]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
(byte-boolean-vars): Add print-escape-nonascii.
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3 ;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Keywords: internal
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 ;; Boston, MA 02111-1307, USA.
25
26 ;;; Commentary:
27
28 ;;; This file has been censored by the Communications Decency Act.
29 ;;; That law was passed under the guise of a ban on pornography, but
30 ;;; it bans far more than that. This file did not contain pornography,
31 ;;; but it was censored nonetheless.
32
33 ;;; For information on US government censorship of the Internet, and
34 ;;; what you can do to bring back freedom of the press, see the web
35 ;;; site http://www.vtw.org/
36
37 ;; ========================================================================
38 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
39 ;; You can, however, make a faster pig."
40 ;;
41 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
42 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
43 ;; still not going to make it go faster than 70 mph, but it might be easier
44 ;; to get it there.
45 ;;
46
47 ;; TO DO:
48 ;;
49 ;; (apply '(lambda (x &rest y) ...) 1 (foo))
50 ;;
51 ;; maintain a list of functions known not to access any global variables
52 ;; (actually, give them a 'dynamically-safe property) and then
53 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
54 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
55 ;; by recursing on this, we might be able to eliminate the entire let.
56 ;; However certain variables should never have their bindings optimized
57 ;; away, because they affect everything.
58 ;; (put 'debug-on-error 'binding-is-magic t)
59 ;; (put 'debug-on-abort 'binding-is-magic t)
60 ;; (put 'debug-on-next-call 'binding-is-magic t)
61 ;; (put 'mocklisp-arguments 'binding-is-magic t)
62 ;; (put 'inhibit-quit 'binding-is-magic t)
63 ;; (put 'quit-flag 'binding-is-magic t)
64 ;; (put 't 'binding-is-magic t)
65 ;; (put 'nil 'binding-is-magic t)
66 ;; possibly also
67 ;; (put 'gc-cons-threshold 'binding-is-magic t)
68 ;; (put 'track-mouse 'binding-is-magic t)
69 ;; others?
70 ;;
71 ;; Simple defsubsts often produce forms like
72 ;; (let ((v1 (f1)) (v2 (f2)) ...)
73 ;; (FN v1 v2 ...))
74 ;; It would be nice if we could optimize this to
75 ;; (FN (f1) (f2) ...)
76 ;; but we can't unless FN is dynamically-safe (it might be dynamically
77 ;; referring to the bindings that the lambda arglist established.)
78 ;; One of the uncountable lossages introduced by dynamic scope...
79 ;;
80 ;; Maybe there should be a control-structure that says "turn on
81 ;; fast-and-loose type-assumptive optimizations here." Then when
82 ;; we see a form like (car foo) we can from then on assume that
83 ;; the variable foo is of type cons, and optimize based on that.
84 ;; But, this won't win much because of (you guessed it) dynamic
85 ;; scope. Anything down the stack could change the value.
86 ;; (Another reason it doesn't work is that it is perfectly valid
87 ;; to call car with a null argument.) A better approach might
88 ;; be to allow type-specification of the form
89 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
90 ;; (put 'foo 'result-type 'bool)
91 ;; It should be possible to have these types checked to a certain
92 ;; degree.
93 ;;
94 ;; collapse common subexpressions
95 ;;
96 ;; It would be nice if redundant sequences could be factored out as well,
97 ;; when they are known to have no side-effects:
98 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
99 ;; but beware of traps like
100 ;; (cons (list x y) (list x y))
101 ;;
102 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
103 ;; Tail-recursion elimination is almost always impossible when all variables
104 ;; have dynamic scope, but given that the "return" byteop requires the
105 ;; binding stack to be empty (rather than emptying it itself), there can be
106 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
107 ;; make any bindings.
108 ;;
109 ;; Here is an example of an Emacs Lisp function which could safely be
110 ;; byte-compiled tail-recursively:
111 ;;
112 ;; (defun tail-map (fn list)
113 ;; (cond (list
114 ;; (funcall fn (car list))
115 ;; (tail-map fn (cdr list)))))
116 ;;
117 ;; However, if there was even a single let-binding around the COND,
118 ;; it could not be byte-compiled, because there would be an "unbind"
119 ;; byte-op between the final "call" and "return." Adding a
120 ;; Bunbind_all byteop would fix this.
121 ;;
122 ;; (defun foo (x y z) ... (foo a b c))
123 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
124 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
125 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
126 ;;
127 ;; this also can be considered tail recursion:
128 ;;
129 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
130 ;; could generalize this by doing the optimization
131 ;; (goto X) ... X: (return) --> (return)
132 ;;
133 ;; But this doesn't solve all of the problems: although by doing tail-
134 ;; recursion elimination in this way, the call-stack does not grow, the
135 ;; binding-stack would grow with each recursive step, and would eventually
136 ;; overflow. I don't believe there is any way around this without lexical
137 ;; scope.
138 ;;
139 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
140 ;;
141 ;; Idea: the form (lexical-scope) in a file means that the file may be
142 ;; compiled lexically. This proclamation is file-local. Then, within
143 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
144 ;; would do things the old way. (Or we could use CL "declare" forms.)
145 ;; We'd have to notice defvars and defconsts, since those variables should
146 ;; always be dynamic, and attempting to do a lexical binding of them
147 ;; should simply do a dynamic binding instead.
148 ;; But! We need to know about variables that were not necessarily defvarred
149 ;; in the file being compiled (doing a boundp check isn't good enough.)
150 ;; Fdefvar() would have to be modified to add something to the plist.
151 ;;
152 ;; A major disadvantage of this scheme is that the interpreter and compiler
153 ;; would have different semantics for files compiled with (dynamic-scope).
154 ;; Since this would be a file-local optimization, there would be no way to
155 ;; modify the interpreter to obey this (unless the loader was hacked
156 ;; in some grody way, but that's a really bad idea.)
157
158 ;; Other things to consider:
159
160 ;;;;; Associative math should recognize subcalls to identical function:
161 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
162 ;;;;; This should generate the same as (1+ x) and (1- x)
163
164 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
165 ;;;;; An awful lot of functions always return a non-nil value. If they're
166 ;;;;; error free also they may act as true-constants.
167
168 ;;;(disassemble (lambda (x) (and (point) (foo))))
169 ;;;;; When
170 ;;;;; - all but one arguments to a function are constant
171 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
172 ;;;;; then the outer function can be distributed. If the guarding
173 ;;;;; condition is side-effect-free [assignment-free] then the other
174 ;;;;; arguments may be any expressions. Since, however, the code size
175 ;;;;; can increase this way they should be "simple". Compare:
176
177 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
178 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
179
180 ;;;;; (car (cons A B)) -> (progn B A)
181 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
182
183 ;;;;; (cdr (cons A B)) -> (progn A B)
184 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
185
186 ;;;;; (car (list A B ...)) -> (progn B ... A)
187 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
188
189 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
190 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
191
192
193 ;;; Code:
194
195 (defun byte-compile-log-lap-1 (format &rest args)
196 (if (aref byte-code-vector 0)
197 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
198 (byte-compile-log-1
199 (apply 'format format
200 (let (c a)
201 (mapcar '(lambda (arg)
202 (if (not (consp arg))
203 (if (and (symbolp arg)
204 (string-match "^byte-" (symbol-name arg)))
205 (intern (substring (symbol-name arg) 5))
206 arg)
207 (if (integerp (setq c (car arg)))
208 (error "non-symbolic byte-op %s" c))
209 (if (eq c 'TAG)
210 (setq c arg)
211 (setq a (cond ((memq c byte-goto-ops)
212 (car (cdr (cdr arg))))
213 ((memq c byte-constref-ops)
214 (car (cdr arg)))
215 (t (cdr arg))))
216 (setq c (symbol-name c))
217 (if (string-match "^byte-." c)
218 (setq c (intern (substring c 5)))))
219 (if (eq c 'constant) (setq c 'const))
220 (if (and (eq (cdr arg) 0)
221 (not (memq c '(unbind call const))))
222 c
223 (format "(%s %s)" c a))))
224 args)))))
225
226 (defmacro byte-compile-log-lap (format-string &rest args)
227 (list 'and
228 '(memq byte-optimize-log '(t byte))
229 (cons 'byte-compile-log-lap-1
230 (cons format-string args))))
231
232 \f
233 ;;; byte-compile optimizers to support inlining
234
235 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
236
237 (defun byte-optimize-inline-handler (form)
238 "byte-optimize-handler for the `inline' special-form."
239 (cons 'progn
240 (mapcar
241 '(lambda (sexp)
242 (let ((fn (car-safe sexp)))
243 (if (and (symbolp fn)
244 (or (cdr (assq fn byte-compile-function-environment))
245 (and (fboundp fn)
246 (not (or (cdr (assq fn byte-compile-macro-environment))
247 (and (consp (setq fn (symbol-function fn)))
248 (eq (car fn) 'macro))
249 (subrp fn))))))
250 (byte-compile-inline-expand sexp)
251 sexp)))
252 (cdr form))))
253
254
255 ;; Splice the given lap code into the current instruction stream.
256 ;; If it has any labels in it, you're responsible for making sure there
257 ;; are no collisions, and that byte-compile-tag-number is reasonable
258 ;; after this is spliced in. The provided list is destroyed.
259 (defun byte-inline-lapcode (lap)
260 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
261
262
263 (defun byte-compile-inline-expand (form)
264 (let* ((name (car form))
265 (fn (or (cdr (assq name byte-compile-function-environment))
266 (and (fboundp name) (symbol-function name)))))
267 (if (null fn)
268 (progn
269 (byte-compile-warn "attempt to inline %s before it was defined" name)
270 form)
271 ;; else
272 (if (and (consp fn) (eq (car fn) 'autoload))
273 (progn
274 (load (nth 1 fn))
275 (setq fn (or (cdr (assq name byte-compile-function-environment))
276 (and (fboundp name) (symbol-function name))))))
277 (if (and (consp fn) (eq (car fn) 'autoload))
278 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
279 (if (symbolp fn)
280 (byte-compile-inline-expand (cons fn (cdr form)))
281 (if (byte-code-function-p fn)
282 (let (string)
283 (fetch-bytecode fn)
284 (setq string (aref fn 1))
285 (if (fboundp 'string-as-unibyte)
286 (setq string (string-as-unibyte string)))
287 (cons (list 'lambda (aref fn 0)
288 (list 'byte-code string (aref fn 2) (aref fn 3)))
289 (cdr form)))
290 (if (not (eq (car fn) 'lambda)) (error "%s is not a lambda" name))
291 (cons fn (cdr form)))))))
292
293 ;;; ((lambda ...) ...)
294 ;;;
295 (defun byte-compile-unfold-lambda (form &optional name)
296 (or name (setq name "anonymous lambda"))
297 (let ((lambda (car form))
298 (values (cdr form)))
299 (if (byte-code-function-p lambda)
300 (setq lambda (list 'lambda (aref lambda 0)
301 (list 'byte-code (aref lambda 1)
302 (aref lambda 2) (aref lambda 3)))))
303 (let ((arglist (nth 1 lambda))
304 (body (cdr (cdr lambda)))
305 optionalp restp
306 bindings)
307 (if (and (stringp (car body)) (cdr body))
308 (setq body (cdr body)))
309 (if (and (consp (car body)) (eq 'interactive (car (car body))))
310 (setq body (cdr body)))
311 (while arglist
312 (cond ((eq (car arglist) '&optional)
313 ;; ok, I'll let this slide because funcall_lambda() does...
314 ;; (if optionalp (error "multiple &optional keywords in %s" name))
315 (if restp (error "&optional found after &rest in %s" name))
316 (if (null (cdr arglist))
317 (error "nothing after &optional in %s" name))
318 (setq optionalp t))
319 ((eq (car arglist) '&rest)
320 ;; ...but it is by no stretch of the imagination a reasonable
321 ;; thing that funcall_lambda() allows (&rest x y) and
322 ;; (&rest x &optional y) in arglists.
323 (if (null (cdr arglist))
324 (error "nothing after &rest in %s" name))
325 (if (cdr (cdr arglist))
326 (error "multiple vars after &rest in %s" name))
327 (setq restp t))
328 (restp
329 (setq bindings (cons (list (car arglist)
330 (and values (cons 'list values)))
331 bindings)
332 values nil))
333 ((and (not optionalp) (null values))
334 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
335 (setq arglist nil values 'too-few))
336 (t
337 (setq bindings (cons (list (car arglist) (car values))
338 bindings)
339 values (cdr values))))
340 (setq arglist (cdr arglist)))
341 (if values
342 (progn
343 (or (eq values 'too-few)
344 (byte-compile-warn
345 "attempt to open-code %s with too many arguments" name))
346 form)
347 (setq body (mapcar 'byte-optimize-form body))
348 (let ((newform
349 (if bindings
350 (cons 'let (cons (nreverse bindings) body))
351 (cons 'progn body))))
352 (byte-compile-log " %s\t==>\t%s" form newform)
353 newform)))))
354
355 \f
356 ;;; implementing source-level optimizers
357
358 (defun byte-optimize-form-code-walker (form for-effect)
359 ;;
360 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
361 ;; we need to have special knowledge of the syntax of the special forms
362 ;; like let and defun (that's why they're special forms :-). (Actually,
363 ;; the important aspect is that they are subrs that don't evaluate all of
364 ;; their args.)
365 ;;
366 (let ((fn (car-safe form))
367 tmp)
368 (cond ((not (consp form))
369 (if (not (and for-effect
370 (or byte-compile-delete-errors
371 (not (symbolp form))
372 (eq form t))))
373 form))
374 ((eq fn 'quote)
375 (if (cdr (cdr form))
376 (byte-compile-warn "malformed quote form: %s"
377 (prin1-to-string form)))
378 ;; map (quote nil) to nil to simplify optimizer logic.
379 ;; map quoted constants to nil if for-effect (just because).
380 (and (nth 1 form)
381 (not for-effect)
382 form))
383 ((or (byte-code-function-p fn)
384 (eq 'lambda (car-safe fn)))
385 (byte-compile-unfold-lambda form))
386 ((memq fn '(let let*))
387 ;; recursively enter the optimizer for the bindings and body
388 ;; of a let or let*. This for depth-firstness: forms that
389 ;; are more deeply nested are optimized first.
390 (cons fn
391 (cons
392 (mapcar '(lambda (binding)
393 (if (symbolp binding)
394 binding
395 (if (cdr (cdr binding))
396 (byte-compile-warn "malformed let binding: %s"
397 (prin1-to-string binding)))
398 (list (car binding)
399 (byte-optimize-form (nth 1 binding) nil))))
400 (nth 1 form))
401 (byte-optimize-body (cdr (cdr form)) for-effect))))
402 ((eq fn 'cond)
403 (cons fn
404 (mapcar '(lambda (clause)
405 (if (consp clause)
406 (cons
407 (byte-optimize-form (car clause) nil)
408 (byte-optimize-body (cdr clause) for-effect))
409 (byte-compile-warn "malformed cond form: %s"
410 (prin1-to-string clause))
411 clause))
412 (cdr form))))
413 ((eq fn 'progn)
414 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
415 (if (cdr (cdr form))
416 (progn
417 (setq tmp (byte-optimize-body (cdr form) for-effect))
418 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
419 (byte-optimize-form (nth 1 form) for-effect)))
420 ((eq fn 'prog1)
421 (if (cdr (cdr form))
422 (cons 'prog1
423 (cons (byte-optimize-form (nth 1 form) for-effect)
424 (byte-optimize-body (cdr (cdr form)) t)))
425 (byte-optimize-form (nth 1 form) for-effect)))
426 ((eq fn 'prog2)
427 (cons 'prog2
428 (cons (byte-optimize-form (nth 1 form) t)
429 (cons (byte-optimize-form (nth 2 form) for-effect)
430 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
431
432 ((memq fn '(save-excursion save-restriction save-current-buffer))
433 ;; those subrs which have an implicit progn; it's not quite good
434 ;; enough to treat these like normal function calls.
435 ;; This can turn (save-excursion ...) into (save-excursion) which
436 ;; will be optimized away in the lap-optimize pass.
437 (cons fn (byte-optimize-body (cdr form) for-effect)))
438
439 ((eq fn 'with-output-to-temp-buffer)
440 ;; this is just like the above, except for the first argument.
441 (cons fn
442 (cons
443 (byte-optimize-form (nth 1 form) nil)
444 (byte-optimize-body (cdr (cdr form)) for-effect))))
445
446 ((eq fn 'if)
447 (cons fn
448 (cons (byte-optimize-form (nth 1 form) nil)
449 (cons
450 (byte-optimize-form (nth 2 form) for-effect)
451 (byte-optimize-body (nthcdr 3 form) for-effect)))))
452
453 ((memq fn '(and or)) ; remember, and/or are control structures.
454 ;; take forms off the back until we can't any more.
455 ;; In the future it could conceivably be a problem that the
456 ;; subexpressions of these forms are optimized in the reverse
457 ;; order, but it's ok for now.
458 (if for-effect
459 (let ((backwards (reverse (cdr form))))
460 (while (and backwards
461 (null (setcar backwards
462 (byte-optimize-form (car backwards)
463 for-effect))))
464 (setq backwards (cdr backwards)))
465 (if (and (cdr form) (null backwards))
466 (byte-compile-log
467 " all subforms of %s called for effect; deleted" form))
468 (and backwards
469 (cons fn (nreverse backwards))))
470 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
471
472 ((eq fn 'interactive)
473 (byte-compile-warn "misplaced interactive spec: %s"
474 (prin1-to-string form))
475 nil)
476
477 ((memq fn '(defun defmacro function
478 condition-case save-window-excursion))
479 ;; These forms are compiled as constants or by breaking out
480 ;; all the subexpressions and compiling them separately.
481 form)
482
483 ((eq fn 'unwind-protect)
484 ;; the "protected" part of an unwind-protect is compiled (and thus
485 ;; optimized) as a top-level form, so don't do it here. But the
486 ;; non-protected part has the same for-effect status as the
487 ;; unwind-protect itself. (The protected part is always for effect,
488 ;; but that isn't handled properly yet.)
489 (cons fn
490 (cons (byte-optimize-form (nth 1 form) for-effect)
491 (cdr (cdr form)))))
492
493 ((eq fn 'catch)
494 ;; the body of a catch is compiled (and thus optimized) as a
495 ;; top-level form, so don't do it here. The tag is never
496 ;; for-effect. The body should have the same for-effect status
497 ;; as the catch form itself, but that isn't handled properly yet.
498 (cons fn
499 (cons (byte-optimize-form (nth 1 form) nil)
500 (cdr (cdr form)))))
501
502 ;; If optimization is on, this is the only place that macros are
503 ;; expanded. If optimization is off, then macroexpansion happens
504 ;; in byte-compile-form. Otherwise, the macros are already expanded
505 ;; by the time that is reached.
506 ((not (eq form
507 (setq form (macroexpand form
508 byte-compile-macro-environment))))
509 (byte-optimize-form form for-effect))
510
511 ;; Support compiler macros as in cl.el.
512 ((and (fboundp 'compiler-macroexpand)
513 (symbolp (car-safe form))
514 (get (car-safe form) 'cl-compiler-macro)
515 (not (eq form
516 (setq form (compiler-macroexpand form)))))
517 (byte-optimize-form form for-effect))
518
519 ((not (symbolp fn))
520 (or (eq 'mocklisp (car-safe fn)) ; ha!
521 (byte-compile-warn "%s is a malformed function"
522 (prin1-to-string fn)))
523 form)
524
525 ((and for-effect (setq tmp (get fn 'side-effect-free))
526 (or byte-compile-delete-errors
527 (eq tmp 'error-free)
528 (progn
529 (byte-compile-warn "%s called for effect"
530 (prin1-to-string form))
531 nil)))
532 (byte-compile-log " %s called for effect; deleted" fn)
533 ;; appending a nil here might not be necessary, but it can't hurt.
534 (byte-optimize-form
535 (cons 'progn (append (cdr form) '(nil))) t))
536
537 (t
538 ;; Otherwise, no args can be considered to be for-effect,
539 ;; even if the called function is for-effect, because we
540 ;; don't know anything about that function.
541 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
542
543
544 (defun byte-optimize-form (form &optional for-effect)
545 "The source-level pass of the optimizer."
546 ;;
547 ;; First, optimize all sub-forms of this one.
548 (setq form (byte-optimize-form-code-walker form for-effect))
549 ;;
550 ;; after optimizing all subforms, optimize this form until it doesn't
551 ;; optimize any further. This means that some forms will be passed through
552 ;; the optimizer many times, but that's necessary to make the for-effect
553 ;; processing do as much as possible.
554 ;;
555 (let (opt new)
556 (if (and (consp form)
557 (symbolp (car form))
558 (or (and for-effect
559 ;; we don't have any of these yet, but we might.
560 (setq opt (get (car form) 'byte-for-effect-optimizer)))
561 (setq opt (get (car form) 'byte-optimizer)))
562 (not (eq form (setq new (funcall opt form)))))
563 (progn
564 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
565 (byte-compile-log " %s\t==>\t%s" form new)
566 (setq new (byte-optimize-form new for-effect))
567 new)
568 form)))
569
570
571 (defun byte-optimize-body (forms all-for-effect)
572 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
573 ;; forms, all but the last of which are optimized with the assumption that
574 ;; they are being called for effect. the last is for-effect as well if
575 ;; all-for-effect is true. returns a new list of forms.
576 (let ((rest forms)
577 (result nil)
578 fe new)
579 (while rest
580 (setq fe (or all-for-effect (cdr rest)))
581 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
582 (if (or new (not fe))
583 (setq result (cons new result)))
584 (setq rest (cdr rest)))
585 (nreverse result)))
586
587 \f
588 ;;; some source-level optimizers
589 ;;;
590 ;;; when writing optimizers, be VERY careful that the optimizer returns
591 ;;; something not EQ to its argument if and ONLY if it has made a change.
592 ;;; This implies that you cannot simply destructively modify the list;
593 ;;; you must return something not EQ to it if you make an optimization.
594 ;;;
595 ;;; It is now safe to optimize code such that it introduces new bindings.
596
597 ;; I'd like this to be a defsubst, but let's not be self-referential...
598 (defmacro byte-compile-trueconstp (form)
599 ;; Returns non-nil if FORM is a non-nil constant.
600 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
601 ((not (symbolp (, form))))
602 ((eq (, form) t)))))
603
604 ;; If the function is being called with constant numeric args,
605 ;; evaluate as much as possible at compile-time. This optimizer
606 ;; assumes that the function is associative, like + or *.
607 (defun byte-optimize-associative-math (form)
608 (let ((args nil)
609 (constants nil)
610 (rest (cdr form)))
611 (while rest
612 (if (numberp (car rest))
613 (setq constants (cons (car rest) constants))
614 (setq args (cons (car rest) args)))
615 (setq rest (cdr rest)))
616 (if (cdr constants)
617 (if args
618 (list (car form)
619 (apply (car form) constants)
620 (if (cdr args)
621 (cons (car form) (nreverse args))
622 (car args)))
623 (apply (car form) constants))
624 form)))
625
626 ;; If the function is being called with constant numeric args,
627 ;; evaluate as much as possible at compile-time. This optimizer
628 ;; assumes that the function satisfies
629 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
630 ;; like - and /.
631 (defun byte-optimize-nonassociative-math (form)
632 (if (or (not (numberp (car (cdr form))))
633 (not (numberp (car (cdr (cdr form))))))
634 form
635 (let ((constant (car (cdr form)))
636 (rest (cdr (cdr form))))
637 (while (numberp (car rest))
638 (setq constant (funcall (car form) constant (car rest))
639 rest (cdr rest)))
640 (if rest
641 (cons (car form) (cons constant rest))
642 constant))))
643
644 ;;(defun byte-optimize-associative-two-args-math (form)
645 ;; (setq form (byte-optimize-associative-math form))
646 ;; (if (consp form)
647 ;; (byte-optimize-two-args-left form)
648 ;; form))
649
650 ;;(defun byte-optimize-nonassociative-two-args-math (form)
651 ;; (setq form (byte-optimize-nonassociative-math form))
652 ;; (if (consp form)
653 ;; (byte-optimize-two-args-right form)
654 ;; form))
655
656 (defun byte-optimize-approx-equal (x y)
657 (<= (* (abs (- x y)) 100) (abs (+ x y))))
658
659 ;; Collect all the constants from FORM, after the STARTth arg,
660 ;; and apply FUN to them to make one argument at the end.
661 ;; For functions that can handle floats, that optimization
662 ;; can be incorrect because reordering can cause an overflow
663 ;; that would otherwise be avoided by encountering an arg that is a float.
664 ;; We avoid this problem by (1) not moving float constants and
665 ;; (2) not moving anything if it would cause an overflow.
666 (defun byte-optimize-delay-constants-math (form start fun)
667 ;; Merge all FORM's constants from number START, call FUN on them
668 ;; and put the result at the end.
669 (let ((rest (nthcdr (1- start) form))
670 (orig form)
671 ;; t means we must check for overflow.
672 (overflow (memq fun '(+ *))))
673 (while (cdr (setq rest (cdr rest)))
674 (if (integerp (car rest))
675 (let (constants)
676 (setq form (copy-sequence form)
677 rest (nthcdr (1- start) form))
678 (while (setq rest (cdr rest))
679 (cond ((integerp (car rest))
680 (setq constants (cons (car rest) constants))
681 (setcar rest nil))))
682 ;; If necessary, check now for overflow
683 ;; that might be caused by reordering.
684 (if (and overflow
685 ;; We have overflow if the result of doing the arithmetic
686 ;; on floats is not even close to the result
687 ;; of doing it on integers.
688 (not (byte-optimize-approx-equal
689 (apply fun (mapcar 'float constants))
690 (float (apply fun constants)))))
691 (setq form orig)
692 (setq form (nconc (delq nil form)
693 (list (apply fun (nreverse constants)))))))))
694 form))
695
696 (defun byte-optimize-plus (form)
697 (setq form (byte-optimize-delay-constants-math form 1 '+))
698 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
699 ;;(setq form (byte-optimize-associative-two-args-math form))
700 (cond ((null (cdr form))
701 (condition-case ()
702 (eval form)
703 (error form)))
704 ;;; It is not safe to delete the function entirely
705 ;;; (actually, it would be safe if we know the sole arg
706 ;;; is not a marker).
707 ;; ((null (cdr (cdr form))) (nth 1 form))
708 ((and (null (nthcdr 3 form))
709 (or (memq (nth 1 form) '(1 -1))
710 (memq (nth 2 form) '(1 -1))))
711 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
712 (let ((integer
713 (if (memq (nth 1 form) '(1 -1))
714 (nth 1 form)
715 (nth 2 form)))
716 (other
717 (if (memq (nth 1 form) '(1 -1))
718 (nth 2 form)
719 (nth 1 form))))
720 (list (if (eq integer 1) '1+ '1-)
721 other)))
722 (t form)))
723
724 (defun byte-optimize-minus (form)
725 ;; Put constants at the end, except the last constant.
726 (setq form (byte-optimize-delay-constants-math form 2 '+))
727 ;; Now only first and last element can be a number.
728 (let ((last (car (reverse (nthcdr 3 form)))))
729 (cond ((eq 0 last)
730 ;; (- x y ... 0) --> (- x y ...)
731 (setq form (copy-sequence form))
732 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
733 ((equal (nthcdr 2 form) '(1))
734 (setq form (list '1- (nth 1 form))))
735 ((equal (nthcdr 2 form) '(-1))
736 (setq form (list '1+ (nth 1 form))))
737 ;; If form is (- CONST foo... CONST), merge first and last.
738 ((and (numberp (nth 1 form))
739 (numberp last))
740 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
741 (delq last (copy-sequence (nthcdr 3 form))))))))
742 ;;; It is not safe to delete the function entirely
743 ;;; (actually, it would be safe if we know the sole arg
744 ;;; is not a marker).
745 ;;; (if (eq (nth 2 form) 0)
746 ;;; (nth 1 form) ; (- x 0) --> x
747 (byte-optimize-predicate
748 (if (and (null (cdr (cdr (cdr form))))
749 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
750 (cons (car form) (cdr (cdr form)))
751 form))
752 ;;; )
753 )
754
755 (defun byte-optimize-multiply (form)
756 (setq form (byte-optimize-delay-constants-math form 1 '*))
757 ;; If there is a constant in FORM, it is now the last element.
758 (cond ((null (cdr form)) 1)
759 ;;; It is not safe to delete the function entirely
760 ;;; (actually, it would be safe if we know the sole arg
761 ;;; is not a marker or if it appears in other arithmetic).
762 ;;; ((null (cdr (cdr form))) (nth 1 form))
763 ((let ((last (car (reverse form))))
764 (cond ((eq 0 last) (cons 'progn (cdr form)))
765 ((eq 1 last) (delq 1 (copy-sequence form)))
766 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
767 ((and (eq 2 last)
768 (memq t (mapcar 'symbolp (cdr form))))
769 (prog1 (setq form (delq 2 (copy-sequence form)))
770 (while (not (symbolp (car (setq form (cdr form))))))
771 (setcar form (list '+ (car form) (car form)))))
772 (form))))))
773
774 (defsubst byte-compile-butlast (form)
775 (nreverse (cdr (reverse form))))
776
777 (defun byte-optimize-divide (form)
778 (setq form (byte-optimize-delay-constants-math form 2 '*))
779 (let ((last (car (reverse (cdr (cdr form))))))
780 (if (numberp last)
781 (cond ((= (length form) 3)
782 (if (and (numberp (nth 1 form))
783 (not (zerop last))
784 (condition-case nil
785 (/ (nth 1 form) last)
786 (error nil)))
787 (setq form (list 'progn (/ (nth 1 form) last)))))
788 ((= last 1)
789 (setq form (byte-compile-butlast form)))
790 ((numberp (nth 1 form))
791 (setq form (cons (car form)
792 (cons (/ (nth 1 form) last)
793 (byte-compile-butlast (cdr (cdr form)))))
794 last nil))))
795 (cond
796 ;;; ((null (cdr (cdr form)))
797 ;;; (nth 1 form))
798 ((eq (nth 1 form) 0)
799 (append '(progn) (cdr (cdr form)) '(0)))
800 ((eq last -1)
801 (list '- (if (nthcdr 3 form)
802 (byte-compile-butlast form)
803 (nth 1 form))))
804 (form))))
805
806 (defun byte-optimize-logmumble (form)
807 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
808 (byte-optimize-predicate
809 (cond ((memq 0 form)
810 (setq form (if (eq (car form) 'logand)
811 (cons 'progn (cdr form))
812 (delq 0 (copy-sequence form)))))
813 ((and (eq (car-safe form) 'logior)
814 (memq -1 form))
815 (cons 'progn (cdr form)))
816 (form))))
817
818
819 (defun byte-optimize-binary-predicate (form)
820 (if (byte-compile-constp (nth 1 form))
821 (if (byte-compile-constp (nth 2 form))
822 (condition-case ()
823 (list 'quote (eval form))
824 (error form))
825 ;; This can enable some lapcode optimizations.
826 (list (car form) (nth 2 form) (nth 1 form)))
827 form))
828
829 (defun byte-optimize-predicate (form)
830 (let ((ok t)
831 (rest (cdr form)))
832 (while (and rest ok)
833 (setq ok (byte-compile-constp (car rest))
834 rest (cdr rest)))
835 (if ok
836 (condition-case ()
837 (list 'quote (eval form))
838 (error form))
839 form)))
840
841 (defun byte-optimize-identity (form)
842 (if (and (cdr form) (null (cdr (cdr form))))
843 (nth 1 form)
844 (byte-compile-warn "identity called with %d arg%s, but requires 1"
845 (length (cdr form))
846 (if (= 1 (length (cdr form))) "" "s"))
847 form))
848
849 (put 'identity 'byte-optimizer 'byte-optimize-identity)
850
851 (put '+ 'byte-optimizer 'byte-optimize-plus)
852 (put '* 'byte-optimizer 'byte-optimize-multiply)
853 (put '- 'byte-optimizer 'byte-optimize-minus)
854 (put '/ 'byte-optimizer 'byte-optimize-divide)
855 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
856 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
857
858 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
859 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
860 (put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
861 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
862 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
863 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
864
865 (put '< 'byte-optimizer 'byte-optimize-predicate)
866 (put '> 'byte-optimizer 'byte-optimize-predicate)
867 (put '<= 'byte-optimizer 'byte-optimize-predicate)
868 (put '>= 'byte-optimizer 'byte-optimize-predicate)
869 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
870 (put '1- 'byte-optimizer 'byte-optimize-predicate)
871 (put 'not 'byte-optimizer 'byte-optimize-predicate)
872 (put 'null 'byte-optimizer 'byte-optimize-predicate)
873 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
874 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
875 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
876 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
877 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
878 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
879 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
880
881 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
882 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
883 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
884 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
885
886 (put 'car 'byte-optimizer 'byte-optimize-predicate)
887 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
888 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
889 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
890
891
892 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
893 ;; take care of this? - Jamie
894 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
895 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
896 (put 'quote 'byte-optimizer 'byte-optimize-quote)
897 (defun byte-optimize-quote (form)
898 (if (or (consp (nth 1 form))
899 (and (symbolp (nth 1 form))
900 (not (memq (nth 1 form) '(nil t)))))
901 form
902 (nth 1 form)))
903
904 (defun byte-optimize-zerop (form)
905 (cond ((numberp (nth 1 form))
906 (eval form))
907 (byte-compile-delete-errors
908 (list '= (nth 1 form) 0))
909 (form)))
910
911 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
912
913 (defun byte-optimize-and (form)
914 ;; Simplify if less than 2 args.
915 ;; if there is a literal nil in the args to `and', throw it and following
916 ;; forms away, and surround the `and' with (progn ... nil).
917 (cond ((null (cdr form)))
918 ((memq nil form)
919 (list 'progn
920 (byte-optimize-and
921 (prog1 (setq form (copy-sequence form))
922 (while (nth 1 form)
923 (setq form (cdr form)))
924 (setcdr form nil)))
925 nil))
926 ((null (cdr (cdr form)))
927 (nth 1 form))
928 ((byte-optimize-predicate form))))
929
930 (defun byte-optimize-or (form)
931 ;; Throw away nil's, and simplify if less than 2 args.
932 ;; If there is a literal non-nil constant in the args to `or', throw away all
933 ;; following forms.
934 (if (memq nil form)
935 (setq form (delq nil (copy-sequence form))))
936 (let ((rest form))
937 (while (cdr (setq rest (cdr rest)))
938 (if (byte-compile-trueconstp (car rest))
939 (setq form (copy-sequence form)
940 rest (setcdr (memq (car rest) form) nil))))
941 (if (cdr (cdr form))
942 (byte-optimize-predicate form)
943 (nth 1 form))))
944
945 (defun byte-optimize-cond (form)
946 ;; if any clauses have a literal nil as their test, throw them away.
947 ;; if any clause has a literal non-nil constant as its test, throw
948 ;; away all following clauses.
949 (let (rest)
950 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
951 (while (setq rest (assq nil (cdr form)))
952 (setq form (delq rest (copy-sequence form))))
953 (if (memq nil (cdr form))
954 (setq form (delq nil (copy-sequence form))))
955 (setq rest form)
956 (while (setq rest (cdr rest))
957 (cond ((byte-compile-trueconstp (car-safe (car rest)))
958 (cond ((eq rest (cdr form))
959 (setq form
960 (if (cdr (car rest))
961 (if (cdr (cdr (car rest)))
962 (cons 'progn (cdr (car rest)))
963 (nth 1 (car rest)))
964 (car (car rest)))))
965 ((cdr rest)
966 (setq form (copy-sequence form))
967 (setcdr (memq (car rest) form) nil)))
968 (setq rest nil)))))
969 ;;
970 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
971 (if (eq 'cond (car-safe form))
972 (let ((clauses (cdr form)))
973 (if (and (consp (car clauses))
974 (null (cdr (car clauses))))
975 (list 'or (car (car clauses))
976 (byte-optimize-cond
977 (cons (car form) (cdr (cdr form)))))
978 form))
979 form))
980
981 (defun byte-optimize-if (form)
982 ;; (if <true-constant> <then> <else...>) ==> <then>
983 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
984 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
985 ;; (if <test> <then> nil) ==> (if <test> <then>)
986 (let ((clause (nth 1 form)))
987 (cond ((byte-compile-trueconstp clause)
988 (nth 2 form))
989 ((null clause)
990 (if (nthcdr 4 form)
991 (cons 'progn (nthcdr 3 form))
992 (nth 3 form)))
993 ((nth 2 form)
994 (if (equal '(nil) (nthcdr 3 form))
995 (list 'if clause (nth 2 form))
996 form))
997 ((or (nth 3 form) (nthcdr 4 form))
998 (list 'if
999 ;; Don't make a double negative;
1000 ;; instead, take away the one that is there.
1001 (if (and (consp clause) (memq (car clause) '(not null))
1002 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1003 (nth 1 clause)
1004 (list 'not clause))
1005 (if (nthcdr 4 form)
1006 (cons 'progn (nthcdr 3 form))
1007 (nth 3 form))))
1008 (t
1009 (list 'progn clause nil)))))
1010
1011 (defun byte-optimize-while (form)
1012 (if (nth 1 form)
1013 form))
1014
1015 (put 'and 'byte-optimizer 'byte-optimize-and)
1016 (put 'or 'byte-optimizer 'byte-optimize-or)
1017 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1018 (put 'if 'byte-optimizer 'byte-optimize-if)
1019 (put 'while 'byte-optimizer 'byte-optimize-while)
1020
1021 ;; byte-compile-negation-optimizer lives in bytecomp.el
1022 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1023 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1024 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1025
1026
1027 (defun byte-optimize-funcall (form)
1028 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
1029 ;; (funcall 'foo ...) ==> (foo ...)
1030 (let ((fn (nth 1 form)))
1031 (if (memq (car-safe fn) '(quote function))
1032 (cons (nth 1 fn) (cdr (cdr form)))
1033 form)))
1034
1035 (defun byte-optimize-apply (form)
1036 ;; If the last arg is a literal constant, turn this into a funcall.
1037 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1038 (let ((fn (nth 1 form))
1039 (last (nth (1- (length form)) form))) ; I think this really is fastest
1040 (or (if (or (null last)
1041 (eq (car-safe last) 'quote))
1042 (if (listp (nth 1 last))
1043 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1044 (nconc (list 'funcall fn) butlast
1045 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
1046 (byte-compile-warn
1047 "last arg to apply can't be a literal atom: %s"
1048 (prin1-to-string last))
1049 nil))
1050 form)))
1051
1052 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1053 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1054
1055
1056 (put 'let 'byte-optimizer 'byte-optimize-letX)
1057 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1058 (defun byte-optimize-letX (form)
1059 (cond ((null (nth 1 form))
1060 ;; No bindings
1061 (cons 'progn (cdr (cdr form))))
1062 ((or (nth 2 form) (nthcdr 3 form))
1063 form)
1064 ;; The body is nil
1065 ((eq (car form) 'let)
1066 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1067 '(nil)))
1068 (t
1069 (let ((binds (reverse (nth 1 form))))
1070 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1071
1072
1073 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1074 (defun byte-optimize-nth (form)
1075 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1076 (list 'car (if (zerop (nth 1 form))
1077 (nth 2 form)
1078 (list 'cdr (nth 2 form))))
1079 (byte-optimize-predicate form)))
1080
1081 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1082 (defun byte-optimize-nthcdr (form)
1083 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1084 (byte-optimize-predicate form)
1085 (let ((count (nth 1 form)))
1086 (setq form (nth 2 form))
1087 (while (>= (setq count (1- count)) 0)
1088 (setq form (list 'cdr form)))
1089 form)))
1090
1091 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1092 (defun byte-optimize-concat (form)
1093 (let ((args (cdr form))
1094 (constant t))
1095 (while (and args constant)
1096 (or (byte-compile-constp (car args))
1097 (setq constant nil))
1098 (setq args (cdr args)))
1099 (if constant
1100 (eval form)
1101 form)))
1102 \f
1103 ;;; enumerating those functions which need not be called if the returned
1104 ;;; value is not used. That is, something like
1105 ;;; (progn (list (something-with-side-effects) (yow))
1106 ;;; (foo))
1107 ;;; may safely be turned into
1108 ;;; (progn (progn (something-with-side-effects) (yow))
1109 ;;; (foo))
1110 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1111
1112 ;;; I wonder if I missed any :-\)
1113 (let ((side-effect-free-fns
1114 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1115 assoc assq
1116 boundp buffer-file-name buffer-local-variables buffer-modified-p
1117 buffer-substring
1118 capitalize car-less-than-car car cdr ceiling concat coordinates-in-window-p
1119 copy-marker cos count-lines
1120 default-boundp default-value documentation downcase
1121 elt exp expt fboundp featurep
1122 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1123 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1124 float floor format
1125 get get-buffer get-buffer-window getenv get-file-buffer
1126 int-to-string
1127 length log log10 logand logb logior lognot logxor lsh
1128 marker-buffer max member memq min mod
1129 next-window nth nthcdr number-to-string
1130 parse-colon-path previous-window
1131 radians-to-degrees rassq regexp-quote reverse round
1132 sin sqrt string< string= string-equal string-lessp string-to-char
1133 string-to-int string-to-number substring symbol-plist
1134 tan upcase user-variable-p vconcat
1135 window-buffer window-dedicated-p window-edges window-height
1136 window-hscroll window-minibuffer-p window-width
1137 zerop))
1138 (side-effect-and-error-free-fns
1139 '(arrayp atom
1140 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1141 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1142 current-buffer
1143 dot dot-marker eobp eolp eq eql equal eventp floatp framep
1144 get-largest-window get-lru-window
1145 identity ignore integerp integer-or-marker-p interactive-p
1146 invocation-directory invocation-name
1147 keymapp list listp
1148 make-marker mark mark-marker markerp memory-limit minibuffer-window
1149 mouse-movement-p
1150 natnump nlistp not null number-or-marker-p numberp
1151 one-window-p overlayp
1152 point point-marker point-min point-max processp
1153 selected-window sequencep stringp subrp symbolp syntax-table-p
1154 user-full-name user-login-name user-original-login-name
1155 user-real-login-name user-real-uid user-uid
1156 vector vectorp
1157 window-configuration-p window-live-p windowp)))
1158 (while side-effect-free-fns
1159 (put (car side-effect-free-fns) 'side-effect-free t)
1160 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1161 (while side-effect-and-error-free-fns
1162 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1163 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1164 nil)
1165
1166
1167 (defun byte-compile-splice-in-already-compiled-code (form)
1168 ;; form is (byte-code "..." [...] n)
1169 (if (not (memq byte-optimize '(t lap)))
1170 (byte-compile-normal-call form)
1171 (byte-inline-lapcode
1172 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1173 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1174 byte-compile-maxdepth))
1175 (setq byte-compile-depth (1+ byte-compile-depth))))
1176
1177 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1178
1179 \f
1180 (defconst byte-constref-ops
1181 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1182
1183 ;;; This function extracts the bitfields from variable-length opcodes.
1184 ;;; Originally defined in disass.el (which no longer uses it.)
1185
1186 (defun disassemble-offset ()
1187 "Don't call this!"
1188 ;; fetch and return the offset for the current opcode.
1189 ;; return NIL if this opcode has no offset
1190 ;; OP, PTR and BYTES are used and set dynamically
1191 (defvar op)
1192 (defvar ptr)
1193 (defvar bytes)
1194 (cond ((< op byte-nth)
1195 (let ((tem (logand op 7)))
1196 (setq op (logand op 248))
1197 (cond ((eq tem 6)
1198 (setq ptr (1+ ptr)) ;offset in next byte
1199 (aref bytes ptr))
1200 ((eq tem 7)
1201 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1202 (+ (aref bytes ptr)
1203 (progn (setq ptr (1+ ptr))
1204 (lsh (aref bytes ptr) 8))))
1205 (t tem)))) ;offset was in opcode
1206 ((>= op byte-constant)
1207 (prog1 (- op byte-constant) ;offset in opcode
1208 (setq op byte-constant)))
1209 ((and (>= op byte-constant2)
1210 (<= op byte-goto-if-not-nil-else-pop))
1211 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1212 (+ (aref bytes ptr)
1213 (progn (setq ptr (1+ ptr))
1214 (lsh (aref bytes ptr) 8))))
1215 ((and (>= op byte-listN)
1216 (<= op byte-insertN))
1217 (setq ptr (1+ ptr)) ;offset in next byte
1218 (aref bytes ptr))))
1219
1220
1221 ;;; This de-compiler is used for inline expansion of compiled functions,
1222 ;;; and by the disassembler.
1223 ;;;
1224 ;;; This list contains numbers, which are pc values,
1225 ;;; before each instruction.
1226 (defun byte-decompile-bytecode (bytes constvec)
1227 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1228 (let ((byte-compile-constants nil)
1229 (byte-compile-variables nil)
1230 (byte-compile-tag-number 0))
1231 (byte-decompile-bytecode-1 bytes constvec)))
1232
1233 ;; As byte-decompile-bytecode, but updates
1234 ;; byte-compile-{constants, variables, tag-number}.
1235 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1236 ;; with `goto's destined for the end of the code.
1237 ;; That is for use by the compiler.
1238 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1239 ;; In that case, we put a pc value into the list
1240 ;; before each insn (or its label).
1241 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1242 (let ((length (length bytes))
1243 (ptr 0) optr tag tags op offset
1244 lap tmp
1245 endtag
1246 (retcount 0))
1247 (while (not (= ptr length))
1248 (or make-spliceable
1249 (setq lap (cons ptr lap)))
1250 (setq op (aref bytes ptr)
1251 optr ptr
1252 offset (disassemble-offset)) ; this does dynamic-scope magic
1253 (setq op (aref byte-code-vector op))
1254 (cond ((memq op byte-goto-ops)
1255 ;; it's a pc
1256 (setq offset
1257 (cdr (or (assq offset tags)
1258 (car (setq tags
1259 (cons (cons offset
1260 (byte-compile-make-tag))
1261 tags)))))))
1262 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1263 ((memq op byte-constref-ops)))
1264 (setq tmp (if (>= offset (length constvec))
1265 (list 'out-of-range offset)
1266 (aref constvec offset))
1267 offset (if (eq op 'byte-constant)
1268 (byte-compile-get-constant tmp)
1269 (or (assq tmp byte-compile-variables)
1270 (car (setq byte-compile-variables
1271 (cons (list tmp)
1272 byte-compile-variables)))))))
1273 ((and make-spliceable
1274 (eq op 'byte-return))
1275 (if (= ptr (1- length))
1276 (setq op nil)
1277 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1278 op 'byte-goto))))
1279 ;; lap = ( [ (pc . (op . arg)) ]* )
1280 (setq lap (cons (cons optr (cons op (or offset 0)))
1281 lap))
1282 (setq ptr (1+ ptr)))
1283 ;; take off the dummy nil op that we replaced a trailing "return" with.
1284 (let ((rest lap))
1285 (while rest
1286 (cond ((numberp (car rest)))
1287 ((setq tmp (assq (car (car rest)) tags))
1288 ;; this addr is jumped to
1289 (setcdr rest (cons (cons nil (cdr tmp))
1290 (cdr rest)))
1291 (setq tags (delq tmp tags))
1292 (setq rest (cdr rest))))
1293 (setq rest (cdr rest))))
1294 (if tags (error "optimizer error: missed tags %s" tags))
1295 (if (null (car (cdr (car lap))))
1296 (setq lap (cdr lap)))
1297 (if endtag
1298 (setq lap (cons (cons nil endtag) lap)))
1299 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1300 (mapcar (function (lambda (elt)
1301 (if (numberp elt)
1302 elt
1303 (cdr elt))))
1304 (nreverse lap))))
1305
1306 \f
1307 ;;; peephole optimizer
1308
1309 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1310
1311 (defconst byte-conditional-ops
1312 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1313 byte-goto-if-not-nil-else-pop))
1314
1315 (defconst byte-after-unbind-ops
1316 '(byte-constant byte-dup
1317 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1318 byte-eq byte-not
1319 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1320 byte-interactive-p)
1321 ;; How about other side-effect-free-ops? Is it safe to move an
1322 ;; error invocation (such as from nth) out of an unwind-protect?
1323 ;; No, it is not, because the unwind-protect forms can alter
1324 ;; the inside of the object to which nth would apply.
1325 ;; For the same reason, byte-equal was deleted from this list.
1326 "Byte-codes that can be moved past an unbind.")
1327
1328 (defconst byte-compile-side-effect-and-error-free-ops
1329 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1330 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1331 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1332 byte-point-min byte-following-char byte-preceding-char
1333 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1334 byte-current-buffer byte-interactive-p))
1335
1336 (defconst byte-compile-side-effect-free-ops
1337 (nconc
1338 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1339 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1340 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1341 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1342 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1343 byte-member byte-assq byte-quo byte-rem)
1344 byte-compile-side-effect-and-error-free-ops))
1345
1346 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1347 ;;; Consider the code
1348 ;;;
1349 ;;; (defun foo (flag)
1350 ;;; (let ((old-pop-ups pop-up-windows)
1351 ;;; (pop-up-windows flag))
1352 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1353 ;;; (setq old-pop-ups pop-up-windows)
1354 ;;; ...))))
1355 ;;;
1356 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1357 ;;; something else. But if we optimize
1358 ;;;
1359 ;;; varref flag
1360 ;;; varbind pop-up-windows
1361 ;;; varref pop-up-windows
1362 ;;; not
1363 ;;; to
1364 ;;; varref flag
1365 ;;; dup
1366 ;;; varbind pop-up-windows
1367 ;;; not
1368 ;;;
1369 ;;; we break the program, because it will appear that pop-up-windows and
1370 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1371 ;;; the BOOL variables are, and not perform this optimization on them.
1372 ;;;
1373 (defconst byte-boolean-vars
1374 '(abbrev-all-caps abbrevs-changed byte-debug-flag byte-metering-on
1375 cannot-suspend check-markers-debug-flag completion-auto-help
1376 completion-ignore-case cursor-in-echo-area debug-on-next-call
1377 debug-on-quit delete-exited-processes enable-recursive-minibuffers
1378 garbage-collection-messages highlight-nonselected-windows
1379 indent-tabs-mode inherit-process-coding-system inhibit-eol-conversion
1380 inhibit-local-menu-bar-menus insert-default-directory inverse-video
1381 keyword-symbols-constant-flag load-convert-to-unibyte
1382 load-force-doc-strings load-in-progress menu-prompting
1383 minibuffer-allow-text-properties minibuffer-auto-raise
1384 mode-line-inverse-video multiple-frames no-redraw-on-reenter
1385 noninteractive parse-sexp-ignore-comments parse-sexp-lookup-properties
1386 pop-up-frames pop-up-windows print-escape-newlines
1387 print-escape-nonascii print-quoted scroll-preserve-screen-position
1388 system-uses-terminfo truncate-partial-width-windows use-dialog-box
1389 visible-bell vms-stmlf-recfm words-include-escapes)
1390 "DEFVAR_BOOL variables. Giving these any non-nil value sets them to t.
1391 If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1392 may generate incorrect code.")
1393
1394 (defun byte-optimize-lapcode (lap &optional for-effect)
1395 "Simple peephole optimizer. LAP is both modified and returned."
1396 (let (lap0 off0
1397 lap1 off1
1398 lap2 off2
1399 (keep-going 'first-time)
1400 (add-depth 0)
1401 rest tmp tmp2 tmp3
1402 (side-effect-free (if byte-compile-delete-errors
1403 byte-compile-side-effect-free-ops
1404 byte-compile-side-effect-and-error-free-ops)))
1405 (while keep-going
1406 (or (eq keep-going 'first-time)
1407 (byte-compile-log-lap " ---- next pass"))
1408 (setq rest lap
1409 keep-going nil)
1410 (while rest
1411 (setq lap0 (car rest)
1412 lap1 (nth 1 rest)
1413 lap2 (nth 2 rest))
1414
1415 ;; You may notice that sequences like "dup varset discard" are
1416 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1417 ;; You may be tempted to change this; resist that temptation.
1418 (cond ;;
1419 ;; <side-effect-free> pop --> <deleted>
1420 ;; ...including:
1421 ;; const-X pop --> <deleted>
1422 ;; varref-X pop --> <deleted>
1423 ;; dup pop --> <deleted>
1424 ;;
1425 ((and (eq 'byte-discard (car lap1))
1426 (memq (car lap0) side-effect-free))
1427 (setq keep-going t)
1428 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1429 (setq rest (cdr rest))
1430 (cond ((= tmp 1)
1431 (byte-compile-log-lap
1432 " %s discard\t-->\t<deleted>" lap0)
1433 (setq lap (delq lap0 (delq lap1 lap))))
1434 ((= tmp 0)
1435 (byte-compile-log-lap
1436 " %s discard\t-->\t<deleted> discard" lap0)
1437 (setq lap (delq lap0 lap)))
1438 ((= tmp -1)
1439 (byte-compile-log-lap
1440 " %s discard\t-->\tdiscard discard" lap0)
1441 (setcar lap0 'byte-discard)
1442 (setcdr lap0 0))
1443 ((error "Optimizer error: too much on the stack"))))
1444 ;;
1445 ;; goto*-X X: --> X:
1446 ;;
1447 ((and (memq (car lap0) byte-goto-ops)
1448 (eq (cdr lap0) lap1))
1449 (cond ((eq (car lap0) 'byte-goto)
1450 (setq lap (delq lap0 lap))
1451 (setq tmp "<deleted>"))
1452 ((memq (car lap0) byte-goto-always-pop-ops)
1453 (setcar lap0 (setq tmp 'byte-discard))
1454 (setcdr lap0 0))
1455 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1456 (and (memq byte-optimize-log '(t byte))
1457 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1458 (nth 1 lap1) (nth 1 lap1)
1459 tmp (nth 1 lap1)))
1460 (setq keep-going t))
1461 ;;
1462 ;; varset-X varref-X --> dup varset-X
1463 ;; varbind-X varref-X --> dup varbind-X
1464 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1465 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1466 ;; The latter two can enable other optimizations.
1467 ;;
1468 ((and (eq 'byte-varref (car lap2))
1469 (eq (cdr lap1) (cdr lap2))
1470 (memq (car lap1) '(byte-varset byte-varbind)))
1471 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1472 (not (eq (car lap0) 'byte-constant)))
1473 nil
1474 (setq keep-going t)
1475 (if (memq (car lap0) '(byte-constant byte-dup))
1476 (progn
1477 (setq tmp (if (or (not tmp)
1478 (memq (car (cdr lap0)) '(nil t)))
1479 (cdr lap0)
1480 (byte-compile-get-constant t)))
1481 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1482 lap0 lap1 lap2 lap0 lap1
1483 (cons (car lap0) tmp))
1484 (setcar lap2 (car lap0))
1485 (setcdr lap2 tmp))
1486 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1487 (setcar lap2 (car lap1))
1488 (setcar lap1 'byte-dup)
1489 (setcdr lap1 0)
1490 ;; The stack depth gets locally increased, so we will
1491 ;; increase maxdepth in case depth = maxdepth here.
1492 ;; This can cause the third argument to byte-code to
1493 ;; be larger than necessary.
1494 (setq add-depth 1))))
1495 ;;
1496 ;; dup varset-X discard --> varset-X
1497 ;; dup varbind-X discard --> varbind-X
1498 ;; (the varbind variant can emerge from other optimizations)
1499 ;;
1500 ((and (eq 'byte-dup (car lap0))
1501 (eq 'byte-discard (car lap2))
1502 (memq (car lap1) '(byte-varset byte-varbind)))
1503 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1504 (setq keep-going t
1505 rest (cdr rest))
1506 (setq lap (delq lap0 (delq lap2 lap))))
1507 ;;
1508 ;; not goto-X-if-nil --> goto-X-if-non-nil
1509 ;; not goto-X-if-non-nil --> goto-X-if-nil
1510 ;;
1511 ;; it is wrong to do the same thing for the -else-pop variants.
1512 ;;
1513 ((and (eq 'byte-not (car lap0))
1514 (or (eq 'byte-goto-if-nil (car lap1))
1515 (eq 'byte-goto-if-not-nil (car lap1))))
1516 (byte-compile-log-lap " not %s\t-->\t%s"
1517 lap1
1518 (cons
1519 (if (eq (car lap1) 'byte-goto-if-nil)
1520 'byte-goto-if-not-nil
1521 'byte-goto-if-nil)
1522 (cdr lap1)))
1523 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1524 'byte-goto-if-not-nil
1525 'byte-goto-if-nil))
1526 (setq lap (delq lap0 lap))
1527 (setq keep-going t))
1528 ;;
1529 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1530 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1531 ;;
1532 ;; it is wrong to do the same thing for the -else-pop variants.
1533 ;;
1534 ((and (or (eq 'byte-goto-if-nil (car lap0))
1535 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1536 (eq 'byte-goto (car lap1)) ; gotoY
1537 (eq (cdr lap0) lap2)) ; TAG X
1538 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1539 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1540 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1541 lap0 lap1 lap2
1542 (cons inverse (cdr lap1)) lap2)
1543 (setq lap (delq lap0 lap))
1544 (setcar lap1 inverse)
1545 (setq keep-going t)))
1546 ;;
1547 ;; const goto-if-* --> whatever
1548 ;;
1549 ((and (eq 'byte-constant (car lap0))
1550 (memq (car lap1) byte-conditional-ops))
1551 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1552 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1553 (car (cdr lap0))
1554 (not (car (cdr lap0))))
1555 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1556 lap0 lap1)
1557 (setq rest (cdr rest)
1558 lap (delq lap0 (delq lap1 lap))))
1559 (t
1560 (if (memq (car lap1) byte-goto-always-pop-ops)
1561 (progn
1562 (byte-compile-log-lap " %s %s\t-->\t%s"
1563 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1564 (setq lap (delq lap0 lap)))
1565 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1566 (cons 'byte-goto (cdr lap1))))
1567 (setcar lap1 'byte-goto)))
1568 (setq keep-going t))
1569 ;;
1570 ;; varref-X varref-X --> varref-X dup
1571 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1572 ;; We don't optimize the const-X variations on this here,
1573 ;; because that would inhibit some goto optimizations; we
1574 ;; optimize the const-X case after all other optimizations.
1575 ;;
1576 ((and (eq 'byte-varref (car lap0))
1577 (progn
1578 (setq tmp (cdr rest))
1579 (while (eq (car (car tmp)) 'byte-dup)
1580 (setq tmp (cdr tmp)))
1581 t)
1582 (eq (cdr lap0) (cdr (car tmp)))
1583 (eq 'byte-varref (car (car tmp))))
1584 (if (memq byte-optimize-log '(t byte))
1585 (let ((str ""))
1586 (setq tmp2 (cdr rest))
1587 (while (not (eq tmp tmp2))
1588 (setq tmp2 (cdr tmp2)
1589 str (concat str " dup")))
1590 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1591 lap0 str lap0 lap0 str)))
1592 (setq keep-going t)
1593 (setcar (car tmp) 'byte-dup)
1594 (setcdr (car tmp) 0)
1595 (setq rest tmp))
1596 ;;
1597 ;; TAG1: TAG2: --> TAG1: <deleted>
1598 ;; (and other references to TAG2 are replaced with TAG1)
1599 ;;
1600 ((and (eq (car lap0) 'TAG)
1601 (eq (car lap1) 'TAG))
1602 (and (memq byte-optimize-log '(t byte))
1603 (byte-compile-log " adjacent tags %d and %d merged"
1604 (nth 1 lap1) (nth 1 lap0)))
1605 (setq tmp3 lap)
1606 (while (setq tmp2 (rassq lap0 tmp3))
1607 (setcdr tmp2 lap1)
1608 (setq tmp3 (cdr (memq tmp2 tmp3))))
1609 (setq lap (delq lap0 lap)
1610 keep-going t))
1611 ;;
1612 ;; unused-TAG: --> <deleted>
1613 ;;
1614 ((and (eq 'TAG (car lap0))
1615 (not (rassq lap0 lap)))
1616 (and (memq byte-optimize-log '(t byte))
1617 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1618 (setq lap (delq lap0 lap)
1619 keep-going t))
1620 ;;
1621 ;; goto ... --> goto <delete until TAG or end>
1622 ;; return ... --> return <delete until TAG or end>
1623 ;;
1624 ((and (memq (car lap0) '(byte-goto byte-return))
1625 (not (memq (car lap1) '(TAG nil))))
1626 (setq tmp rest)
1627 (let ((i 0)
1628 (opt-p (memq byte-optimize-log '(t lap)))
1629 str deleted)
1630 (while (and (setq tmp (cdr tmp))
1631 (not (eq 'TAG (car (car tmp)))))
1632 (if opt-p (setq deleted (cons (car tmp) deleted)
1633 str (concat str " %s")
1634 i (1+ i))))
1635 (if opt-p
1636 (let ((tagstr
1637 (if (eq 'TAG (car (car tmp)))
1638 (format "%d:" (car (cdr (car tmp))))
1639 (or (car tmp) ""))))
1640 (if (< i 6)
1641 (apply 'byte-compile-log-lap-1
1642 (concat " %s" str
1643 " %s\t-->\t%s <deleted> %s")
1644 lap0
1645 (nconc (nreverse deleted)
1646 (list tagstr lap0 tagstr)))
1647 (byte-compile-log-lap
1648 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1649 lap0 i (if (= i 1) "" "s")
1650 tagstr lap0 tagstr))))
1651 (rplacd rest tmp))
1652 (setq keep-going t))
1653 ;;
1654 ;; <safe-op> unbind --> unbind <safe-op>
1655 ;; (this may enable other optimizations.)
1656 ;;
1657 ((and (eq 'byte-unbind (car lap1))
1658 (memq (car lap0) byte-after-unbind-ops))
1659 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1660 (setcar rest lap1)
1661 (setcar (cdr rest) lap0)
1662 (setq keep-going t))
1663 ;;
1664 ;; varbind-X unbind-N --> discard unbind-(N-1)
1665 ;; save-excursion unbind-N --> unbind-(N-1)
1666 ;; save-restriction unbind-N --> unbind-(N-1)
1667 ;;
1668 ((and (eq 'byte-unbind (car lap1))
1669 (memq (car lap0) '(byte-varbind byte-save-excursion
1670 byte-save-restriction))
1671 (< 0 (cdr lap1)))
1672 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1673 (delq lap1 rest))
1674 (if (eq (car lap0) 'byte-varbind)
1675 (setcar rest (cons 'byte-discard 0))
1676 (setq lap (delq lap0 lap)))
1677 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1678 lap0 (cons (car lap1) (1+ (cdr lap1)))
1679 (if (eq (car lap0) 'byte-varbind)
1680 (car rest)
1681 (car (cdr rest)))
1682 (if (and (/= 0 (cdr lap1))
1683 (eq (car lap0) 'byte-varbind))
1684 (car (cdr rest))
1685 ""))
1686 (setq keep-going t))
1687 ;;
1688 ;; goto*-X ... X: goto-Y --> goto*-Y
1689 ;; goto-X ... X: return --> return
1690 ;;
1691 ((and (memq (car lap0) byte-goto-ops)
1692 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1693 '(byte-goto byte-return)))
1694 (cond ((and (not (eq tmp lap0))
1695 (or (eq (car lap0) 'byte-goto)
1696 (eq (car tmp) 'byte-goto)))
1697 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1698 (car lap0) tmp tmp)
1699 (if (eq (car tmp) 'byte-return)
1700 (setcar lap0 'byte-return))
1701 (setcdr lap0 (cdr tmp))
1702 (setq keep-going t))))
1703 ;;
1704 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1705 ;; goto-*-else-pop X ... X: discard --> whatever
1706 ;;
1707 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1708 byte-goto-if-not-nil-else-pop))
1709 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1710 (eval-when-compile
1711 (cons 'byte-discard byte-conditional-ops)))
1712 (not (eq lap0 (car tmp))))
1713 (setq tmp2 (car tmp))
1714 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1715 byte-goto-if-nil)
1716 (byte-goto-if-not-nil-else-pop
1717 byte-goto-if-not-nil))))
1718 (if (memq (car tmp2) tmp3)
1719 (progn (setcar lap0 (car tmp2))
1720 (setcdr lap0 (cdr tmp2))
1721 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1722 (car lap0) tmp2 lap0))
1723 ;; Get rid of the -else-pop's and jump one step further.
1724 (or (eq 'TAG (car (nth 1 tmp)))
1725 (setcdr tmp (cons (byte-compile-make-tag)
1726 (cdr tmp))))
1727 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1728 (car lap0) tmp2 (nth 1 tmp3))
1729 (setcar lap0 (nth 1 tmp3))
1730 (setcdr lap0 (nth 1 tmp)))
1731 (setq keep-going t))
1732 ;;
1733 ;; const goto-X ... X: goto-if-* --> whatever
1734 ;; const goto-X ... X: discard --> whatever
1735 ;;
1736 ((and (eq (car lap0) 'byte-constant)
1737 (eq (car lap1) 'byte-goto)
1738 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1739 (eval-when-compile
1740 (cons 'byte-discard byte-conditional-ops)))
1741 (not (eq lap1 (car tmp))))
1742 (setq tmp2 (car tmp))
1743 (cond ((memq (car tmp2)
1744 (if (null (car (cdr lap0)))
1745 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1746 '(byte-goto-if-not-nil
1747 byte-goto-if-not-nil-else-pop)))
1748 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1749 lap0 tmp2 lap0 tmp2)
1750 (setcar lap1 (car tmp2))
1751 (setcdr lap1 (cdr tmp2))
1752 ;; Let next step fix the (const,goto-if*) sequence.
1753 (setq rest (cons nil rest)))
1754 (t
1755 ;; Jump one step further
1756 (byte-compile-log-lap
1757 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1758 lap0 tmp2)
1759 (or (eq 'TAG (car (nth 1 tmp)))
1760 (setcdr tmp (cons (byte-compile-make-tag)
1761 (cdr tmp))))
1762 (setcdr lap1 (car (cdr tmp)))
1763 (setq lap (delq lap0 lap))))
1764 (setq keep-going t))
1765 ;;
1766 ;; X: varref-Y ... varset-Y goto-X -->
1767 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1768 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1769 ;; (This is so usual for while loops that it is worth handling).
1770 ;;
1771 ((and (eq (car lap1) 'byte-varset)
1772 (eq (car lap2) 'byte-goto)
1773 (not (memq (cdr lap2) rest)) ;Backwards jump
1774 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1775 'byte-varref)
1776 (eq (cdr (car tmp)) (cdr lap1))
1777 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1778 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1779 (let ((newtag (byte-compile-make-tag)))
1780 (byte-compile-log-lap
1781 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1782 (nth 1 (cdr lap2)) (car tmp)
1783 lap1 lap2
1784 (nth 1 (cdr lap2)) (car tmp)
1785 (nth 1 newtag) 'byte-dup lap1
1786 (cons 'byte-goto newtag)
1787 )
1788 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1789 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1790 (setq add-depth 1)
1791 (setq keep-going t))
1792 ;;
1793 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1794 ;; (This can pull the loop test to the end of the loop)
1795 ;;
1796 ((and (eq (car lap0) 'byte-goto)
1797 (eq (car lap1) 'TAG)
1798 (eq lap1
1799 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1800 (memq (car (car tmp))
1801 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1802 byte-goto-if-nil-else-pop)))
1803 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1804 ;; lap0 lap1 (cdr lap0) (car tmp))
1805 (let ((newtag (byte-compile-make-tag)))
1806 (byte-compile-log-lap
1807 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1808 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1809 (cons (cdr (assq (car (car tmp))
1810 '((byte-goto-if-nil . byte-goto-if-not-nil)
1811 (byte-goto-if-not-nil . byte-goto-if-nil)
1812 (byte-goto-if-nil-else-pop .
1813 byte-goto-if-not-nil-else-pop)
1814 (byte-goto-if-not-nil-else-pop .
1815 byte-goto-if-nil-else-pop))))
1816 newtag)
1817
1818 (nth 1 newtag)
1819 )
1820 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1821 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1822 ;; We can handle this case but not the -if-not-nil case,
1823 ;; because we won't know which non-nil constant to push.
1824 (setcdr rest (cons (cons 'byte-constant
1825 (byte-compile-get-constant nil))
1826 (cdr rest))))
1827 (setcar lap0 (nth 1 (memq (car (car tmp))
1828 '(byte-goto-if-nil-else-pop
1829 byte-goto-if-not-nil
1830 byte-goto-if-nil
1831 byte-goto-if-not-nil
1832 byte-goto byte-goto))))
1833 )
1834 (setq keep-going t))
1835 )
1836 (setq rest (cdr rest)))
1837 )
1838 ;; Cleanup stage:
1839 ;; Rebuild byte-compile-constants / byte-compile-variables.
1840 ;; Simple optimizations that would inhibit other optimizations if they
1841 ;; were done in the optimizing loop, and optimizations which there is no
1842 ;; need to do more than once.
1843 (setq byte-compile-constants nil
1844 byte-compile-variables nil)
1845 (setq rest lap)
1846 (while rest
1847 (setq lap0 (car rest)
1848 lap1 (nth 1 rest))
1849 (if (memq (car lap0) byte-constref-ops)
1850 (if (not (eq (car lap0) 'byte-constant))
1851 (or (memq (cdr lap0) byte-compile-variables)
1852 (setq byte-compile-variables (cons (cdr lap0)
1853 byte-compile-variables)))
1854 (or (memq (cdr lap0) byte-compile-constants)
1855 (setq byte-compile-constants (cons (cdr lap0)
1856 byte-compile-constants)))))
1857 (cond (;;
1858 ;; const-C varset-X const-C --> const-C dup varset-X
1859 ;; const-C varbind-X const-C --> const-C dup varbind-X
1860 ;;
1861 (and (eq (car lap0) 'byte-constant)
1862 (eq (car (nth 2 rest)) 'byte-constant)
1863 (eq (cdr lap0) (car (nth 2 rest)))
1864 (memq (car lap1) '(byte-varbind byte-varset)))
1865 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1866 lap0 lap1 lap0 lap0 lap1)
1867 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1868 (setcar (cdr rest) (cons 'byte-dup 0))
1869 (setq add-depth 1))
1870 ;;
1871 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1872 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1873 ;;
1874 ((memq (car lap0) '(byte-constant byte-varref))
1875 (setq tmp rest
1876 tmp2 nil)
1877 (while (progn
1878 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1879 (and (eq (cdr lap0) (cdr (car tmp)))
1880 (eq (car lap0) (car (car tmp)))))
1881 (setcar tmp (cons 'byte-dup 0))
1882 (setq tmp2 t))
1883 (if tmp2
1884 (byte-compile-log-lap
1885 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1886 ;;
1887 ;; unbind-N unbind-M --> unbind-(N+M)
1888 ;;
1889 ((and (eq 'byte-unbind (car lap0))
1890 (eq 'byte-unbind (car lap1)))
1891 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1892 (cons 'byte-unbind
1893 (+ (cdr lap0) (cdr lap1))))
1894 (setq keep-going t)
1895 (setq lap (delq lap0 lap))
1896 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1897 )
1898 (setq rest (cdr rest)))
1899 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1900 lap)
1901
1902 (provide 'byte-optimize)
1903
1904 \f
1905 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1906 ;; itself, compile some of its most used recursive functions (at load time).
1907 ;;
1908 (eval-when-compile
1909 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1910 (assq 'byte-code (symbol-function 'byte-optimize-form))
1911 (let ((byte-optimize nil)
1912 (byte-compile-warnings nil))
1913 (mapcar '(lambda (x)
1914 (or noninteractive (message "compiling %s..." x))
1915 (byte-compile x)
1916 (or noninteractive (message "compiling %s...done" x)))
1917 '(byte-optimize-form
1918 byte-optimize-body
1919 byte-optimize-predicate
1920 byte-optimize-binary-predicate
1921 ;; Inserted some more than necessary, to speed it up.
1922 byte-optimize-form-code-walker
1923 byte-optimize-lapcode))))
1924 nil)
1925
1926 ;;; byte-opt.el ends here