SAFE_FREE ();
3311 error ("Multibyte character in data for base64 encoding");
3312 }
3313
3314 /* Now we have encoded the region, so we insert the new contents
3315 and delete the old. (Insert first in order to preserve markers.) */
3316 SET_PT_BOTH (XFASTINT (beg), ibeg);
3317 insert (encoded, encoded_length);
3318 SAFE_FREE ();
3319 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3320
3321 /* If point was outside of the region, restore it exactly; else just
3322 move to the beginning of the region. */
3323 if (old_pos >= XFASTINT (end))
3324 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3325 else if (old_pos > XFASTINT (beg))
3326 old_pos = XFASTINT (beg);
3327 SET_PT (old_pos);
3328
3329 /* We return the length of the encoded text. */
3330 return make_number (encoded_length);
3331 }
3332
3333 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3334 1, 2, 0,
3335 doc: /* Base64-encode STRING and return the result.
3336 Optional second argument NO-LINE-BREAK means do not break long lines
3337 into shorter lines. */)
3338 (string, no_line_break)
3339 Lisp_Object string, no_line_break;
3340 {
3341 int allength, length, encoded_length;
3342 char *encoded;
3343 Lisp_Object encoded_string;
3344 USE_SAFE_ALLOCA;
3345
3346 CHECK_STRING (string);
3347
3348 /* We need to allocate enough room for encoding the text.
3349 We need 33 1/3% more space, plus a newline every 76
3350 characters, and then we round up. */
3351 length = SBYTES (string);
3352 allength = length + length/3 + 1;
3353 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3354
3355 /* We need to allocate enough room for decoding the text. */
3356 SAFE_ALLOCA (encoded, char *, allength);
3357
3358 encoded_length = base64_encode_1 (SDATA (string),
3359 encoded, length, NILP (no_line_break),
3360 STRING_MULTIBYTE (string));
3361 if (encoded_length > allength)
3362 abort ();
3363
3364 if (encoded_length < 0)
3365 {
3366 /* The encoding wasn't possible. */
3367 SAFE_FREE ();
3368 error ("Multibyte character in data for base64 encoding");
3369 }
3370
3371 encoded_string = make_unibyte_string (encoded, encoded_length);
3372 SAFE_FREE ();
3373
3374 return encoded_string;
3375 }
3376
3377 static int
3378 base64_encode_1 (from, to, length, line_break, multibyte)
3379 const char *from;
3380 char *to;
3381 int length;
3382 int line_break;
3383 int multibyte;
3384 {
3385 int counter = 0, i = 0;
3386 char *e = to;
3387 int c;
3388 unsigned int value;
3389 int bytes;
3390
3391 while (i < length)
3392 {
3393 if (multibyte)
3394 {
3395 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3396 if (CHAR_BYTE8_P (c))
3397 c = CHAR_TO_BYTE8 (c);
3398 else if (c >= 256)
3399 return -1;
3400 i += bytes;
3401 }
3402 else
3403 c = from[i++];
3404
3405 /* Wrap line every 76 characters. */
3406
3407 if (line_break)
3408 {
3409 if (counter < MIME_LINE_LENGTH / 4)
3410 counter++;
3411 else
3412 {
3413 *e++ = '\n';
3414 counter = 1;
3415 }
3416 }
3417
3418 /* Process first byte of a triplet. */
3419
3420 *e++ = base64_value_to_char[0x3f & c >> 2];
3421 value = (0x03 & c) << 4;
3422
3423 /* Process second byte of a triplet. */
3424
3425 if (i == length)
3426 {
3427 *e++ = base64_value_to_char[value];
3428 *e++ = '=';
3429 *e++ = '=';
3430 break;
3431 }
3432
3433 if (multibyte)
3434 {
3435 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3436 if (CHAR_BYTE8_P (c))
3437 c = CHAR_TO_BYTE8 (c);
3438 else if (c >= 256)
3439 return -1;
3440 i += bytes;
3441 }
3442 else
3443 c = from[i++];
3444
3445 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3446 value = (0x0f & c) << 2;
3447
3448 /* Process third byte of a triplet. */
3449
3450 if (i == length)
3451 {
3452 *e++ = base64_value_to_char[value];
3453 *e++ = '=';
3454 break;
3455 }
3456
3457 if (multibyte)
3458 {
3459 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3460 if (CHAR_BYTE8_P (c))
3461 c = CHAR_TO_BYTE8 (c);
3462 else if (c >= 256)
3463 return -1;
3464 i += bytes;
3465 }
3466 else
3467 c = from[i++];
3468
3469 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3470 *e++ = base64_value_to_char[0x3f & c];
3471 }
3472
3473 return e - to;
3474 }
3475
3476
3477 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3478 2, 2, "r",
3479 doc: /* Base64-decode the region between BEG and END.
3480 Return the length of the decoded text.
3481 If the region can't be decoded, signal an error and don't modify the buffer. */)
3482 (beg, end)
3483 Lisp_Object beg, end;
3484 {
3485 int ibeg, iend, length, allength;
3486 char *decoded;
3487 int old_pos = PT;
3488 int decoded_length;
3489 int inserted_chars;
3490 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3491 USE_SAFE_ALLOCA;
3492
3493 validate_region (&beg, &end);
3494
3495 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3496 iend = CHAR_TO_BYTE (XFASTINT (end));
3497
3498 length = iend - ibeg;
3499
3500 /* We need to allocate enough room for decoding the text. If we are
3501 working on a multibyte buffer, each decoded code may occupy at
3502 most two bytes. */
3503 allength = multibyte ? length * 2 : length;
3504 SAFE_ALLOCA (decoded, char *, allength);
3505
3506 move_gap_both (XFASTINT (beg), ibeg);
3507 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3508 multibyte, &inserted_chars);
3509 if (decoded_length > allength)
3510 abort ();
3511
3512 if (decoded_length < 0)
3513 {
3514 /* The decoding wasn't possible. */
3515 SAFE_FREE ();
3516 error ("Invalid base64 data");
3517 }
3518
3519 /* Now we have decoded the region, so we insert the new contents
3520 and delete the old. (Insert first in order to preserve markers.) */
3521 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3522 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3523 SAFE_FREE ();
3524
3525 /* Delete the original text. */
3526 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3527 iend + decoded_length, 1);
3528
3529 /* If point was outside of the region, restore it exactly; else just
3530 move to the beginning of the region. */
3531 if (old_pos >= XFASTINT (end))
3532 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3533 else if (old_pos > XFASTINT (beg))
3534 old_pos = XFASTINT (beg);
3535 SET_PT (old_pos > ZV ? ZV : old_pos);
3536
3537 return make_number (inserted_chars);
3538 }
3539
3540 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3541 1, 1, 0,
3542 doc: /* Base64-decode STRING and return the result. */)
3543 (string)
3544 Lisp_Object string;
3545 {
3546 char *decoded;
3547 int length, decoded_length;
3548 Lisp_Object decoded_string;
3549 USE_SAFE_ALLOCA;
3550
3551 CHECK_STRING (string);
3552
3553 length = SBYTES (string);
3554 /* We need to allocate enough room for decoding the text. */
3555 SAFE_ALLOCA (decoded, char *, length);
3556
3557 /* The decoded result should be unibyte. */
3558 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3559 0, NULL);
3560 if (decoded_length > length)
3561 abort ();
3562 else if (decoded_length >= 0)
3563 decoded_string = make_unibyte_string (decoded, decoded_length);
3564 else
3565 decoded_string = Qnil;
3566
3567 SAFE_FREE ();
3568 if (!STRINGP (decoded_string))
3569 error ("Invalid base64 data");
3570
3571 return decoded_string;
3572 }
3573
3574 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3575 MULTIBYTE is nonzero, the decoded result should be in multibyte
3576 form. If NCHARS_RETRUN is not NULL, store the number of produced
3577 characters in *NCHARS_RETURN. */
3578
3579 static int
3580 base64_decode_1 (from, to, length, multibyte, nchars_return)
3581 const char *from;
3582 char *to;
3583 int length;
3584 int multibyte;
3585 int *nchars_return;
3586 {
3587 int i = 0;
3588 char *e = to;
3589 unsigned char c;
3590 unsigned long value;
3591 int nchars = 0;
3592
3593 while (1)
3594 {
3595 /* Process first byte of a quadruplet. */
3596
3597 READ_QUADRUPLET_BYTE (e-to);
3598
3599 if (!IS_BASE64 (c))
3600 return -1;
3601 value = base64_char_to_value[c] << 18;
3602
3603 /* Process second byte of a quadruplet. */
3604
3605 READ_QUADRUPLET_BYTE (-1);
3606
3607 if (!IS_BASE64 (c))
3608 return -1;
3609 value |= base64_char_to_value[c] << 12;
3610
3611 c = (unsigned char) (value >> 16);
3612 if (multibyte && c >= 128)
3613 e += BYTE8_STRING (c, e);
3614 else
3615 *e++ = c;
3616 nchars++;
3617
3618 /* Process third byte of a quadruplet. */
3619
3620 READ_QUADRUPLET_BYTE (-1);
3621
3622 if (c == '=')
3623 {
3624 READ_QUADRUPLET_BYTE (-1);
3625
3626 if (c != '=')
3627 return -1;
3628 continue;
3629 }
3630
3631 if (!IS_BASE64 (c))
3632 return -1;
3633 value |= base64_char_to_value[c] << 6;
3634
3635 c = (unsigned char) (0xff & value >> 8);
3636 if (multibyte && c >= 128)
3637 e += BYTE8_STRING (c, e);
3638 else
3639 *e++ = c;
3640 nchars++;
3641
3642 /* Process fourth byte of a quadruplet. */
3643
3644 READ_QUADRUPLET_BYTE (-1);
3645
3646 if (c == '=')
3647 continue;
3648
3649 if (!IS_BASE64 (c))
3650 return -1;
3651 value |= base64_char_to_value[c];
3652
3653 c = (unsigned char) (0xff & value);
3654 if (multibyte && c >= 128)
3655 e += BYTE8_STRING (c, e);
3656 else
3657 *e++ = c;
3658 nchars++;
3659 }
3660 }
3661
3662
3663 \f
3664 /***********************************************************************
3665 ***** *****
3666 ***** Hash Tables *****
3667 ***** *****
3668 ***********************************************************************/
3669
3670 /* Implemented by gerd@gnu.org. This hash table implementation was
3671 inspired by CMUCL hash tables. */
3672
3673 /* Ideas:
3674
3675 1. For small tables, association lists are probably faster than
3676 hash tables because they have lower overhead.
3677
3678 For uses of hash tables where the O(1) behavior of table
3679 operations is not a requirement, it might therefore be a good idea
3680 not to hash. Instead, we could just do a linear search in the
3681 key_and_value vector of the hash table. This could be done
3682 if a `:linear-search t' argument is given to make-hash-table. */
3683
3684
3685 /* The list of all weak hash tables. Don't staticpro this one. */
3686
3687 struct Lisp_Hash_Table *weak_hash_tables;
3688
3689 /* Various symbols. */
3690
3691 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3692 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3693 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3694
3695 /* Function prototypes. */
3696
3697 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
3698 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
3699 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
3700 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3701 Lisp_Object, unsigned));
3702 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3703 Lisp_Object, unsigned));
3704 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
3705 unsigned, Lisp_Object, unsigned));
3706 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3707 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3708 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3709 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
3710 Lisp_Object));
3711 static unsigned sxhash_string P_ ((unsigned char *, int));
3712 static unsigned sxhash_list P_ ((Lisp_Object, int));
3713 static unsigned sxhash_vector P_ ((Lisp_Object, int));
3714 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
3715 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
3716
3717
3718 \f
3719 /***********************************************************************
3720 Utilities
3721 ***********************************************************************/
3722
3723 /* If OBJ is a Lisp hash table, return a pointer to its struct
3724 Lisp_Hash_Table. Otherwise, signal an error. */
3725
3726 static struct Lisp_Hash_Table *
3727 check_hash_table (obj)
3728 Lisp_Object obj;
3729 {
3730 CHECK_HASH_TABLE (obj);
3731 return XHASH_TABLE (obj);
3732 }
3733
3734
3735 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3736 number. */
3737
3738 int
3739 next_almost_prime (n)
3740 int n;
3741 {
3742 if (n % 2 == 0)
3743 n += 1;
3744 if (n % 3 == 0)
3745 n += 2;
3746 if (n % 7 == 0)
3747 n += 4;
3748 return n;
3749 }
3750
3751
3752 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3753 which USED[I] is non-zero. If found at index I in ARGS, set
3754 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3755 -1. This function is used to extract a keyword/argument pair from
3756 a DEFUN parameter list. */
3757
3758 static int
3759 get_key_arg (key, nargs, args, used)
3760 Lisp_Object key;
3761 int nargs;
3762 Lisp_Object *args;
3763 char *used;
3764 {
3765 int i;
3766
3767 for (i = 0; i < nargs - 1; ++i)
3768 if (!used[i] && EQ (args[i], key))
3769 break;
3770
3771 if (i >= nargs - 1)
3772 i = -1;
3773 else
3774 {
3775 used[i++] = 1;
3776 used[i] = 1;
3777 }
3778
3779 return i;
3780 }
3781
3782
3783 /* Return a Lisp vector which has the same contents as VEC but has
3784 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3785 vector that are not copied from VEC are set to INIT. */
3786
3787 Lisp_Object
3788 larger_vector (vec, new_size, init)
3789 Lisp_Object vec;
3790 int new_size;
3791 Lisp_Object init;
3792 {
3793 struct Lisp_Vector *v;
3794 int i, old_size;
3795
3796 xassert (VECTORP (vec));
3797 old_size = ASIZE (vec);
3798 xassert (new_size >= old_size);
3799
3800 v = allocate_vector (new_size);
3801 bcopy (XVECTOR (vec)->contents, v->contents,
3802 old_size * sizeof *v->contents);
3803 for (i = old_size; i < new_size; ++i)
3804 v->contents[i] = init;
3805 XSETVECTOR (vec, v);
3806 return vec;
3807 }
3808
3809
3810 /***********************************************************************
3811 Low-level Functions
3812 ***********************************************************************/
3813
3814 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3815 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3816 KEY2 are the same. */
3817
3818 static int
3819 cmpfn_eql (h, key1, hash1, key2, hash2)
3820 struct Lisp_Hash_Table *h;
3821 Lisp_Object key1, key2;
3822 unsigned hash1, hash2;
3823 {
3824 return (FLOATP (key1)
3825 && FLOATP (key2)
3826 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3827 }
3828
3829
3830 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3831 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3832 KEY2 are the same. */
3833
3834 static int
3835 cmpfn_equal (h, key1, hash1, key2, hash2)
3836 struct Lisp_Hash_Table *h;
3837 Lisp_Object key1, key2;
3838 unsigned hash1, hash2;
3839 {
3840 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3841 }
3842
3843
3844 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3845 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3846 if KEY1 and KEY2 are the same. */
3847
3848 static int
3849 cmpfn_user_defined (h, key1, hash1, key2, hash2)
3850 struct Lisp_Hash_Table *h;
3851 Lisp_Object key1, key2;
3852 unsigned hash1, hash2;
3853 {
3854 if (hash1 == hash2)
3855 {
3856 Lisp_Object args[3];
3857
3858 args[0] = h->user_cmp_function;
3859 args[1] = key1;
3860 args[2] = key2;
3861 return !NILP (Ffuncall (3, args));
3862 }
3863 else
3864 return 0;
3865 }
3866
3867
3868 /* Value is a hash code for KEY for use in hash table H which uses
3869 `eq' to compare keys. The hash code returned is guaranteed to fit
3870 in a Lisp integer. */
3871
3872 static unsigned
3873 hashfn_eq (h, key)
3874 struct Lisp_Hash_Table *h;
3875 Lisp_Object key;
3876 {
3877 unsigned hash = XUINT (key) ^ XTYPE (key);
3878 xassert ((hash & ~INTMASK) == 0);
3879 return hash;
3880 }
3881
3882
3883 /* Value is a hash code for KEY for use in hash table H which uses
3884 `eql' to compare keys. The hash code returned is guaranteed to fit
3885 in a Lisp integer. */
3886
3887 static unsigned
3888 hashfn_eql (h, key)
3889 struct Lisp_Hash_Table *h;
3890 Lisp_Object key;
3891 {
3892 unsigned hash;
3893 if (FLOATP (key))
3894 hash = sxhash (key, 0);
3895 else
3896 hash = XUINT (key) ^ XTYPE (key);
3897 xassert ((hash & ~INTMASK) == 0);
3898 return hash;
3899 }
3900
3901
3902 /* Value is a hash code for KEY for use in hash table H which uses
3903 `equal' to compare keys. The hash code returned is guaranteed to fit
3904 in a Lisp integer. */
3905
3906 static unsigned
3907 hashfn_equal (h, key)
3908 struct Lisp_Hash_Table *h;
3909 Lisp_Object key;
3910 {
3911 unsigned hash = sxhash (key, 0);
3912 xassert ((hash & ~INTMASK) == 0);
3913 return hash;
3914 }
3915
3916
3917 /* Value is a hash code for KEY for use in hash table H which uses as
3918 user-defined function to compare keys. The hash code returned is
3919 guaranteed to fit in a Lisp integer. */
3920
3921 static unsigned
3922 hashfn_user_defined (h, key)
3923 struct Lisp_Hash_Table *h;
3924 Lisp_Object key;
3925 {
3926 Lisp_Object args[2], hash;
3927
3928 args[0] = h->user_hash_function;
3929 args[1] = key;
3930 hash = Ffuncall (2, args);
3931 if (!INTEGERP (hash))
3932 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3933 return XUINT (hash);
3934 }
3935
3936
3937 /* Create and initialize a new hash table.
3938
3939 TEST specifies the test the hash table will use to compare keys.
3940 It must be either one of the predefined tests `eq', `eql' or
3941 `equal' or a symbol denoting a user-defined test named TEST with
3942 test and hash functions USER_TEST and USER_HASH.
3943
3944 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3945
3946 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3947 new size when it becomes full is computed by adding REHASH_SIZE to
3948 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3949 table's new size is computed by multiplying its old size with
3950 REHASH_SIZE.
3951
3952 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3953 be resized when the ratio of (number of entries in the table) /
3954 (table size) is >= REHASH_THRESHOLD.
3955
3956 WEAK specifies the weakness of the table. If non-nil, it must be
3957 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3958
3959 Lisp_Object
3960 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
3961 user_test, user_hash)
3962 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3963 Lisp_Object user_test, user_hash;
3964 {
3965 struct Lisp_Hash_Table *h;
3966 Lisp_Object table;
3967 int index_size, i, sz;
3968
3969 /* Preconditions. */
3970 xassert (SYMBOLP (test));
3971 xassert (INTEGERP (size) && XINT (size) >= 0);
3972 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3973 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3974 xassert (FLOATP (rehash_threshold)
3975 && XFLOATINT (rehash_threshold) > 0
3976 && XFLOATINT (rehash_threshold) <= 1.0);
3977
3978 if (XFASTINT (size) == 0)
3979 size = make_number (1);
3980
3981 /* Allocate a table and initialize it. */
3982 h = allocate_hash_table ();
3983
3984 /* Initialize hash table slots. */
3985 sz = XFASTINT (size);
3986
3987 h->test = test;
3988 if (EQ (test, Qeql))
3989 {
3990 h->cmpfn = cmpfn_eql;
3991 h->hashfn = hashfn_eql;
3992 }
3993 else if (EQ (test, Qeq))
3994 {
3995 h->cmpfn = NULL;
3996 h->hashfn = hashfn_eq;
3997 }
3998 else if (EQ (test, Qequal))
3999 {
4000 h->cmpfn = cmpfn_equal;
4001 h->hashfn = hashfn_equal;
4002 }
4003 else
4004 {
4005 h->user_cmp_function = user_test;
4006 h->user_hash_function = user_hash;
4007 h->cmpfn = cmpfn_user_defined;
4008 h->hashfn = hashfn_user_defined;
4009 }
4010
4011 h->weak = weak;
4012 h->rehash_threshold = rehash_threshold;
4013 h->rehash_size = rehash_size;
4014 h->count = 0;
4015 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4016 h->hash = Fmake_vector (size, Qnil);
4017 h->next = Fmake_vector (size, Qnil);
4018 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4019 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4020 h->index = Fmake_vector (make_number (index_size), Qnil);
4021
4022 /* Set up the free list. */
4023 for (i = 0; i < sz - 1; ++i)
4024 HASH_NEXT (h, i) = make_number (i + 1);
4025 h->next_free = make_number (0);
4026
4027 XSET_HASH_TABLE (table, h);
4028 xassert (HASH_TABLE_P (table));
4029 xassert (XHASH_TABLE (table) == h);
4030
4031 /* Maybe add this hash table to the list of all weak hash tables. */
4032 if (NILP (h->weak))
4033 h->next_weak = NULL;
4034 else
4035 {
4036 h->next_weak = weak_hash_tables;
4037 weak_hash_tables = h;
4038 }
4039
4040 return table;
4041 }
4042
4043
4044 /* Return a copy of hash table H1. Keys and values are not copied,
4045 only the table itself is. */
4046
4047 Lisp_Object
4048 copy_hash_table (h1)
4049 struct Lisp_Hash_Table *h1;
4050 {
4051 Lisp_Object table;
4052 struct Lisp_Hash_Table *h2;
4053 struct Lisp_Vector *next;
4054
4055 h2 = allocate_hash_table ();
4056 next = h2->vec_next;
4057 bcopy (h1, h2, sizeof *h2);
4058 h2->vec_next = next;
4059 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4060 h2->hash = Fcopy_sequence (h1->hash);
4061 h2->next = Fcopy_sequence (h1->next);
4062 h2->index = Fcopy_sequence (h1->index);
4063 XSET_HASH_TABLE (table, h2);
4064
4065 /* Maybe add this hash table to the list of all weak hash tables. */
4066 if (!NILP (h2->weak))
4067 {
4068 h2->next_weak = weak_hash_tables;
4069 weak_hash_tables = h2;
4070 }
4071
4072 return table;
4073 }
4074
4075
4076 /* Resize hash table H if it's too full. If H cannot be resized
4077 because it's already too large, throw an error. */
4078
4079 static INLINE void
4080 maybe_resize_hash_table (h)
4081 struct Lisp_Hash_Table *h;
4082 {
4083 if (NILP (h->next_free))
4084 {
4085 int old_size = HASH_TABLE_SIZE (h);
4086 int i, new_size, index_size;
4087 EMACS_INT nsize;
4088
4089 if (INTEGERP (h->rehash_size))
4090 new_size = old_size + XFASTINT (h->rehash_size);
4091 else
4092 new_size = old_size * XFLOATINT (h->rehash_size);
4093 new_size = max (old_size + 1, new_size);
4094 index_size = next_almost_prime ((int)
4095 (new_size
4096 / XFLOATINT (h->rehash_threshold)));
4097 /* Assignment to EMACS_INT stops GCC whining about limited range
4098 of data type. */
4099 nsize = max (index_size, 2 * new_size);
4100 if (nsize > MOST_POSITIVE_FIXNUM)
4101 error ("Hash table too large to resize");
4102
4103 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4104 h->next = larger_vector (h->next, new_size, Qnil);
4105 h->hash = larger_vector (h->hash, new_size, Qnil);
4106 h->index = Fmake_vector (make_number (index_size), Qnil);
4107
4108 /* Update the free list. Do it so that new entries are added at
4109 the end of the free list. This makes some operations like
4110 maphash faster. */
4111 for (i = old_size; i < new_size - 1; ++i)
4112 HASH_NEXT (h, i) = make_number (i + 1);
4113
4114 if (!NILP (h->next_free))
4115 {
4116 Lisp_Object last, next;
4117
4118 last = h->next_free;
4119 while (next = HASH_NEXT (h, XFASTINT (last)),
4120 !NILP (next))
4121 last = next;
4122
4123 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4124 }
4125 else
4126 XSETFASTINT (h->next_free, old_size);
4127
4128 /* Rehash. */
4129 for (i = 0; i < old_size; ++i)
4130 if (!NILP (HASH_HASH (h, i)))
4131 {
4132 unsigned hash_code = XUINT (HASH_HASH (h, i));
4133 int start_of_bucket = hash_code % ASIZE (h->index);
4134 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4135 HASH_INDEX (h, start_of_bucket) = make_number (i);
4136 }
4137 }
4138 }
4139
4140
4141 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4142 the hash code of KEY. Value is the index of the entry in H
4143 matching KEY, or -1 if not found. */
4144
4145 int
4146 hash_lookup (h, key, hash)
4147 struct Lisp_Hash_Table *h;
4148 Lisp_Object key;
4149 unsigned *hash;
4150 {
4151 unsigned hash_code;
4152 int start_of_bucket;
4153 Lisp_Object idx;
4154
4155 hash_code = h->hashfn (h, key);
4156 if (hash)
4157 *hash = hash_code;
4158
4159 start_of_bucket = hash_code % ASIZE (h->index);
4160 idx = HASH_INDEX (h, start_of_bucket);
4161
4162 /* We need not gcpro idx since it's either an integer or nil. */
4163 while (!NILP (idx))
4164 {
4165 int i = XFASTINT (idx);
4166 if (EQ (key, HASH_KEY (h, i))
4167 || (h->cmpfn
4168 && h->cmpfn (h, key, hash_code,
4169 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4170 break;
4171 idx = HASH_NEXT (h, i);
4172 }
4173
4174 return NILP (idx) ? -1 : XFASTINT (idx);
4175 }
4176
4177
4178 /* Put an entry into hash table H that associates KEY with VALUE.
4179 HASH is a previously computed hash code of KEY.
4180 Value is the index of the entry in H matching KEY. */
4181
4182 int
4183 hash_put (h, key, value, hash)
4184 struct Lisp_Hash_Table *h;
4185 Lisp_Object key, value;
4186 unsigned hash;
4187 {
4188 int start_of_bucket, i;
4189
4190 xassert ((hash & ~INTMASK) == 0);
4191
4192 /* Increment count after resizing because resizing may fail. */
4193 maybe_resize_hash_table (h);
4194 h->count++;
4195
4196 /* Store key/value in the key_and_value vector. */
4197 i = XFASTINT (h->next_free);
4198 h->next_free = HASH_NEXT (h, i);
4199 HASH_KEY (h, i) = key;
4200 HASH_VALUE (h, i) = value;
4201
4202 /* Remember its hash code. */
4203 HASH_HASH (h, i) = make_number (hash);
4204
4205 /* Add new entry to its collision chain. */
4206 start_of_bucket = hash % ASIZE (h->index);
4207 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4208 HASH_INDEX (h, start_of_bucket) = make_number (i);
4209 return i;
4210 }
4211
4212
4213 /* Remove the entry matching KEY from hash table H, if there is one. */
4214
4215 static void
4216 hash_remove_from_table (h, key)
4217 struct Lisp_Hash_Table *h;
4218 Lisp_Object key;
4219 {
4220 unsigned hash_code;
4221 int start_of_bucket;
4222 Lisp_Object idx, prev;
4223
4224 hash_code = h->hashfn (h, key);
4225 start_of_bucket = hash_code % ASIZE (h->index);
4226 idx = HASH_INDEX (h, start_of_bucket);
4227 prev = Qnil;
4228
4229 /* We need not gcpro idx, prev since they're either integers or nil. */
4230 while (!NILP (idx))
4231 {
4232 int i = XFASTINT (idx);
4233
4234 if (EQ (key, HASH_KEY (h, i))
4235 || (h->cmpfn
4236 && h->cmpfn (h, key, hash_code,
4237 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4238 {
4239 /* Take entry out of collision chain. */
4240 if (NILP (prev))
4241 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4242 else
4243 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4244
4245 /* Clear slots in key_and_value and add the slots to
4246 the free list. */
4247 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4248 HASH_NEXT (h, i) = h->next_free;
4249 h->next_free = make_number (i);
4250 h->count--;
4251 xassert (h->count >= 0);
4252 break;
4253 }
4254 else
4255 {
4256 prev = idx;
4257 idx = HASH_NEXT (h, i);
4258 }
4259 }
4260 }
4261
4262
4263 /* Clear hash table H. */
4264
4265 void
4266 hash_clear (h)
4267 struct Lisp_Hash_Table *h;
4268 {
4269 if (h->count > 0)
4270 {
4271 int i, size = HASH_TABLE_SIZE (h);
4272
4273 for (i = 0; i < size; ++i)
4274 {
4275 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4276 HASH_KEY (h, i) = Qnil;
4277 HASH_VALUE (h, i) = Qnil;
4278 HASH_HASH (h, i) = Qnil;
4279 }
4280
4281 for (i = 0; i < ASIZE (h->index); ++i)
4282 ASET (h->index, i, Qnil);
4283
4284 h->next_free = make_number (0);
4285 h->count = 0;
4286 }
4287 }
4288
4289
4290 \f
4291 /************************************************************************
4292 Weak Hash Tables
4293 ************************************************************************/
4294
4295 void
4296 init_weak_hash_tables ()
4297 {
4298 weak_hash_tables = NULL;
4299 }
4300
4301 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4302 entries from the table that don't survive the current GC.
4303 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4304 non-zero if anything was marked. */
4305
4306 static int
4307 sweep_weak_table (h, remove_entries_p)
4308 struct Lisp_Hash_Table *h;
4309 int remove_entries_p;
4310 {
4311 int bucket, n, marked;
4312
4313 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4314 marked = 0;
4315
4316 for (bucket = 0; bucket < n; ++bucket)
4317 {
4318 Lisp_Object idx, next, prev;
4319
4320 /* Follow collision chain, removing entries that
4321 don't survive this garbage collection. */
4322 prev = Qnil;
4323 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4324 {
4325 int i = XFASTINT (idx);
4326 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4327 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4328 int remove_p;
4329
4330 if (EQ (h->weak, Qkey))
4331 remove_p = !key_known_to_survive_p;
4332 else if (EQ (h->weak, Qvalue))
4333 remove_p = !value_known_to_survive_p;
4334 else if (EQ (h->weak, Qkey_or_value))
4335 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4336 else if (EQ (h->weak, Qkey_and_value))
4337 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4338 else
4339 abort ();
4340
4341 next = HASH_NEXT (h, i);
4342
4343 if (remove_entries_p)
4344 {
4345 if (remove_p)
4346 {
4347 /* Take out of collision chain. */
4348 if (NILP (prev))
4349 HASH_INDEX (h, bucket) = next;
4350 else
4351 HASH_NEXT (h, XFASTINT (prev)) = next;
4352
4353 /* Add to free list. */
4354 HASH_NEXT (h, i) = h->next_free;
4355 h->next_free = idx;
4356
4357 /* Clear key, value, and hash. */
4358 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4359 HASH_HASH (h, i) = Qnil;
4360
4361 h->count--;
4362 }
4363 else
4364 {
4365 prev = idx;
4366 }
4367 }
4368 else
4369 {
4370 if (!remove_p)
4371 {
4372 /* Make sure key and value survive. */
4373 if (!key_known_to_survive_p)
4374 {
4375 mark_object (HASH_KEY (h, i));
4376 marked = 1;
4377 }
4378
4379 if (!value_known_to_survive_p)
4380 {
4381 mark_object (HASH_VALUE (h, i));
4382 marked = 1;
4383 }
4384 }
4385 }
4386 }
4387 }
4388
4389 return marked;
4390 }
4391
4392 /* Remove elements from weak hash tables that don't survive the
4393 current garbage collection. Remove weak tables that don't survive
4394 from Vweak_hash_tables. Called from gc_sweep. */
4395
4396 void
4397 sweep_weak_hash_tables ()
4398 {
4399 struct Lisp_Hash_Table *h, *used, *next;
4400 int marked;
4401
4402 /* Mark all keys and values that are in use. Keep on marking until
4403 there is no more change. This is necessary for cases like
4404 value-weak table A containing an entry X -> Y, where Y is used in a
4405 key-weak table B, Z -> Y. If B comes after A in the list of weak
4406 tables, X -> Y might be removed from A, although when looking at B
4407 one finds that it shouldn't. */
4408 do
4409 {
4410 marked = 0;
4411 for (h = weak_hash_tables; h; h = h->next_weak)
4412 {
4413 if (h->size & ARRAY_MARK_FLAG)
4414 marked |= sweep_weak_table (h, 0);
4415 }
4416 }
4417 while (marked);
4418
4419 /* Remove tables and entries that aren't used. */
4420 for (h = weak_hash_tables, used = NULL; h; h = next)
4421 {
4422 next = h->next_weak;
4423
4424 if (h->size & ARRAY_MARK_FLAG)
4425 {
4426 /* TABLE is marked as used. Sweep its contents. */
4427 if (h->count > 0)
4428 sweep_weak_table (h, 1);
4429
4430 /* Add table to the list of used weak hash tables. */
4431 h->next_weak = used;
4432 used = h;
4433 }
4434 }
4435
4436 weak_hash_tables = used;
4437 }
4438
4439
4440 \f
4441 /***********************************************************************
4442 Hash Code Computation
4443 ***********************************************************************/
4444
4445 /* Maximum depth up to which to dive into Lisp structures. */
4446
4447 #define SXHASH_MAX_DEPTH 3
4448
4449 /* Maximum length up to which to take list and vector elements into
4450 account. */
4451
4452 #define SXHASH_MAX_LEN 7
4453
4454 /* Combine two integers X and Y for hashing. */
4455
4456 #define SXHASH_COMBINE(X, Y) \
4457 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4458 + (unsigned)(Y))
4459
4460
4461 /* Return a hash for string PTR which has length LEN. The hash
4462 code returned is guaranteed to fit in a Lisp integer. */
4463
4464 static unsigned
4465 sxhash_string (ptr, len)
4466 unsigned char *ptr;
4467 int len;
4468 {
4469 unsigned char *p = ptr;
4470 unsigned char *end = p + len;
4471 unsigned char c;
4472 unsigned hash = 0;
4473
4474 while (p != end)
4475 {
4476 c = *p++;
4477 if (c >= 0140)
4478 c -= 40;
4479 hash = ((hash << 4) + (hash >> 28) + c);
4480 }
4481
4482 return hash & INTMASK;
4483 }
4484
4485
4486 /* Return a hash for list LIST. DEPTH is the current depth in the
4487 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4488
4489 static unsigned
4490 sxhash_list (list, depth)
4491 Lisp_Object list;
4492 int depth;
4493 {
4494 unsigned hash = 0;
4495 int i;
4496
4497 if (depth < SXHASH_MAX_DEPTH)
4498 for (i = 0;
4499 CONSP (list) && i < SXHASH_MAX_LEN;
4500 list = XCDR (list), ++i)
4501 {
4502 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4503 hash = SXHASH_COMBINE (hash, hash2);
4504 }
4505
4506 if (!NILP (list))
4507 {
4508 unsigned hash2 = sxhash (list, depth + 1);
4509 hash = SXHASH_COMBINE (hash, hash2);
4510 }
4511
4512 return hash;
4513 }
4514
4515
4516 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4517 the Lisp structure. */
4518
4519 static unsigned
4520 sxhash_vector (vec, depth)
4521 Lisp_Object vec;
4522 int depth;
4523 {
4524 unsigned hash = ASIZE (vec);
4525 int i, n;
4526
4527 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4528 for (i = 0; i < n; ++i)
4529 {
4530 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4531 hash = SXHASH_COMBINE (hash, hash2);
4532 }
4533
4534 return hash;
4535 }
4536
4537
4538 /* Return a hash for bool-vector VECTOR. */
4539
4540 static unsigned
4541 sxhash_bool_vector (vec)
4542 Lisp_Object vec;
4543 {
4544 unsigned hash = XBOOL_VECTOR (vec)->size;
4545 int i, n;
4546
4547 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4548 for (i = 0; i < n; ++i)
4549 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4550
4551 return hash;
4552 }
4553
4554
4555 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4556 structure. Value is an unsigned integer clipped to INTMASK. */
4557
4558 unsigned
4559 sxhash (obj, depth)
4560 Lisp_Object obj;
4561 int depth;
4562 {
4563 unsigned hash;
4564
4565 if (depth > SXHASH_MAX_DEPTH)
4566 return 0;
4567
4568 switch (XTYPE (obj))
4569 {
4570 case Lisp_Int:
4571 hash = XUINT (obj);
4572 break;
4573
4574 case Lisp_Misc:
4575 hash = XUINT (obj);
4576 break;
4577
4578 case Lisp_Symbol:
4579 obj = SYMBOL_NAME (obj);
4580 /* Fall through. */
4581
4582 case Lisp_String:
4583 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4584 break;
4585
4586 /* This can be everything from a vector to an overlay. */
4587 case Lisp_Vectorlike:
4588 if (VECTORP (obj))
4589 /* According to the CL HyperSpec, two arrays are equal only if
4590 they are `eq', except for strings and bit-vectors. In
4591 Emacs, this works differently. We have to compare element
4592 by element. */
4593 hash = sxhash_vector (obj, depth);
4594 else if (BOOL_VECTOR_P (obj))
4595 hash = sxhash_bool_vector (obj);
4596 else
4597 /* Others are `equal' if they are `eq', so let's take their
4598 address as hash. */
4599 hash = XUINT (obj);
4600 break;
4601
4602 case Lisp_Cons:
4603 hash = sxhash_list (obj, depth);
4604 break;
4605
4606 case Lisp_Float:
4607 {
4608 double val = XFLOAT_DATA (obj);
4609 unsigned char *p = (unsigned char *) &val;
4610 unsigned char *e = p + sizeof val;
4611 for (hash = 0; p < e; ++p)
4612 hash = SXHASH_COMBINE (hash, *p);
4613 break;
4614 }
4615
4616 default:
4617 abort ();
4618 }
4619
4620 return hash & INTMASK;
4621 }
4622
4623
4624 \f
4625 /***********************************************************************
4626 Lisp Interface
4627 ***********************************************************************/
4628
4629
4630 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4631 doc: /* Compute a hash code for OBJ and return it as integer. */)
4632 (obj)
4633 Lisp_Object obj;
4634 {
4635 unsigned hash = sxhash (obj, 0);
4636 return make_number (hash);
4637 }
4638
4639
4640 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4641 doc: /* Create and return a new hash table.
4642
4643 Arguments are specified as keyword/argument pairs. The following
4644 arguments are defined:
4645
4646 :test TEST -- TEST must be a symbol that specifies how to compare
4647 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4648 `equal'. User-supplied test and hash functions can be specified via
4649 `define-hash-table-test'.
4650
4651 :size SIZE -- A hint as to how many elements will be put in the table.
4652 Default is 65.
4653
4654 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4655 fills up. If REHASH-SIZE is an integer, add that many space. If it
4656 is a float, it must be > 1.0, and the new size is computed by
4657 multiplying the old size with that factor. Default is 1.5.
4658
4659 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4660 Resize the hash table when ratio of the number of entries in the
4661 table. Default is 0.8.
4662
4663 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4664 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4665 returned is a weak table. Key/value pairs are removed from a weak
4666 hash table when there are no non-weak references pointing to their
4667 key, value, one of key or value, or both key and value, depending on
4668 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4669 is nil.
4670
4671 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4672 (nargs, args)
4673 int nargs;
4674 Lisp_Object *args;
4675 {
4676 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4677 Lisp_Object user_test, user_hash;
4678 char *used;
4679 int i;
4680
4681 /* The vector `used' is used to keep track of arguments that
4682 have been consumed. */
4683 used = (char *) alloca (nargs * sizeof *used);
4684 bzero (used, nargs * sizeof *used);
4685
4686 /* See if there's a `:test TEST' among the arguments. */
4687 i = get_key_arg (QCtest, nargs, args, used);
4688 test = i < 0 ? Qeql : args[i];
4689 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4690 {
4691 /* See if it is a user-defined test. */
4692 Lisp_Object prop;
4693
4694 prop = Fget (test, Qhash_table_test);
4695 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4696 signal_error ("Invalid hash table test", test);
4697 user_test = XCAR (prop);
4698 user_hash = XCAR (XCDR (prop));
4699 }
4700 else
4701 user_test = user_hash = Qnil;
4702
4703 /* See if there's a `:size SIZE' argument. */
4704 i = get_key_arg (QCsize, nargs, args, used);
4705 size = i < 0 ? Qnil : args[i];
4706 if (NILP (size))
4707 size = make_number (DEFAULT_HASH_SIZE);
4708 else if (!INTEGERP (size) || XINT (size) < 0)
4709 signal_error ("Invalid hash table size", size);
4710
4711 /* Look for `:rehash-size SIZE'. */
4712 i = get_key_arg (QCrehash_size, nargs, args, used);
4713 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4714 if (!NUMBERP (rehash_size)
4715 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4716 || XFLOATINT (rehash_size) <= 1.0)
4717 signal_error ("Invalid hash table rehash size", rehash_size);
4718
4719 /* Look for `:rehash-threshold THRESHOLD'. */
4720 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4721 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4722 if (!FLOATP (rehash_threshold)
4723 || XFLOATINT (rehash_threshold) <= 0.0
4724 || XFLOATINT (rehash_threshold) > 1.0)
4725 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4726
4727 /* Look for `:weakness WEAK'. */
4728 i = get_key_arg (QCweakness, nargs, args, used);
4729 weak = i < 0 ? Qnil : args[i];
4730 if (EQ (weak, Qt))
4731 weak = Qkey_and_value;
4732 if (!NILP (weak)
4733 && !EQ (weak, Qkey)
4734 && !EQ (weak, Qvalue)
4735 && !EQ (weak, Qkey_or_value)
4736 && !EQ (weak, Qkey_and_value))
4737 signal_error ("Invalid hash table weakness", weak);
4738
4739 /* Now, all args should have been used up, or there's a problem. */
4740 for (i = 0; i < nargs; ++i)
4741 if (!used[i])
4742 signal_error ("Invalid argument list", args[i]);
4743
4744 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4745 user_test, user_hash);
4746 }
4747
4748
4749 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4750 doc: /* Return a copy of hash table TABLE. */)
4751 (table)
4752 Lisp_Object table;
4753 {
4754 return copy_hash_table (check_hash_table (table));
4755 }
4756
4757
4758 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4759 doc: /* Return the number of elements in TABLE. */)
4760 (table)
4761 Lisp_Object table;
4762 {
4763 return make_number (check_hash_table (table)->count);
4764 }
4765
4766
4767 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4768 Shash_table_rehash_size, 1, 1, 0,
4769 doc: /* Return the current rehash size of TABLE. */)
4770 (table)
4771 Lisp_Object table;
4772 {
4773 return check_hash_table (table)->rehash_size;
4774 }
4775
4776
4777 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4778 Shash_table_rehash_threshold, 1, 1, 0,
4779 doc: /* Return the current rehash threshold of TABLE. */)
4780 (table)
4781 Lisp_Object table;
4782 {
4783 return check_hash_table (table)->rehash_threshold;
4784 }
4785
4786
4787 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4788 doc: /* Return the size of TABLE.
4789 The size can be used as an argument to `make-hash-table' to create
4790 a hash table than can hold as many elements of TABLE holds
4791 without need for resizing. */)
4792 (table)
4793 Lisp_Object table;
4794 {
4795 struct Lisp_Hash_Table *h = check_hash_table (table);
4796 return make_number (HASH_TABLE_SIZE (h));
4797 }
4798
4799
4800 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4801 doc: /* Return the test TABLE uses. */)
4802 (table)
4803 Lisp_Object table;
4804 {
4805 return check_hash_table (table)->test;
4806 }
4807
4808
4809 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4810 1, 1, 0,
4811 doc: /* Return the weakness of TABLE. */)
4812 (table)
4813 Lisp_Object table;
4814 {
4815 return check_hash_table (table)->weak;
4816 }
4817
4818
4819 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4820 doc: /* Return t if OBJ is a Lisp hash table object. */)
4821 (obj)
4822 Lisp_Object obj;
4823 {
4824 return HASH_TABLE_P (obj) ? Qt : Qnil;
4825 }
4826
4827
4828 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4829 doc: /* Clear hash table TABLE and return it. */)
4830 (table)
4831 Lisp_Object table;
4832 {
4833 hash_clear (check_hash_table (table));
4834 /* Be compatible with XEmacs. */
4835 return table;
4836 }
4837
4838
4839 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4840 doc: /* Look up KEY in TABLE and return its associated value.
4841 If KEY is not found, return DFLT which defaults to nil. */)
4842 (key, table, dflt)
4843 Lisp_Object key, table, dflt;
4844 {
4845 struct Lisp_Hash_Table *h = check_hash_table (table);
4846 int i = hash_lookup (h, key, NULL);
4847 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4848 }
4849
4850
4851 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4852 doc: /* Associate KEY with VALUE in hash table TABLE.
4853 If KEY is already present in table, replace its current value with
4854 VALUE. */)
4855 (key, value, table)
4856 Lisp_Object key, value, table;
4857 {
4858 struct Lisp_Hash_Table *h = check_hash_table (table);
4859 int i;
4860 unsigned hash;
4861
4862 i = hash_lookup (h, key, &hash);
4863 if (i >= 0)
4864 HASH_VALUE (h, i) = value;
4865 else
4866 hash_put (h, key, value, hash);
4867
4868 return value;
4869 }
4870
4871
4872 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4873 doc: /* Remove KEY from TABLE. */)
4874 (key, table)
4875 Lisp_Object key, table;
4876 {
4877 struct Lisp_Hash_Table *h = check_hash_table (table);
4878 hash_remove_from_table (h, key);
4879 return Qnil;
4880 }
4881
4882
4883 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4884 doc: /* Call FUNCTION for all entries in hash table TABLE.
4885 FUNCTION is called with two arguments, KEY and VALUE. */)
4886 (function, table)
4887 Lisp_Object function, table;
4888 {
4889 struct Lisp_Hash_Table *h = check_hash_table (table);
4890 Lisp_Object args[3];
4891 int i;
4892
4893 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4894 if (!NILP (HASH_HASH (h, i)))
4895 {
4896 args[0] = function;
4897 args[1] = HASH_KEY (h, i);
4898 args[2] = HASH_VALUE (h, i);
4899 Ffuncall (3, args);
4900 }
4901
4902 return Qnil;
4903 }
4904
4905
4906 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4907 Sdefine_hash_table_test, 3, 3, 0,
4908 doc: /* Define a new hash table test with name NAME, a symbol.
4909
4910 In hash tables created with NAME specified as test, use TEST to
4911 compare keys, and HASH for computing hash codes of keys.
4912
4913 TEST must be a function taking two arguments and returning non-nil if
4914 both arguments are the same. HASH must be a function taking one
4915 argument and return an integer that is the hash code of the argument.
4916 Hash code computation should use the whole value range of integers,
4917 including negative integers. */)
4918 (name, test, hash)
4919 Lisp_Object name, test, hash;
4920 {
4921 return Fput (name, Qhash_table_test, list2 (test, hash));
4922 }
4923
4924
4925 \f
4926 /************************************************************************
4927 MD5
4928 ************************************************************************/
4929
4930 #include "md5.h"
4931
4932 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4933 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4934
4935 A message digest is a cryptographic checksum of a document, and the
4936 algorithm to calculate it is defined in RFC 1321.
4937
4938 The two optional arguments START and END are character positions
4939 specifying for which part of OBJECT the message digest should be
4940 computed. If nil or omitted, the digest is computed for the whole
4941 OBJECT.
4942
4943 The MD5 message digest is computed from the result of encoding the
4944 text in a coding system, not directly from the internal Emacs form of
4945 the text. The optional fourth argument CODING-SYSTEM specifies which
4946 coding system to encode the text with. It should be the same coding
4947 system that you used or will use when actually writing the text into a
4948 file.
4949
4950 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4951 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4952 system would be chosen by default for writing this text into a file.
4953
4954 If OBJECT is a string, the most preferred coding system (see the
4955 command `prefer-coding-system') is used.
4956
4957 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4958 guesswork fails. Normally, an error is signaled in such case. */)
4959 (object, start, end, coding_system, noerror)
4960 Lisp_Object object, start, end, coding_system, noerror;
4961 {
4962 unsigned char digest[16];
4963 unsigned char value[33];
4964 int i;
4965 int size;
4966 int size_byte = 0;
4967 int start_char = 0, end_char = 0;
4968 int start_byte = 0, end_byte = 0;
4969 register int b, e;
4970 register struct buffer *bp;
4971 int temp;
4972
4973 if (STRINGP (object))
4974 {
4975 if (NILP (coding_system))
4976 {
4977 /* Decide the coding-system to encode the data with. */
4978
4979 if (STRING_MULTIBYTE (object))
4980 /* use default, we can't guess correct value */
4981 coding_system = preferred_coding_system ();
4982 else
4983 coding_system = Qraw_text;
4984 }
4985
4986 if (NILP (Fcoding_system_p (coding_system)))
4987 {
4988 /* Invalid coding system. */
4989
4990 if (!NILP (noerror))
4991 coding_system = Qraw_text;
4992 else
4993 xsignal1 (Qcoding_system_error, coding_system);
4994 }
4995
4996 if (STRING_MULTIBYTE (object))
4997 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4998
4999 size = SCHARS (object);
5000 size_byte = SBYTES (object);
5001
5002 if (!NILP (start))
5003 {
5004 CHECK_NUMBER (start);
5005
5006 start_char = XINT (start);
5007
5008 if (start_char < 0)
5009 start_char += size;
5010
5011 start_byte = string_char_to_byte (object, start_char);
5012 }
5013
5014 if (NILP (end))
5015 {
5016 end_char = size;
5017 end_byte = size_byte;
5018 }
5019 else
5020 {
5021 CHECK_NUMBER (end);
5022
5023 end_char = XINT (end);
5024
5025 if (end_char < 0)
5026 end_char += size;
5027
5028 end_byte = string_char_to_byte (object, end_char);
5029 }
5030
5031 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5032 args_out_of_range_3 (object, make_number (start_char),
5033 make_number (end_char));
5034 }
5035 else
5036 {
5037 struct buffer *prev = current_buffer;
5038
5039 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5040
5041 CHECK_BUFFER (object);
5042
5043 bp = XBUFFER (object);
5044 if (bp != current_buffer)
5045 set_buffer_internal (bp);
5046
5047 if (NILP (start))
5048 b = BEGV;
5049 else
5050 {
5051 CHECK_NUMBER_COERCE_MARKER (start);
5052 b = XINT (start);
5053 }
5054
5055 if (NILP (end))
5056 e = ZV;
5057 else
5058 {
5059 CHECK_NUMBER_COERCE_MARKER (end);
5060 e = XINT (end);
5061 }
5062
5063 if (b > e)
5064 temp = b, b = e, e = temp;
5065
5066 if (!(BEGV <= b && e <= ZV))
5067 args_out_of_range (start, end);
5068
5069 if (NILP (coding_system))
5070 {
5071 /* Decide the coding-system to encode the data with.
5072 See fileio.c:Fwrite-region */
5073
5074 if (!NILP (Vcoding_system_for_write))
5075 coding_system = Vcoding_system_for_write;
5076 else
5077 {
5078 int force_raw_text = 0;
5079
5080 coding_system = XBUFFER (object)->buffer_file_coding_system;
5081 if (NILP (coding_system)
5082 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5083 {
5084 coding_system = Qnil;
5085 if (NILP (current_buffer->enable_multibyte_characters))
5086 force_raw_text = 1;
5087 }
5088
5089 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5090 {
5091 /* Check file-coding-system-alist. */
5092 Lisp_Object args[4], val;
5093
5094 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5095 args[3] = Fbuffer_file_name(object);
5096 val = Ffind_operation_coding_system (4, args);
5097 if (CONSP (val) && !NILP (XCDR (val)))
5098 coding_system = XCDR (val);
5099 }
5100
5101 if (NILP (coding_system)
5102 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5103 {
5104 /* If we still have not decided a coding system, use the
5105 default value of buffer-file-coding-system. */
5106 coding_system = XBUFFER (object)->buffer_file_coding_system;
5107 }
5108
5109 if (!force_raw_text
5110 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5111 /* Confirm that VAL can surely encode the current region. */
5112 coding_system = call4 (Vselect_safe_coding_system_function,
5113 make_number (b), make_number (e),
5114 coding_system, Qnil);
5115
5116 if (force_raw_text)
5117 coding_system = Qraw_text;
5118 }
5119
5120 if (NILP (Fcoding_system_p (coding_system)))
5121 {
5122 /* Invalid coding system. */
5123
5124 if (!NILP (noerror))
5125 coding_system = Qraw_text;
5126 else
5127 xsignal1 (Qcoding_system_error, coding_system);
5128 }
5129 }
5130
5131 object = make_buffer_string (b, e, 0);
5132 if (prev != current_buffer)
5133 set_buffer_internal (prev);
5134 /* Discard the unwind protect for recovering the current
5135 buffer. */
5136 specpdl_ptr--;
5137
5138 if (STRING_MULTIBYTE (object))
5139 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
5140 }
5141
5142 md5_buffer (SDATA (object) + start_byte,
5143 SBYTES (object) - (size_byte - end_byte),
5144 digest);
5145
5146 for (i = 0; i < 16; i++)
5147 sprintf (&value[2 * i], "%02x", digest[i]);
5148 value[32] = '\0';
5149
5150 return make_string (value, 32);
5151 }
5152
5153 \f
5154 void
5155 syms_of_fns ()
5156 {
5157 /* Hash table stuff. */
5158 Qhash_table_p = intern ("hash-table-p");
5159 staticpro (&Qhash_table_p);
5160 Qeq = intern ("eq");
5161 staticpro (&Qeq);
5162 Qeql = intern ("eql");
5163 staticpro (&Qeql);
5164 Qequal = intern ("equal");
5165 staticpro (&Qequal);
5166 QCtest = intern (":test");
5167 staticpro (&QCtest);
5168 QCsize = intern (":size");
5169 staticpro (&QCsize);
5170 QCrehash_size = intern (":rehash-size");
5171 staticpro (&QCrehash_size);
5172 QCrehash_threshold = intern (":rehash-threshold");
5173 staticpro (&QCrehash_threshold);
5174 QCweakness = intern (":weakness");
5175 staticpro (&QCweakness);
5176 Qkey = intern ("key");
5177 staticpro (&Qkey);
5178 Qvalue = intern ("value");
5179 staticpro (&Qvalue);
5180 Qhash_table_test = intern ("hash-table-test");
5181 staticpro (&Qhash_table_test);
5182 Qkey_or_value = intern ("key-or-value");
5183 staticpro (&Qkey_or_value);
5184 Qkey_and_value = intern ("key-and-value");
5185 staticpro (&Qkey_and_value);
5186
5187 defsubr (&Ssxhash);
5188 defsubr (&Smake_hash_table);
5189 defsubr (&Scopy_hash_table);
5190 defsubr (&Shash_table_count);
5191 defsubr (&Shash_table_rehash_size);
5192 defsubr (&Shash_table_rehash_threshold);
5193 defsubr (&Shash_table_size);
5194 defsubr (&Shash_table_test);
5195 defsubr (&Shash_table_weakness);
5196 defsubr (&Shash_table_p);
5197 defsubr (&Sclrhash);
5198 defsubr (&Sgethash);
5199 defsubr (&Sputhash);
5200 defsubr (&Sremhash);
5201 defsubr (&Smaphash);
5202 defsubr (&Sdefine_hash_table_test);
5203
5204 Qstring_lessp = intern ("string-lessp");
5205 staticpro (&Qstring_lessp);
5206 Qprovide = intern ("provide");
5207 staticpro (&Qprovide);
5208 Qrequire = intern ("require");
5209 staticpro (&Qrequire);
5210 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5211 staticpro (&Qyes_or_no_p_history);
5212 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5213 staticpro (&Qcursor_in_echo_area);
5214 Qwidget_type = intern ("widget-type");
5215 staticpro (&Qwidget_type);
5216
5217 staticpro (&string_char_byte_cache_string);
5218 string_char_byte_cache_string = Qnil;
5219
5220 require_nesting_list = Qnil;
5221 staticpro (&require_nesting_list);
5222
5223 Fset (Qyes_or_no_p_history, Qnil);
5224
5225 DEFVAR_LISP ("features", &Vfeatures,
5226 doc: /* A list of symbols which are the features of the executing Emacs.
5227 Used by `featurep' and `require', and altered by `provide'. */);
5228 Vfeatures = Fcons (intern ("emacs"), Qnil);
5229 Qsubfeatures = intern ("subfeatures");
5230 staticpro (&Qsubfeatures);
5231
5232 #ifdef HAVE_LANGINFO_CODESET
5233 Qcodeset = intern ("codeset");
5234 staticpro (&Qcodeset);
5235 Qdays = intern ("days");
5236 staticpro (&Qdays);
5237 Qmonths = intern ("months");
5238 staticpro (&Qmonths);
5239 Qpaper = intern ("paper");
5240 staticpro (&Qpaper);
5241 #endif /* HAVE_LANGINFO_CODESET */
5242
5243 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5244 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5245 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5246 invoked by mouse clicks and mouse menu items.
5247
5248 On some platforms, file selection dialogs are also enabled if this is
5249 non-nil. */);
5250 use_dialog_box = 1;
5251
5252 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5253 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5254 This applies to commands from menus and tool bar buttons even when
5255 they are initiated from the keyboard. If `use-dialog-box' is nil,
5256 that disables the use of a file dialog, regardless of the value of
5257 this variable. */);
5258 use_file_dialog = 1;
5259
5260 defsubr (&Sidentity);
5261 defsubr (&Srandom);
5262 defsubr (&Slength);
5263 defsubr (&Ssafe_length);
5264 defsubr (&Sstring_bytes);
5265 defsubr (&Sstring_equal);
5266 defsubr (&Scompare_strings);
5267 defsubr (&Sstring_lessp);
5268 defsubr (&Sappend);
5269 defsubr (&Sconcat);
5270 defsubr (&Svconcat);
5271 defsubr (&Scopy_sequence);
5272 defsubr (&Sstring_make_multibyte);
5273 defsubr (&Sstring_make_unibyte);
5274 defsubr (&Sstring_as_multibyte);
5275 defsubr (&Sstring_as_unibyte);
5276 defsubr (&Sstring_to_multibyte);
5277 defsubr (&Sstring_to_unibyte);
5278 defsubr (&Scopy_alist);
5279 defsubr (&Ssubstring);
5280 defsubr (&Ssubstring_no_properties);
5281 defsubr (&Snthcdr);
5282 defsubr (&Snth);
5283 defsubr (&Selt);
5284 defsubr (&Smember);
5285 defsubr (&Smemq);
5286 defsubr (&Smemql);
5287 defsubr (&Sassq);
5288 defsubr (&Sassoc);
5289 defsubr (&Srassq);
5290 defsubr (&Srassoc);
5291 defsubr (&Sdelq);
5292 defsubr (&Sdelete);
5293 defsubr (&Snreverse);
5294 defsubr (&Sreverse);
5295 defsubr (&Ssort);
5296 defsubr (&Splist_get);
5297 defsubr (&Sget);
5298 defsubr (&Splist_put);
5299 defsubr (&Sput);
5300 defsubr (&Slax_plist_get);
5301 defsubr (&Slax_plist_put);
5302 defsubr (&Seql);
5303 defsubr (&Sequal);
5304 defsubr (&Sequal_including_properties);
5305 defsubr (&Sfillarray);
5306 defsubr (&Sclear_string);
5307 defsubr (&Snconc);
5308 defsubr (&Smapcar);
5309 defsubr (&Smapc);
5310 defsubr (&Smapconcat);
5311 defsubr (&Sy_or_n_p);
5312 defsubr (&Syes_or_no_p);
5313 defsubr (&Sload_average);
5314 defsubr (&Sfeaturep);
5315 defsubr (&Srequire);
5316 defsubr (&Sprovide);
5317 defsubr (&Splist_member);
5318 defsubr (&Swidget_put);
5319 defsubr (&Swidget_get);
5320 defsubr (&Swidget_apply);
5321 defsubr (&Sbase64_encode_region);
5322 defsubr (&Sbase64_decode_region);
5323 defsubr (&Sbase64_encode_string);
5324 defsubr (&Sbase64_decode_string);
5325 defsubr (&Smd5);
5326 defsubr (&Slocale_info);
5327 }
5328
5329
5330 void
5331 init_fns ()
5332 {
5333 }
5334
5335 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5336 (do not change this comment) */