]> code.delx.au - gnu-emacs/blob - src/alloc.c
(lisp_align_malloc): Check for memory full when
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
35 memory. Can do this only if using gmalloc.c. */
36
37 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
38 #undef GC_MALLOC_CHECK
39 #endif
40
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
44
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "charset.h"
56 #include "syssignal.h"
57 #include <setjmp.h>
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input.. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
605 {
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
609 {
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
613 }
614 }
615
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val && type != MEM_TYPE_NON_LISP)
618 mem_insert (val, (char *) val + nbytes, type);
619 #endif
620
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
624 return val;
625 }
626
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
629
630 static void
631 lisp_free (block)
632 POINTER_TYPE *block;
633 {
634 BLOCK_INPUT;
635 free (block);
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block));
638 #endif
639 UNBLOCK_INPUT;
640 }
641
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
645
646
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
649
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
662
663 /* Internal data structures and constants. */
664
665 #define ABLOCKS_SIZE 16
666
667 /* An aligned block of memory. */
668 struct ablock
669 {
670 union
671 {
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
687 #if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
689 #endif
690 };
691
692 /* A bunch of consecutive aligned blocks. */
693 struct ablocks
694 {
695 struct ablock blocks[ABLOCKS_SIZE];
696 };
697
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
700
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
705
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
708
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
712 #else
713 #define ABLOCKS_BASE(abase) \
714 (1 & (int) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
715 #endif
716
717 /* The list of free ablock. */
718 static struct ablock *free_ablock;
719
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE *
724 lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
727 {
728 void *base, *val;
729 struct ablocks *abase;
730
731 eassert (nbytes <= BLOCK_BYTES);
732
733 BLOCK_INPUT;
734
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737 #endif
738
739 if (!free_ablock)
740 {
741 int i, aligned;
742
743 #ifdef DOUG_LEA_MALLOC
744 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
745 because mapped region contents are not preserved in
746 a dumped Emacs. */
747 mallopt (M_MMAP_MAX, 0);
748 #endif
749
750 #ifdef HAVE_POSIX_MEMALIGN
751 {
752 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
753 abase = err ? (base = NULL) : base;
754 }
755 #else
756 base = malloc (ABLOCKS_BYTES);
757 abase = ALIGN (base, BLOCK_ALIGN);
758 #endif
759
760 aligned = (base == abase);
761 if (!aligned)
762 ((void**)abase)[-1] = base;
763
764 #ifdef DOUG_LEA_MALLOC
765 /* Back to a reasonable maximum of mmap'ed areas. */
766 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
767 #endif
768
769 /* If the memory just allocated cannot be addressed thru a Lisp
770 object's pointer, and it needs to be, that's equivalent to
771 running out of memory. */
772 if (type != MEM_TYPE_NON_LISP)
773 {
774 Lisp_Object tem;
775 char *end = (char *) base + ABLOCKS_BYTES - 1;
776 XSETCONS (tem, end);
777 if ((char *) XCONS (tem) != end)
778 {
779 lisp_malloc_loser = base;
780 free (base);
781 UNBLOCK_INPUT;
782 memory_full ();
783 }
784 }
785
786 /* Initialize the blocks and put them on the free list.
787 Is `base' was not properly aligned, we can't use the last block. */
788 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
789 {
790 abase->blocks[i].abase = abase;
791 abase->blocks[i].x.next_free = free_ablock;
792 free_ablock = &abase->blocks[i];
793 }
794 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
795
796 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
797 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
798 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
799 eassert (ABLOCKS_BASE (abase) == base);
800 eassert (aligned == (int)ABLOCKS_BUSY (abase));
801 }
802
803 abase = ABLOCK_ABASE (free_ablock);
804 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (int) ABLOCKS_BUSY (abase));
805 val = free_ablock;
806 free_ablock = free_ablock->x.next_free;
807
808 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
809 if (val && type != MEM_TYPE_NON_LISP)
810 mem_insert (val, (char *) val + nbytes, type);
811 #endif
812
813 UNBLOCK_INPUT;
814 if (!val && nbytes)
815 memory_full ();
816
817 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
818 return val;
819 }
820
821 static void
822 lisp_align_free (block)
823 POINTER_TYPE *block;
824 {
825 struct ablock *ablock = block;
826 struct ablocks *abase = ABLOCK_ABASE (ablock);
827
828 BLOCK_INPUT;
829 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
830 mem_delete (mem_find (block));
831 #endif
832 /* Put on free list. */
833 ablock->x.next_free = free_ablock;
834 free_ablock = ablock;
835 /* Update busy count. */
836 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (int) ABLOCKS_BUSY (abase));
837
838 if (2 > (int) ABLOCKS_BUSY (abase))
839 { /* All the blocks are free. */
840 int i = 0, aligned = (int) ABLOCKS_BUSY (abase);
841 struct ablock **tem = &free_ablock;
842 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
843
844 while (*tem)
845 {
846 if (*tem >= (struct ablock *) abase && *tem < atop)
847 {
848 i++;
849 *tem = (*tem)->x.next_free;
850 }
851 else
852 tem = &(*tem)->x.next_free;
853 }
854 eassert ((aligned & 1) == aligned);
855 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
856 free (ABLOCKS_BASE (abase));
857 }
858 UNBLOCK_INPUT;
859 }
860
861 /* Return a new buffer structure allocated from the heap with
862 a call to lisp_malloc. */
863
864 struct buffer *
865 allocate_buffer ()
866 {
867 struct buffer *b
868 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
869 MEM_TYPE_BUFFER);
870 return b;
871 }
872
873 \f
874 /* Arranging to disable input signals while we're in malloc.
875
876 This only works with GNU malloc. To help out systems which can't
877 use GNU malloc, all the calls to malloc, realloc, and free
878 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
879 pairs; unfortunately, we have no idea what C library functions
880 might call malloc, so we can't really protect them unless you're
881 using GNU malloc. Fortunately, most of the major operating systems
882 can use GNU malloc. */
883
884 #ifndef SYSTEM_MALLOC
885 #ifndef DOUG_LEA_MALLOC
886 extern void * (*__malloc_hook) P_ ((size_t));
887 extern void * (*__realloc_hook) P_ ((void *, size_t));
888 extern void (*__free_hook) P_ ((void *));
889 /* Else declared in malloc.h, perhaps with an extra arg. */
890 #endif /* DOUG_LEA_MALLOC */
891 static void * (*old_malloc_hook) ();
892 static void * (*old_realloc_hook) ();
893 static void (*old_free_hook) ();
894
895 /* This function is used as the hook for free to call. */
896
897 static void
898 emacs_blocked_free (ptr)
899 void *ptr;
900 {
901 BLOCK_INPUT;
902
903 #ifdef GC_MALLOC_CHECK
904 if (ptr)
905 {
906 struct mem_node *m;
907
908 m = mem_find (ptr);
909 if (m == MEM_NIL || m->start != ptr)
910 {
911 fprintf (stderr,
912 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
913 abort ();
914 }
915 else
916 {
917 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
918 mem_delete (m);
919 }
920 }
921 #endif /* GC_MALLOC_CHECK */
922
923 __free_hook = old_free_hook;
924 free (ptr);
925
926 /* If we released our reserve (due to running out of memory),
927 and we have a fair amount free once again,
928 try to set aside another reserve in case we run out once more. */
929 if (spare_memory == 0
930 /* Verify there is enough space that even with the malloc
931 hysteresis this call won't run out again.
932 The code here is correct as long as SPARE_MEMORY
933 is substantially larger than the block size malloc uses. */
934 && (bytes_used_when_full
935 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
936 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
937
938 __free_hook = emacs_blocked_free;
939 UNBLOCK_INPUT;
940 }
941
942
943 /* If we released our reserve (due to running out of memory),
944 and we have a fair amount free once again,
945 try to set aside another reserve in case we run out once more.
946
947 This is called when a relocatable block is freed in ralloc.c. */
948
949 void
950 refill_memory_reserve ()
951 {
952 if (spare_memory == 0)
953 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
954 }
955
956
957 /* This function is the malloc hook that Emacs uses. */
958
959 static void *
960 emacs_blocked_malloc (size)
961 size_t size;
962 {
963 void *value;
964
965 BLOCK_INPUT;
966 __malloc_hook = old_malloc_hook;
967 #ifdef DOUG_LEA_MALLOC
968 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
969 #else
970 __malloc_extra_blocks = malloc_hysteresis;
971 #endif
972
973 value = (void *) malloc (size);
974
975 #ifdef GC_MALLOC_CHECK
976 {
977 struct mem_node *m = mem_find (value);
978 if (m != MEM_NIL)
979 {
980 fprintf (stderr, "Malloc returned %p which is already in use\n",
981 value);
982 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
983 m->start, m->end, (char *) m->end - (char *) m->start,
984 m->type);
985 abort ();
986 }
987
988 if (!dont_register_blocks)
989 {
990 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
991 allocated_mem_type = MEM_TYPE_NON_LISP;
992 }
993 }
994 #endif /* GC_MALLOC_CHECK */
995
996 __malloc_hook = emacs_blocked_malloc;
997 UNBLOCK_INPUT;
998
999 /* fprintf (stderr, "%p malloc\n", value); */
1000 return value;
1001 }
1002
1003
1004 /* This function is the realloc hook that Emacs uses. */
1005
1006 static void *
1007 emacs_blocked_realloc (ptr, size)
1008 void *ptr;
1009 size_t size;
1010 {
1011 void *value;
1012
1013 BLOCK_INPUT;
1014 __realloc_hook = old_realloc_hook;
1015
1016 #ifdef GC_MALLOC_CHECK
1017 if (ptr)
1018 {
1019 struct mem_node *m = mem_find (ptr);
1020 if (m == MEM_NIL || m->start != ptr)
1021 {
1022 fprintf (stderr,
1023 "Realloc of %p which wasn't allocated with malloc\n",
1024 ptr);
1025 abort ();
1026 }
1027
1028 mem_delete (m);
1029 }
1030
1031 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1032
1033 /* Prevent malloc from registering blocks. */
1034 dont_register_blocks = 1;
1035 #endif /* GC_MALLOC_CHECK */
1036
1037 value = (void *) realloc (ptr, size);
1038
1039 #ifdef GC_MALLOC_CHECK
1040 dont_register_blocks = 0;
1041
1042 {
1043 struct mem_node *m = mem_find (value);
1044 if (m != MEM_NIL)
1045 {
1046 fprintf (stderr, "Realloc returns memory that is already in use\n");
1047 abort ();
1048 }
1049
1050 /* Can't handle zero size regions in the red-black tree. */
1051 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1052 }
1053
1054 /* fprintf (stderr, "%p <- realloc\n", value); */
1055 #endif /* GC_MALLOC_CHECK */
1056
1057 __realloc_hook = emacs_blocked_realloc;
1058 UNBLOCK_INPUT;
1059
1060 return value;
1061 }
1062
1063
1064 /* Called from main to set up malloc to use our hooks. */
1065
1066 void
1067 uninterrupt_malloc ()
1068 {
1069 if (__free_hook != emacs_blocked_free)
1070 old_free_hook = __free_hook;
1071 __free_hook = emacs_blocked_free;
1072
1073 if (__malloc_hook != emacs_blocked_malloc)
1074 old_malloc_hook = __malloc_hook;
1075 __malloc_hook = emacs_blocked_malloc;
1076
1077 if (__realloc_hook != emacs_blocked_realloc)
1078 old_realloc_hook = __realloc_hook;
1079 __realloc_hook = emacs_blocked_realloc;
1080 }
1081
1082 #endif /* not SYSTEM_MALLOC */
1083
1084
1085 \f
1086 /***********************************************************************
1087 Interval Allocation
1088 ***********************************************************************/
1089
1090 /* Number of intervals allocated in an interval_block structure.
1091 The 1020 is 1024 minus malloc overhead. */
1092
1093 #define INTERVAL_BLOCK_SIZE \
1094 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1095
1096 /* Intervals are allocated in chunks in form of an interval_block
1097 structure. */
1098
1099 struct interval_block
1100 {
1101 struct interval_block *next;
1102 struct interval intervals[INTERVAL_BLOCK_SIZE];
1103 };
1104
1105 /* Current interval block. Its `next' pointer points to older
1106 blocks. */
1107
1108 struct interval_block *interval_block;
1109
1110 /* Index in interval_block above of the next unused interval
1111 structure. */
1112
1113 static int interval_block_index;
1114
1115 /* Number of free and live intervals. */
1116
1117 static int total_free_intervals, total_intervals;
1118
1119 /* List of free intervals. */
1120
1121 INTERVAL interval_free_list;
1122
1123 /* Total number of interval blocks now in use. */
1124
1125 int n_interval_blocks;
1126
1127
1128 /* Initialize interval allocation. */
1129
1130 static void
1131 init_intervals ()
1132 {
1133 interval_block
1134 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
1135 MEM_TYPE_NON_LISP);
1136 interval_block->next = 0;
1137 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
1138 interval_block_index = 0;
1139 interval_free_list = 0;
1140 n_interval_blocks = 1;
1141 }
1142
1143
1144 /* Return a new interval. */
1145
1146 INTERVAL
1147 make_interval ()
1148 {
1149 INTERVAL val;
1150
1151 if (interval_free_list)
1152 {
1153 val = interval_free_list;
1154 interval_free_list = INTERVAL_PARENT (interval_free_list);
1155 }
1156 else
1157 {
1158 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1159 {
1160 register struct interval_block *newi;
1161
1162 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1163 MEM_TYPE_NON_LISP);
1164
1165 newi->next = interval_block;
1166 interval_block = newi;
1167 interval_block_index = 0;
1168 n_interval_blocks++;
1169 }
1170 val = &interval_block->intervals[interval_block_index++];
1171 }
1172 consing_since_gc += sizeof (struct interval);
1173 intervals_consed++;
1174 RESET_INTERVAL (val);
1175 val->gcmarkbit = 0;
1176 return val;
1177 }
1178
1179
1180 /* Mark Lisp objects in interval I. */
1181
1182 static void
1183 mark_interval (i, dummy)
1184 register INTERVAL i;
1185 Lisp_Object dummy;
1186 {
1187 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1188 i->gcmarkbit = 1;
1189 mark_object (i->plist);
1190 }
1191
1192
1193 /* Mark the interval tree rooted in TREE. Don't call this directly;
1194 use the macro MARK_INTERVAL_TREE instead. */
1195
1196 static void
1197 mark_interval_tree (tree)
1198 register INTERVAL tree;
1199 {
1200 /* No need to test if this tree has been marked already; this
1201 function is always called through the MARK_INTERVAL_TREE macro,
1202 which takes care of that. */
1203
1204 traverse_intervals_noorder (tree, mark_interval, Qnil);
1205 }
1206
1207
1208 /* Mark the interval tree rooted in I. */
1209
1210 #define MARK_INTERVAL_TREE(i) \
1211 do { \
1212 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1213 mark_interval_tree (i); \
1214 } while (0)
1215
1216
1217 #define UNMARK_BALANCE_INTERVALS(i) \
1218 do { \
1219 if (! NULL_INTERVAL_P (i)) \
1220 (i) = balance_intervals (i); \
1221 } while (0)
1222
1223 \f
1224 /* Number support. If NO_UNION_TYPE isn't in effect, we
1225 can't create number objects in macros. */
1226 #ifndef make_number
1227 Lisp_Object
1228 make_number (n)
1229 int n;
1230 {
1231 Lisp_Object obj;
1232 obj.s.val = n;
1233 obj.s.type = Lisp_Int;
1234 return obj;
1235 }
1236 #endif
1237 \f
1238 /***********************************************************************
1239 String Allocation
1240 ***********************************************************************/
1241
1242 /* Lisp_Strings are allocated in string_block structures. When a new
1243 string_block is allocated, all the Lisp_Strings it contains are
1244 added to a free-list string_free_list. When a new Lisp_String is
1245 needed, it is taken from that list. During the sweep phase of GC,
1246 string_blocks that are entirely free are freed, except two which
1247 we keep.
1248
1249 String data is allocated from sblock structures. Strings larger
1250 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1251 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1252
1253 Sblocks consist internally of sdata structures, one for each
1254 Lisp_String. The sdata structure points to the Lisp_String it
1255 belongs to. The Lisp_String points back to the `u.data' member of
1256 its sdata structure.
1257
1258 When a Lisp_String is freed during GC, it is put back on
1259 string_free_list, and its `data' member and its sdata's `string'
1260 pointer is set to null. The size of the string is recorded in the
1261 `u.nbytes' member of the sdata. So, sdata structures that are no
1262 longer used, can be easily recognized, and it's easy to compact the
1263 sblocks of small strings which we do in compact_small_strings. */
1264
1265 /* Size in bytes of an sblock structure used for small strings. This
1266 is 8192 minus malloc overhead. */
1267
1268 #define SBLOCK_SIZE 8188
1269
1270 /* Strings larger than this are considered large strings. String data
1271 for large strings is allocated from individual sblocks. */
1272
1273 #define LARGE_STRING_BYTES 1024
1274
1275 /* Structure describing string memory sub-allocated from an sblock.
1276 This is where the contents of Lisp strings are stored. */
1277
1278 struct sdata
1279 {
1280 /* Back-pointer to the string this sdata belongs to. If null, this
1281 structure is free, and the NBYTES member of the union below
1282 contains the string's byte size (the same value that STRING_BYTES
1283 would return if STRING were non-null). If non-null, STRING_BYTES
1284 (STRING) is the size of the data, and DATA contains the string's
1285 contents. */
1286 struct Lisp_String *string;
1287
1288 #ifdef GC_CHECK_STRING_BYTES
1289
1290 EMACS_INT nbytes;
1291 unsigned char data[1];
1292
1293 #define SDATA_NBYTES(S) (S)->nbytes
1294 #define SDATA_DATA(S) (S)->data
1295
1296 #else /* not GC_CHECK_STRING_BYTES */
1297
1298 union
1299 {
1300 /* When STRING in non-null. */
1301 unsigned char data[1];
1302
1303 /* When STRING is null. */
1304 EMACS_INT nbytes;
1305 } u;
1306
1307
1308 #define SDATA_NBYTES(S) (S)->u.nbytes
1309 #define SDATA_DATA(S) (S)->u.data
1310
1311 #endif /* not GC_CHECK_STRING_BYTES */
1312 };
1313
1314
1315 /* Structure describing a block of memory which is sub-allocated to
1316 obtain string data memory for strings. Blocks for small strings
1317 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1318 as large as needed. */
1319
1320 struct sblock
1321 {
1322 /* Next in list. */
1323 struct sblock *next;
1324
1325 /* Pointer to the next free sdata block. This points past the end
1326 of the sblock if there isn't any space left in this block. */
1327 struct sdata *next_free;
1328
1329 /* Start of data. */
1330 struct sdata first_data;
1331 };
1332
1333 /* Number of Lisp strings in a string_block structure. The 1020 is
1334 1024 minus malloc overhead. */
1335
1336 #define STRING_BLOCK_SIZE \
1337 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1338
1339 /* Structure describing a block from which Lisp_String structures
1340 are allocated. */
1341
1342 struct string_block
1343 {
1344 struct string_block *next;
1345 struct Lisp_String strings[STRING_BLOCK_SIZE];
1346 };
1347
1348 /* Head and tail of the list of sblock structures holding Lisp string
1349 data. We always allocate from current_sblock. The NEXT pointers
1350 in the sblock structures go from oldest_sblock to current_sblock. */
1351
1352 static struct sblock *oldest_sblock, *current_sblock;
1353
1354 /* List of sblocks for large strings. */
1355
1356 static struct sblock *large_sblocks;
1357
1358 /* List of string_block structures, and how many there are. */
1359
1360 static struct string_block *string_blocks;
1361 static int n_string_blocks;
1362
1363 /* Free-list of Lisp_Strings. */
1364
1365 static struct Lisp_String *string_free_list;
1366
1367 /* Number of live and free Lisp_Strings. */
1368
1369 static int total_strings, total_free_strings;
1370
1371 /* Number of bytes used by live strings. */
1372
1373 static int total_string_size;
1374
1375 /* Given a pointer to a Lisp_String S which is on the free-list
1376 string_free_list, return a pointer to its successor in the
1377 free-list. */
1378
1379 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1380
1381 /* Return a pointer to the sdata structure belonging to Lisp string S.
1382 S must be live, i.e. S->data must not be null. S->data is actually
1383 a pointer to the `u.data' member of its sdata structure; the
1384 structure starts at a constant offset in front of that. */
1385
1386 #ifdef GC_CHECK_STRING_BYTES
1387
1388 #define SDATA_OF_STRING(S) \
1389 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1390 - sizeof (EMACS_INT)))
1391
1392 #else /* not GC_CHECK_STRING_BYTES */
1393
1394 #define SDATA_OF_STRING(S) \
1395 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1396
1397 #endif /* not GC_CHECK_STRING_BYTES */
1398
1399 /* Value is the size of an sdata structure large enough to hold NBYTES
1400 bytes of string data. The value returned includes a terminating
1401 NUL byte, the size of the sdata structure, and padding. */
1402
1403 #ifdef GC_CHECK_STRING_BYTES
1404
1405 #define SDATA_SIZE(NBYTES) \
1406 ((sizeof (struct Lisp_String *) \
1407 + (NBYTES) + 1 \
1408 + sizeof (EMACS_INT) \
1409 + sizeof (EMACS_INT) - 1) \
1410 & ~(sizeof (EMACS_INT) - 1))
1411
1412 #else /* not GC_CHECK_STRING_BYTES */
1413
1414 #define SDATA_SIZE(NBYTES) \
1415 ((sizeof (struct Lisp_String *) \
1416 + (NBYTES) + 1 \
1417 + sizeof (EMACS_INT) - 1) \
1418 & ~(sizeof (EMACS_INT) - 1))
1419
1420 #endif /* not GC_CHECK_STRING_BYTES */
1421
1422 /* Initialize string allocation. Called from init_alloc_once. */
1423
1424 void
1425 init_strings ()
1426 {
1427 total_strings = total_free_strings = total_string_size = 0;
1428 oldest_sblock = current_sblock = large_sblocks = NULL;
1429 string_blocks = NULL;
1430 n_string_blocks = 0;
1431 string_free_list = NULL;
1432 }
1433
1434
1435 #ifdef GC_CHECK_STRING_BYTES
1436
1437 static int check_string_bytes_count;
1438
1439 void check_string_bytes P_ ((int));
1440 void check_sblock P_ ((struct sblock *));
1441
1442 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1443
1444
1445 /* Like GC_STRING_BYTES, but with debugging check. */
1446
1447 int
1448 string_bytes (s)
1449 struct Lisp_String *s;
1450 {
1451 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1452 if (!PURE_POINTER_P (s)
1453 && s->data
1454 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1455 abort ();
1456 return nbytes;
1457 }
1458
1459 /* Check validity of Lisp strings' string_bytes member in B. */
1460
1461 void
1462 check_sblock (b)
1463 struct sblock *b;
1464 {
1465 struct sdata *from, *end, *from_end;
1466
1467 end = b->next_free;
1468
1469 for (from = &b->first_data; from < end; from = from_end)
1470 {
1471 /* Compute the next FROM here because copying below may
1472 overwrite data we need to compute it. */
1473 int nbytes;
1474
1475 /* Check that the string size recorded in the string is the
1476 same as the one recorded in the sdata structure. */
1477 if (from->string)
1478 CHECK_STRING_BYTES (from->string);
1479
1480 if (from->string)
1481 nbytes = GC_STRING_BYTES (from->string);
1482 else
1483 nbytes = SDATA_NBYTES (from);
1484
1485 nbytes = SDATA_SIZE (nbytes);
1486 from_end = (struct sdata *) ((char *) from + nbytes);
1487 }
1488 }
1489
1490
1491 /* Check validity of Lisp strings' string_bytes member. ALL_P
1492 non-zero means check all strings, otherwise check only most
1493 recently allocated strings. Used for hunting a bug. */
1494
1495 void
1496 check_string_bytes (all_p)
1497 int all_p;
1498 {
1499 if (all_p)
1500 {
1501 struct sblock *b;
1502
1503 for (b = large_sblocks; b; b = b->next)
1504 {
1505 struct Lisp_String *s = b->first_data.string;
1506 if (s)
1507 CHECK_STRING_BYTES (s);
1508 }
1509
1510 for (b = oldest_sblock; b; b = b->next)
1511 check_sblock (b);
1512 }
1513 else
1514 check_sblock (current_sblock);
1515 }
1516
1517 #endif /* GC_CHECK_STRING_BYTES */
1518
1519
1520 /* Return a new Lisp_String. */
1521
1522 static struct Lisp_String *
1523 allocate_string ()
1524 {
1525 struct Lisp_String *s;
1526
1527 /* If the free-list is empty, allocate a new string_block, and
1528 add all the Lisp_Strings in it to the free-list. */
1529 if (string_free_list == NULL)
1530 {
1531 struct string_block *b;
1532 int i;
1533
1534 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1535 bzero (b, sizeof *b);
1536 b->next = string_blocks;
1537 string_blocks = b;
1538 ++n_string_blocks;
1539
1540 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1541 {
1542 s = b->strings + i;
1543 NEXT_FREE_LISP_STRING (s) = string_free_list;
1544 string_free_list = s;
1545 }
1546
1547 total_free_strings += STRING_BLOCK_SIZE;
1548 }
1549
1550 /* Pop a Lisp_String off the free-list. */
1551 s = string_free_list;
1552 string_free_list = NEXT_FREE_LISP_STRING (s);
1553
1554 /* Probably not strictly necessary, but play it safe. */
1555 bzero (s, sizeof *s);
1556
1557 --total_free_strings;
1558 ++total_strings;
1559 ++strings_consed;
1560 consing_since_gc += sizeof *s;
1561
1562 #ifdef GC_CHECK_STRING_BYTES
1563 if (!noninteractive
1564 #ifdef MAC_OS8
1565 && current_sblock
1566 #endif
1567 )
1568 {
1569 if (++check_string_bytes_count == 200)
1570 {
1571 check_string_bytes_count = 0;
1572 check_string_bytes (1);
1573 }
1574 else
1575 check_string_bytes (0);
1576 }
1577 #endif /* GC_CHECK_STRING_BYTES */
1578
1579 return s;
1580 }
1581
1582
1583 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1584 plus a NUL byte at the end. Allocate an sdata structure for S, and
1585 set S->data to its `u.data' member. Store a NUL byte at the end of
1586 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1587 S->data if it was initially non-null. */
1588
1589 void
1590 allocate_string_data (s, nchars, nbytes)
1591 struct Lisp_String *s;
1592 int nchars, nbytes;
1593 {
1594 struct sdata *data, *old_data;
1595 struct sblock *b;
1596 int needed, old_nbytes;
1597
1598 /* Determine the number of bytes needed to store NBYTES bytes
1599 of string data. */
1600 needed = SDATA_SIZE (nbytes);
1601
1602 if (nbytes > LARGE_STRING_BYTES)
1603 {
1604 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1605
1606 #ifdef DOUG_LEA_MALLOC
1607 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1608 because mapped region contents are not preserved in
1609 a dumped Emacs.
1610
1611 In case you think of allowing it in a dumped Emacs at the
1612 cost of not being able to re-dump, there's another reason:
1613 mmap'ed data typically have an address towards the top of the
1614 address space, which won't fit into an EMACS_INT (at least on
1615 32-bit systems with the current tagging scheme). --fx */
1616 mallopt (M_MMAP_MAX, 0);
1617 #endif
1618
1619 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1620
1621 #ifdef DOUG_LEA_MALLOC
1622 /* Back to a reasonable maximum of mmap'ed areas. */
1623 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1624 #endif
1625
1626 b->next_free = &b->first_data;
1627 b->first_data.string = NULL;
1628 b->next = large_sblocks;
1629 large_sblocks = b;
1630 }
1631 else if (current_sblock == NULL
1632 || (((char *) current_sblock + SBLOCK_SIZE
1633 - (char *) current_sblock->next_free)
1634 < needed))
1635 {
1636 /* Not enough room in the current sblock. */
1637 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1638 b->next_free = &b->first_data;
1639 b->first_data.string = NULL;
1640 b->next = NULL;
1641
1642 if (current_sblock)
1643 current_sblock->next = b;
1644 else
1645 oldest_sblock = b;
1646 current_sblock = b;
1647 }
1648 else
1649 b = current_sblock;
1650
1651 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1652 old_nbytes = GC_STRING_BYTES (s);
1653
1654 data = b->next_free;
1655 data->string = s;
1656 s->data = SDATA_DATA (data);
1657 #ifdef GC_CHECK_STRING_BYTES
1658 SDATA_NBYTES (data) = nbytes;
1659 #endif
1660 s->size = nchars;
1661 s->size_byte = nbytes;
1662 s->data[nbytes] = '\0';
1663 b->next_free = (struct sdata *) ((char *) data + needed);
1664
1665 /* If S had already data assigned, mark that as free by setting its
1666 string back-pointer to null, and recording the size of the data
1667 in it. */
1668 if (old_data)
1669 {
1670 SDATA_NBYTES (old_data) = old_nbytes;
1671 old_data->string = NULL;
1672 }
1673
1674 consing_since_gc += needed;
1675 }
1676
1677
1678 /* Sweep and compact strings. */
1679
1680 static void
1681 sweep_strings ()
1682 {
1683 struct string_block *b, *next;
1684 struct string_block *live_blocks = NULL;
1685
1686 string_free_list = NULL;
1687 total_strings = total_free_strings = 0;
1688 total_string_size = 0;
1689
1690 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1691 for (b = string_blocks; b; b = next)
1692 {
1693 int i, nfree = 0;
1694 struct Lisp_String *free_list_before = string_free_list;
1695
1696 next = b->next;
1697
1698 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1699 {
1700 struct Lisp_String *s = b->strings + i;
1701
1702 if (s->data)
1703 {
1704 /* String was not on free-list before. */
1705 if (STRING_MARKED_P (s))
1706 {
1707 /* String is live; unmark it and its intervals. */
1708 UNMARK_STRING (s);
1709
1710 if (!NULL_INTERVAL_P (s->intervals))
1711 UNMARK_BALANCE_INTERVALS (s->intervals);
1712
1713 ++total_strings;
1714 total_string_size += STRING_BYTES (s);
1715 }
1716 else
1717 {
1718 /* String is dead. Put it on the free-list. */
1719 struct sdata *data = SDATA_OF_STRING (s);
1720
1721 /* Save the size of S in its sdata so that we know
1722 how large that is. Reset the sdata's string
1723 back-pointer so that we know it's free. */
1724 #ifdef GC_CHECK_STRING_BYTES
1725 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1726 abort ();
1727 #else
1728 data->u.nbytes = GC_STRING_BYTES (s);
1729 #endif
1730 data->string = NULL;
1731
1732 /* Reset the strings's `data' member so that we
1733 know it's free. */
1734 s->data = NULL;
1735
1736 /* Put the string on the free-list. */
1737 NEXT_FREE_LISP_STRING (s) = string_free_list;
1738 string_free_list = s;
1739 ++nfree;
1740 }
1741 }
1742 else
1743 {
1744 /* S was on the free-list before. Put it there again. */
1745 NEXT_FREE_LISP_STRING (s) = string_free_list;
1746 string_free_list = s;
1747 ++nfree;
1748 }
1749 }
1750
1751 /* Free blocks that contain free Lisp_Strings only, except
1752 the first two of them. */
1753 if (nfree == STRING_BLOCK_SIZE
1754 && total_free_strings > STRING_BLOCK_SIZE)
1755 {
1756 lisp_free (b);
1757 --n_string_blocks;
1758 string_free_list = free_list_before;
1759 }
1760 else
1761 {
1762 total_free_strings += nfree;
1763 b->next = live_blocks;
1764 live_blocks = b;
1765 }
1766 }
1767
1768 string_blocks = live_blocks;
1769 free_large_strings ();
1770 compact_small_strings ();
1771 }
1772
1773
1774 /* Free dead large strings. */
1775
1776 static void
1777 free_large_strings ()
1778 {
1779 struct sblock *b, *next;
1780 struct sblock *live_blocks = NULL;
1781
1782 for (b = large_sblocks; b; b = next)
1783 {
1784 next = b->next;
1785
1786 if (b->first_data.string == NULL)
1787 lisp_free (b);
1788 else
1789 {
1790 b->next = live_blocks;
1791 live_blocks = b;
1792 }
1793 }
1794
1795 large_sblocks = live_blocks;
1796 }
1797
1798
1799 /* Compact data of small strings. Free sblocks that don't contain
1800 data of live strings after compaction. */
1801
1802 static void
1803 compact_small_strings ()
1804 {
1805 struct sblock *b, *tb, *next;
1806 struct sdata *from, *to, *end, *tb_end;
1807 struct sdata *to_end, *from_end;
1808
1809 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1810 to, and TB_END is the end of TB. */
1811 tb = oldest_sblock;
1812 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1813 to = &tb->first_data;
1814
1815 /* Step through the blocks from the oldest to the youngest. We
1816 expect that old blocks will stabilize over time, so that less
1817 copying will happen this way. */
1818 for (b = oldest_sblock; b; b = b->next)
1819 {
1820 end = b->next_free;
1821 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1822
1823 for (from = &b->first_data; from < end; from = from_end)
1824 {
1825 /* Compute the next FROM here because copying below may
1826 overwrite data we need to compute it. */
1827 int nbytes;
1828
1829 #ifdef GC_CHECK_STRING_BYTES
1830 /* Check that the string size recorded in the string is the
1831 same as the one recorded in the sdata structure. */
1832 if (from->string
1833 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1834 abort ();
1835 #endif /* GC_CHECK_STRING_BYTES */
1836
1837 if (from->string)
1838 nbytes = GC_STRING_BYTES (from->string);
1839 else
1840 nbytes = SDATA_NBYTES (from);
1841
1842 nbytes = SDATA_SIZE (nbytes);
1843 from_end = (struct sdata *) ((char *) from + nbytes);
1844
1845 /* FROM->string non-null means it's alive. Copy its data. */
1846 if (from->string)
1847 {
1848 /* If TB is full, proceed with the next sblock. */
1849 to_end = (struct sdata *) ((char *) to + nbytes);
1850 if (to_end > tb_end)
1851 {
1852 tb->next_free = to;
1853 tb = tb->next;
1854 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1855 to = &tb->first_data;
1856 to_end = (struct sdata *) ((char *) to + nbytes);
1857 }
1858
1859 /* Copy, and update the string's `data' pointer. */
1860 if (from != to)
1861 {
1862 xassert (tb != b || to <= from);
1863 safe_bcopy ((char *) from, (char *) to, nbytes);
1864 to->string->data = SDATA_DATA (to);
1865 }
1866
1867 /* Advance past the sdata we copied to. */
1868 to = to_end;
1869 }
1870 }
1871 }
1872
1873 /* The rest of the sblocks following TB don't contain live data, so
1874 we can free them. */
1875 for (b = tb->next; b; b = next)
1876 {
1877 next = b->next;
1878 lisp_free (b);
1879 }
1880
1881 tb->next_free = to;
1882 tb->next = NULL;
1883 current_sblock = tb;
1884 }
1885
1886
1887 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1888 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1889 Both LENGTH and INIT must be numbers. */)
1890 (length, init)
1891 Lisp_Object length, init;
1892 {
1893 register Lisp_Object val;
1894 register unsigned char *p, *end;
1895 int c, nbytes;
1896
1897 CHECK_NATNUM (length);
1898 CHECK_NUMBER (init);
1899
1900 c = XINT (init);
1901 if (SINGLE_BYTE_CHAR_P (c))
1902 {
1903 nbytes = XINT (length);
1904 val = make_uninit_string (nbytes);
1905 p = SDATA (val);
1906 end = p + SCHARS (val);
1907 while (p != end)
1908 *p++ = c;
1909 }
1910 else
1911 {
1912 unsigned char str[MAX_MULTIBYTE_LENGTH];
1913 int len = CHAR_STRING (c, str);
1914
1915 nbytes = len * XINT (length);
1916 val = make_uninit_multibyte_string (XINT (length), nbytes);
1917 p = SDATA (val);
1918 end = p + nbytes;
1919 while (p != end)
1920 {
1921 bcopy (str, p, len);
1922 p += len;
1923 }
1924 }
1925
1926 *p = 0;
1927 return val;
1928 }
1929
1930
1931 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1932 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1933 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1934 (length, init)
1935 Lisp_Object length, init;
1936 {
1937 register Lisp_Object val;
1938 struct Lisp_Bool_Vector *p;
1939 int real_init, i;
1940 int length_in_chars, length_in_elts, bits_per_value;
1941
1942 CHECK_NATNUM (length);
1943
1944 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1945
1946 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1947 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1948
1949 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1950 slot `size' of the struct Lisp_Bool_Vector. */
1951 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1952 p = XBOOL_VECTOR (val);
1953
1954 /* Get rid of any bits that would cause confusion. */
1955 p->vector_size = 0;
1956 XSETBOOL_VECTOR (val, p);
1957 p->size = XFASTINT (length);
1958
1959 real_init = (NILP (init) ? 0 : -1);
1960 for (i = 0; i < length_in_chars ; i++)
1961 p->data[i] = real_init;
1962
1963 /* Clear the extraneous bits in the last byte. */
1964 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1965 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1966 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1967
1968 return val;
1969 }
1970
1971
1972 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1973 of characters from the contents. This string may be unibyte or
1974 multibyte, depending on the contents. */
1975
1976 Lisp_Object
1977 make_string (contents, nbytes)
1978 const char *contents;
1979 int nbytes;
1980 {
1981 register Lisp_Object val;
1982 int nchars, multibyte_nbytes;
1983
1984 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1985 if (nbytes == nchars || nbytes != multibyte_nbytes)
1986 /* CONTENTS contains no multibyte sequences or contains an invalid
1987 multibyte sequence. We must make unibyte string. */
1988 val = make_unibyte_string (contents, nbytes);
1989 else
1990 val = make_multibyte_string (contents, nchars, nbytes);
1991 return val;
1992 }
1993
1994
1995 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1996
1997 Lisp_Object
1998 make_unibyte_string (contents, length)
1999 const char *contents;
2000 int length;
2001 {
2002 register Lisp_Object val;
2003 val = make_uninit_string (length);
2004 bcopy (contents, SDATA (val), length);
2005 STRING_SET_UNIBYTE (val);
2006 return val;
2007 }
2008
2009
2010 /* Make a multibyte string from NCHARS characters occupying NBYTES
2011 bytes at CONTENTS. */
2012
2013 Lisp_Object
2014 make_multibyte_string (contents, nchars, nbytes)
2015 const char *contents;
2016 int nchars, nbytes;
2017 {
2018 register Lisp_Object val;
2019 val = make_uninit_multibyte_string (nchars, nbytes);
2020 bcopy (contents, SDATA (val), nbytes);
2021 return val;
2022 }
2023
2024
2025 /* Make a string from NCHARS characters occupying NBYTES bytes at
2026 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2027
2028 Lisp_Object
2029 make_string_from_bytes (contents, nchars, nbytes)
2030 const char *contents;
2031 int nchars, nbytes;
2032 {
2033 register Lisp_Object val;
2034 val = make_uninit_multibyte_string (nchars, nbytes);
2035 bcopy (contents, SDATA (val), nbytes);
2036 if (SBYTES (val) == SCHARS (val))
2037 STRING_SET_UNIBYTE (val);
2038 return val;
2039 }
2040
2041
2042 /* Make a string from NCHARS characters occupying NBYTES bytes at
2043 CONTENTS. The argument MULTIBYTE controls whether to label the
2044 string as multibyte. If NCHARS is negative, it counts the number of
2045 characters by itself. */
2046
2047 Lisp_Object
2048 make_specified_string (contents, nchars, nbytes, multibyte)
2049 const char *contents;
2050 int nchars, nbytes;
2051 int multibyte;
2052 {
2053 register Lisp_Object val;
2054
2055 if (nchars < 0)
2056 {
2057 if (multibyte)
2058 nchars = multibyte_chars_in_text (contents, nbytes);
2059 else
2060 nchars = nbytes;
2061 }
2062 val = make_uninit_multibyte_string (nchars, nbytes);
2063 bcopy (contents, SDATA (val), nbytes);
2064 if (!multibyte)
2065 STRING_SET_UNIBYTE (val);
2066 return val;
2067 }
2068
2069
2070 /* Make a string from the data at STR, treating it as multibyte if the
2071 data warrants. */
2072
2073 Lisp_Object
2074 build_string (str)
2075 const char *str;
2076 {
2077 return make_string (str, strlen (str));
2078 }
2079
2080
2081 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2082 occupying LENGTH bytes. */
2083
2084 Lisp_Object
2085 make_uninit_string (length)
2086 int length;
2087 {
2088 Lisp_Object val;
2089 val = make_uninit_multibyte_string (length, length);
2090 STRING_SET_UNIBYTE (val);
2091 return val;
2092 }
2093
2094
2095 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2096 which occupy NBYTES bytes. */
2097
2098 Lisp_Object
2099 make_uninit_multibyte_string (nchars, nbytes)
2100 int nchars, nbytes;
2101 {
2102 Lisp_Object string;
2103 struct Lisp_String *s;
2104
2105 if (nchars < 0)
2106 abort ();
2107
2108 s = allocate_string ();
2109 allocate_string_data (s, nchars, nbytes);
2110 XSETSTRING (string, s);
2111 string_chars_consed += nbytes;
2112 return string;
2113 }
2114
2115
2116 \f
2117 /***********************************************************************
2118 Float Allocation
2119 ***********************************************************************/
2120
2121 /* We store float cells inside of float_blocks, allocating a new
2122 float_block with malloc whenever necessary. Float cells reclaimed
2123 by GC are put on a free list to be reallocated before allocating
2124 any new float cells from the latest float_block. */
2125
2126 #define FLOAT_BLOCK_SIZE \
2127 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2128 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2129
2130 #define GETMARKBIT(block,n) \
2131 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2132 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2133 & 1)
2134
2135 #define SETMARKBIT(block,n) \
2136 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2137 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2138
2139 #define UNSETMARKBIT(block,n) \
2140 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2141 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2142
2143 #define FLOAT_BLOCK(fptr) \
2144 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2145
2146 #define FLOAT_INDEX(fptr) \
2147 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2148
2149 struct float_block
2150 {
2151 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2152 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2153 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2154 struct float_block *next;
2155 };
2156
2157 #define FLOAT_MARKED_P(fptr) \
2158 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2159
2160 #define FLOAT_MARK(fptr) \
2161 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2162
2163 #define FLOAT_UNMARK(fptr) \
2164 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2165
2166 /* Current float_block. */
2167
2168 struct float_block *float_block;
2169
2170 /* Index of first unused Lisp_Float in the current float_block. */
2171
2172 int float_block_index;
2173
2174 /* Total number of float blocks now in use. */
2175
2176 int n_float_blocks;
2177
2178 /* Free-list of Lisp_Floats. */
2179
2180 struct Lisp_Float *float_free_list;
2181
2182
2183 /* Initialize float allocation. */
2184
2185 void
2186 init_float ()
2187 {
2188 float_block = NULL;
2189 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2190 float_free_list = 0;
2191 n_float_blocks = 0;
2192 }
2193
2194
2195 /* Explicitly free a float cell by putting it on the free-list. */
2196
2197 void
2198 free_float (ptr)
2199 struct Lisp_Float *ptr;
2200 {
2201 *(struct Lisp_Float **)&ptr->data = float_free_list;
2202 float_free_list = ptr;
2203 }
2204
2205
2206 /* Return a new float object with value FLOAT_VALUE. */
2207
2208 Lisp_Object
2209 make_float (float_value)
2210 double float_value;
2211 {
2212 register Lisp_Object val;
2213
2214 if (float_free_list)
2215 {
2216 /* We use the data field for chaining the free list
2217 so that we won't use the same field that has the mark bit. */
2218 XSETFLOAT (val, float_free_list);
2219 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2220 }
2221 else
2222 {
2223 if (float_block_index == FLOAT_BLOCK_SIZE)
2224 {
2225 register struct float_block *new;
2226
2227 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2228 MEM_TYPE_FLOAT);
2229 new->next = float_block;
2230 float_block = new;
2231 float_block_index = 0;
2232 n_float_blocks++;
2233 }
2234 XSETFLOAT (val, &float_block->floats[float_block_index++]);
2235 }
2236
2237 XFLOAT_DATA (val) = float_value;
2238 FLOAT_UNMARK (XFLOAT (val));
2239 consing_since_gc += sizeof (struct Lisp_Float);
2240 floats_consed++;
2241 return val;
2242 }
2243
2244
2245 \f
2246 /***********************************************************************
2247 Cons Allocation
2248 ***********************************************************************/
2249
2250 /* We store cons cells inside of cons_blocks, allocating a new
2251 cons_block with malloc whenever necessary. Cons cells reclaimed by
2252 GC are put on a free list to be reallocated before allocating
2253 any new cons cells from the latest cons_block. */
2254
2255 #define CONS_BLOCK_SIZE \
2256 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2257 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2258
2259 #define CONS_BLOCK(fptr) \
2260 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2261
2262 #define CONS_INDEX(fptr) \
2263 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2264
2265 struct cons_block
2266 {
2267 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2268 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2269 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2270 struct cons_block *next;
2271 };
2272
2273 #define CONS_MARKED_P(fptr) \
2274 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2275
2276 #define CONS_MARK(fptr) \
2277 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2278
2279 #define CONS_UNMARK(fptr) \
2280 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2281
2282 /* Current cons_block. */
2283
2284 struct cons_block *cons_block;
2285
2286 /* Index of first unused Lisp_Cons in the current block. */
2287
2288 int cons_block_index;
2289
2290 /* Free-list of Lisp_Cons structures. */
2291
2292 struct Lisp_Cons *cons_free_list;
2293
2294 /* Total number of cons blocks now in use. */
2295
2296 int n_cons_blocks;
2297
2298
2299 /* Initialize cons allocation. */
2300
2301 void
2302 init_cons ()
2303 {
2304 cons_block = NULL;
2305 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2306 cons_free_list = 0;
2307 n_cons_blocks = 0;
2308 }
2309
2310
2311 /* Explicitly free a cons cell by putting it on the free-list. */
2312
2313 void
2314 free_cons (ptr)
2315 struct Lisp_Cons *ptr;
2316 {
2317 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2318 #if GC_MARK_STACK
2319 ptr->car = Vdead;
2320 #endif
2321 cons_free_list = ptr;
2322 }
2323
2324
2325 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2326 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2327 (car, cdr)
2328 Lisp_Object car, cdr;
2329 {
2330 register Lisp_Object val;
2331
2332 if (cons_free_list)
2333 {
2334 /* We use the cdr for chaining the free list
2335 so that we won't use the same field that has the mark bit. */
2336 XSETCONS (val, cons_free_list);
2337 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2338 }
2339 else
2340 {
2341 if (cons_block_index == CONS_BLOCK_SIZE)
2342 {
2343 register struct cons_block *new;
2344 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2345 MEM_TYPE_CONS);
2346 new->next = cons_block;
2347 cons_block = new;
2348 cons_block_index = 0;
2349 n_cons_blocks++;
2350 }
2351 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2352 }
2353
2354 XSETCAR (val, car);
2355 XSETCDR (val, cdr);
2356 CONS_UNMARK (XCONS (val));
2357 consing_since_gc += sizeof (struct Lisp_Cons);
2358 cons_cells_consed++;
2359 return val;
2360 }
2361
2362
2363 /* Make a list of 2, 3, 4 or 5 specified objects. */
2364
2365 Lisp_Object
2366 list2 (arg1, arg2)
2367 Lisp_Object arg1, arg2;
2368 {
2369 return Fcons (arg1, Fcons (arg2, Qnil));
2370 }
2371
2372
2373 Lisp_Object
2374 list3 (arg1, arg2, arg3)
2375 Lisp_Object arg1, arg2, arg3;
2376 {
2377 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2378 }
2379
2380
2381 Lisp_Object
2382 list4 (arg1, arg2, arg3, arg4)
2383 Lisp_Object arg1, arg2, arg3, arg4;
2384 {
2385 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2386 }
2387
2388
2389 Lisp_Object
2390 list5 (arg1, arg2, arg3, arg4, arg5)
2391 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2392 {
2393 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2394 Fcons (arg5, Qnil)))));
2395 }
2396
2397
2398 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2399 doc: /* Return a newly created list with specified arguments as elements.
2400 Any number of arguments, even zero arguments, are allowed.
2401 usage: (list &rest OBJECTS) */)
2402 (nargs, args)
2403 int nargs;
2404 register Lisp_Object *args;
2405 {
2406 register Lisp_Object val;
2407 val = Qnil;
2408
2409 while (nargs > 0)
2410 {
2411 nargs--;
2412 val = Fcons (args[nargs], val);
2413 }
2414 return val;
2415 }
2416
2417
2418 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2419 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2420 (length, init)
2421 register Lisp_Object length, init;
2422 {
2423 register Lisp_Object val;
2424 register int size;
2425
2426 CHECK_NATNUM (length);
2427 size = XFASTINT (length);
2428
2429 val = Qnil;
2430 while (size > 0)
2431 {
2432 val = Fcons (init, val);
2433 --size;
2434
2435 if (size > 0)
2436 {
2437 val = Fcons (init, val);
2438 --size;
2439
2440 if (size > 0)
2441 {
2442 val = Fcons (init, val);
2443 --size;
2444
2445 if (size > 0)
2446 {
2447 val = Fcons (init, val);
2448 --size;
2449
2450 if (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
2454 }
2455 }
2456 }
2457 }
2458
2459 QUIT;
2460 }
2461
2462 return val;
2463 }
2464
2465
2466 \f
2467 /***********************************************************************
2468 Vector Allocation
2469 ***********************************************************************/
2470
2471 /* Singly-linked list of all vectors. */
2472
2473 struct Lisp_Vector *all_vectors;
2474
2475 /* Total number of vector-like objects now in use. */
2476
2477 int n_vectors;
2478
2479
2480 /* Value is a pointer to a newly allocated Lisp_Vector structure
2481 with room for LEN Lisp_Objects. */
2482
2483 static struct Lisp_Vector *
2484 allocate_vectorlike (len, type)
2485 EMACS_INT len;
2486 enum mem_type type;
2487 {
2488 struct Lisp_Vector *p;
2489 size_t nbytes;
2490
2491 #ifdef DOUG_LEA_MALLOC
2492 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2493 because mapped region contents are not preserved in
2494 a dumped Emacs. */
2495 mallopt (M_MMAP_MAX, 0);
2496 #endif
2497
2498 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2499 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2500
2501 #ifdef DOUG_LEA_MALLOC
2502 /* Back to a reasonable maximum of mmap'ed areas. */
2503 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2504 #endif
2505
2506 consing_since_gc += nbytes;
2507 vector_cells_consed += len;
2508
2509 p->next = all_vectors;
2510 all_vectors = p;
2511 ++n_vectors;
2512 return p;
2513 }
2514
2515
2516 /* Allocate a vector with NSLOTS slots. */
2517
2518 struct Lisp_Vector *
2519 allocate_vector (nslots)
2520 EMACS_INT nslots;
2521 {
2522 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2523 v->size = nslots;
2524 return v;
2525 }
2526
2527
2528 /* Allocate other vector-like structures. */
2529
2530 struct Lisp_Hash_Table *
2531 allocate_hash_table ()
2532 {
2533 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2534 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2535 EMACS_INT i;
2536
2537 v->size = len;
2538 for (i = 0; i < len; ++i)
2539 v->contents[i] = Qnil;
2540
2541 return (struct Lisp_Hash_Table *) v;
2542 }
2543
2544
2545 struct window *
2546 allocate_window ()
2547 {
2548 EMACS_INT len = VECSIZE (struct window);
2549 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2550 EMACS_INT i;
2551
2552 for (i = 0; i < len; ++i)
2553 v->contents[i] = Qnil;
2554 v->size = len;
2555
2556 return (struct window *) v;
2557 }
2558
2559
2560 struct frame *
2561 allocate_frame ()
2562 {
2563 EMACS_INT len = VECSIZE (struct frame);
2564 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2565 EMACS_INT i;
2566
2567 for (i = 0; i < len; ++i)
2568 v->contents[i] = make_number (0);
2569 v->size = len;
2570 return (struct frame *) v;
2571 }
2572
2573
2574 struct Lisp_Process *
2575 allocate_process ()
2576 {
2577 EMACS_INT len = VECSIZE (struct Lisp_Process);
2578 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2579 EMACS_INT i;
2580
2581 for (i = 0; i < len; ++i)
2582 v->contents[i] = Qnil;
2583 v->size = len;
2584
2585 return (struct Lisp_Process *) v;
2586 }
2587
2588
2589 struct Lisp_Vector *
2590 allocate_other_vector (len)
2591 EMACS_INT len;
2592 {
2593 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2594 EMACS_INT i;
2595
2596 for (i = 0; i < len; ++i)
2597 v->contents[i] = Qnil;
2598 v->size = len;
2599
2600 return v;
2601 }
2602
2603
2604 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2605 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2606 See also the function `vector'. */)
2607 (length, init)
2608 register Lisp_Object length, init;
2609 {
2610 Lisp_Object vector;
2611 register EMACS_INT sizei;
2612 register int index;
2613 register struct Lisp_Vector *p;
2614
2615 CHECK_NATNUM (length);
2616 sizei = XFASTINT (length);
2617
2618 p = allocate_vector (sizei);
2619 for (index = 0; index < sizei; index++)
2620 p->contents[index] = init;
2621
2622 XSETVECTOR (vector, p);
2623 return vector;
2624 }
2625
2626
2627 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2628 doc: /* Return a newly created char-table, with purpose PURPOSE.
2629 Each element is initialized to INIT, which defaults to nil.
2630 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2631 The property's value should be an integer between 0 and 10. */)
2632 (purpose, init)
2633 register Lisp_Object purpose, init;
2634 {
2635 Lisp_Object vector;
2636 Lisp_Object n;
2637 CHECK_SYMBOL (purpose);
2638 n = Fget (purpose, Qchar_table_extra_slots);
2639 CHECK_NUMBER (n);
2640 if (XINT (n) < 0 || XINT (n) > 10)
2641 args_out_of_range (n, Qnil);
2642 /* Add 2 to the size for the defalt and parent slots. */
2643 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2644 init);
2645 XCHAR_TABLE (vector)->top = Qt;
2646 XCHAR_TABLE (vector)->parent = Qnil;
2647 XCHAR_TABLE (vector)->purpose = purpose;
2648 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2649 return vector;
2650 }
2651
2652
2653 /* Return a newly created sub char table with default value DEFALT.
2654 Since a sub char table does not appear as a top level Emacs Lisp
2655 object, we don't need a Lisp interface to make it. */
2656
2657 Lisp_Object
2658 make_sub_char_table (defalt)
2659 Lisp_Object defalt;
2660 {
2661 Lisp_Object vector
2662 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2663 XCHAR_TABLE (vector)->top = Qnil;
2664 XCHAR_TABLE (vector)->defalt = defalt;
2665 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2666 return vector;
2667 }
2668
2669
2670 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2671 doc: /* Return a newly created vector with specified arguments as elements.
2672 Any number of arguments, even zero arguments, are allowed.
2673 usage: (vector &rest OBJECTS) */)
2674 (nargs, args)
2675 register int nargs;
2676 Lisp_Object *args;
2677 {
2678 register Lisp_Object len, val;
2679 register int index;
2680 register struct Lisp_Vector *p;
2681
2682 XSETFASTINT (len, nargs);
2683 val = Fmake_vector (len, Qnil);
2684 p = XVECTOR (val);
2685 for (index = 0; index < nargs; index++)
2686 p->contents[index] = args[index];
2687 return val;
2688 }
2689
2690
2691 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2692 doc: /* Create a byte-code object with specified arguments as elements.
2693 The arguments should be the arglist, bytecode-string, constant vector,
2694 stack size, (optional) doc string, and (optional) interactive spec.
2695 The first four arguments are required; at most six have any
2696 significance.
2697 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2698 (nargs, args)
2699 register int nargs;
2700 Lisp_Object *args;
2701 {
2702 register Lisp_Object len, val;
2703 register int index;
2704 register struct Lisp_Vector *p;
2705
2706 XSETFASTINT (len, nargs);
2707 if (!NILP (Vpurify_flag))
2708 val = make_pure_vector ((EMACS_INT) nargs);
2709 else
2710 val = Fmake_vector (len, Qnil);
2711
2712 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2713 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2714 earlier because they produced a raw 8-bit string for byte-code
2715 and now such a byte-code string is loaded as multibyte while
2716 raw 8-bit characters converted to multibyte form. Thus, now we
2717 must convert them back to the original unibyte form. */
2718 args[1] = Fstring_as_unibyte (args[1]);
2719
2720 p = XVECTOR (val);
2721 for (index = 0; index < nargs; index++)
2722 {
2723 if (!NILP (Vpurify_flag))
2724 args[index] = Fpurecopy (args[index]);
2725 p->contents[index] = args[index];
2726 }
2727 XSETCOMPILED (val, p);
2728 return val;
2729 }
2730
2731
2732 \f
2733 /***********************************************************************
2734 Symbol Allocation
2735 ***********************************************************************/
2736
2737 /* Each symbol_block is just under 1020 bytes long, since malloc
2738 really allocates in units of powers of two and uses 4 bytes for its
2739 own overhead. */
2740
2741 #define SYMBOL_BLOCK_SIZE \
2742 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2743
2744 struct symbol_block
2745 {
2746 struct symbol_block *next;
2747 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2748 };
2749
2750 /* Current symbol block and index of first unused Lisp_Symbol
2751 structure in it. */
2752
2753 struct symbol_block *symbol_block;
2754 int symbol_block_index;
2755
2756 /* List of free symbols. */
2757
2758 struct Lisp_Symbol *symbol_free_list;
2759
2760 /* Total number of symbol blocks now in use. */
2761
2762 int n_symbol_blocks;
2763
2764
2765 /* Initialize symbol allocation. */
2766
2767 void
2768 init_symbol ()
2769 {
2770 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2771 MEM_TYPE_SYMBOL);
2772 symbol_block->next = 0;
2773 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2774 symbol_block_index = 0;
2775 symbol_free_list = 0;
2776 n_symbol_blocks = 1;
2777 }
2778
2779
2780 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2781 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2782 Its value and function definition are void, and its property list is nil. */)
2783 (name)
2784 Lisp_Object name;
2785 {
2786 register Lisp_Object val;
2787 register struct Lisp_Symbol *p;
2788
2789 CHECK_STRING (name);
2790
2791 if (symbol_free_list)
2792 {
2793 XSETSYMBOL (val, symbol_free_list);
2794 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2795 }
2796 else
2797 {
2798 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2799 {
2800 struct symbol_block *new;
2801 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2802 MEM_TYPE_SYMBOL);
2803 new->next = symbol_block;
2804 symbol_block = new;
2805 symbol_block_index = 0;
2806 n_symbol_blocks++;
2807 }
2808 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2809 }
2810
2811 p = XSYMBOL (val);
2812 p->xname = name;
2813 p->plist = Qnil;
2814 p->value = Qunbound;
2815 p->function = Qunbound;
2816 p->next = NULL;
2817 p->gcmarkbit = 0;
2818 p->interned = SYMBOL_UNINTERNED;
2819 p->constant = 0;
2820 p->indirect_variable = 0;
2821 consing_since_gc += sizeof (struct Lisp_Symbol);
2822 symbols_consed++;
2823 return val;
2824 }
2825
2826
2827 \f
2828 /***********************************************************************
2829 Marker (Misc) Allocation
2830 ***********************************************************************/
2831
2832 /* Allocation of markers and other objects that share that structure.
2833 Works like allocation of conses. */
2834
2835 #define MARKER_BLOCK_SIZE \
2836 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2837
2838 struct marker_block
2839 {
2840 struct marker_block *next;
2841 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2842 };
2843
2844 struct marker_block *marker_block;
2845 int marker_block_index;
2846
2847 union Lisp_Misc *marker_free_list;
2848
2849 /* Total number of marker blocks now in use. */
2850
2851 int n_marker_blocks;
2852
2853 void
2854 init_marker ()
2855 {
2856 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2857 MEM_TYPE_MISC);
2858 marker_block->next = 0;
2859 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2860 marker_block_index = 0;
2861 marker_free_list = 0;
2862 n_marker_blocks = 1;
2863 }
2864
2865 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2866
2867 Lisp_Object
2868 allocate_misc ()
2869 {
2870 Lisp_Object val;
2871
2872 if (marker_free_list)
2873 {
2874 XSETMISC (val, marker_free_list);
2875 marker_free_list = marker_free_list->u_free.chain;
2876 }
2877 else
2878 {
2879 if (marker_block_index == MARKER_BLOCK_SIZE)
2880 {
2881 struct marker_block *new;
2882 new = (struct marker_block *) lisp_malloc (sizeof *new,
2883 MEM_TYPE_MISC);
2884 new->next = marker_block;
2885 marker_block = new;
2886 marker_block_index = 0;
2887 n_marker_blocks++;
2888 }
2889 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2890 }
2891
2892 consing_since_gc += sizeof (union Lisp_Misc);
2893 misc_objects_consed++;
2894 XMARKER (val)->gcmarkbit = 0;
2895 return val;
2896 }
2897
2898 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2899 INTEGER. This is used to package C values to call record_unwind_protect.
2900 The unwind function can get the C values back using XSAVE_VALUE. */
2901
2902 Lisp_Object
2903 make_save_value (pointer, integer)
2904 void *pointer;
2905 int integer;
2906 {
2907 register Lisp_Object val;
2908 register struct Lisp_Save_Value *p;
2909
2910 val = allocate_misc ();
2911 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2912 p = XSAVE_VALUE (val);
2913 p->pointer = pointer;
2914 p->integer = integer;
2915 return val;
2916 }
2917
2918 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2919 doc: /* Return a newly allocated marker which does not point at any place. */)
2920 ()
2921 {
2922 register Lisp_Object val;
2923 register struct Lisp_Marker *p;
2924
2925 val = allocate_misc ();
2926 XMISCTYPE (val) = Lisp_Misc_Marker;
2927 p = XMARKER (val);
2928 p->buffer = 0;
2929 p->bytepos = 0;
2930 p->charpos = 0;
2931 p->next = NULL;
2932 p->insertion_type = 0;
2933 return val;
2934 }
2935
2936 /* Put MARKER back on the free list after using it temporarily. */
2937
2938 void
2939 free_marker (marker)
2940 Lisp_Object marker;
2941 {
2942 unchain_marker (XMARKER (marker));
2943
2944 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2945 XMISC (marker)->u_free.chain = marker_free_list;
2946 marker_free_list = XMISC (marker);
2947
2948 total_free_markers++;
2949 }
2950
2951 \f
2952 /* Return a newly created vector or string with specified arguments as
2953 elements. If all the arguments are characters that can fit
2954 in a string of events, make a string; otherwise, make a vector.
2955
2956 Any number of arguments, even zero arguments, are allowed. */
2957
2958 Lisp_Object
2959 make_event_array (nargs, args)
2960 register int nargs;
2961 Lisp_Object *args;
2962 {
2963 int i;
2964
2965 for (i = 0; i < nargs; i++)
2966 /* The things that fit in a string
2967 are characters that are in 0...127,
2968 after discarding the meta bit and all the bits above it. */
2969 if (!INTEGERP (args[i])
2970 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2971 return Fvector (nargs, args);
2972
2973 /* Since the loop exited, we know that all the things in it are
2974 characters, so we can make a string. */
2975 {
2976 Lisp_Object result;
2977
2978 result = Fmake_string (make_number (nargs), make_number (0));
2979 for (i = 0; i < nargs; i++)
2980 {
2981 SSET (result, i, XINT (args[i]));
2982 /* Move the meta bit to the right place for a string char. */
2983 if (XINT (args[i]) & CHAR_META)
2984 SSET (result, i, SREF (result, i) | 0x80);
2985 }
2986
2987 return result;
2988 }
2989 }
2990
2991
2992 \f
2993 /************************************************************************
2994 C Stack Marking
2995 ************************************************************************/
2996
2997 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2998
2999 /* Conservative C stack marking requires a method to identify possibly
3000 live Lisp objects given a pointer value. We do this by keeping
3001 track of blocks of Lisp data that are allocated in a red-black tree
3002 (see also the comment of mem_node which is the type of nodes in
3003 that tree). Function lisp_malloc adds information for an allocated
3004 block to the red-black tree with calls to mem_insert, and function
3005 lisp_free removes it with mem_delete. Functions live_string_p etc
3006 call mem_find to lookup information about a given pointer in the
3007 tree, and use that to determine if the pointer points to a Lisp
3008 object or not. */
3009
3010 /* Initialize this part of alloc.c. */
3011
3012 static void
3013 mem_init ()
3014 {
3015 mem_z.left = mem_z.right = MEM_NIL;
3016 mem_z.parent = NULL;
3017 mem_z.color = MEM_BLACK;
3018 mem_z.start = mem_z.end = NULL;
3019 mem_root = MEM_NIL;
3020 }
3021
3022
3023 /* Value is a pointer to the mem_node containing START. Value is
3024 MEM_NIL if there is no node in the tree containing START. */
3025
3026 static INLINE struct mem_node *
3027 mem_find (start)
3028 void *start;
3029 {
3030 struct mem_node *p;
3031
3032 if (start < min_heap_address || start > max_heap_address)
3033 return MEM_NIL;
3034
3035 /* Make the search always successful to speed up the loop below. */
3036 mem_z.start = start;
3037 mem_z.end = (char *) start + 1;
3038
3039 p = mem_root;
3040 while (start < p->start || start >= p->end)
3041 p = start < p->start ? p->left : p->right;
3042 return p;
3043 }
3044
3045
3046 /* Insert a new node into the tree for a block of memory with start
3047 address START, end address END, and type TYPE. Value is a
3048 pointer to the node that was inserted. */
3049
3050 static struct mem_node *
3051 mem_insert (start, end, type)
3052 void *start, *end;
3053 enum mem_type type;
3054 {
3055 struct mem_node *c, *parent, *x;
3056
3057 if (start < min_heap_address)
3058 min_heap_address = start;
3059 if (end > max_heap_address)
3060 max_heap_address = end;
3061
3062 /* See where in the tree a node for START belongs. In this
3063 particular application, it shouldn't happen that a node is already
3064 present. For debugging purposes, let's check that. */
3065 c = mem_root;
3066 parent = NULL;
3067
3068 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3069
3070 while (c != MEM_NIL)
3071 {
3072 if (start >= c->start && start < c->end)
3073 abort ();
3074 parent = c;
3075 c = start < c->start ? c->left : c->right;
3076 }
3077
3078 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3079
3080 while (c != MEM_NIL)
3081 {
3082 parent = c;
3083 c = start < c->start ? c->left : c->right;
3084 }
3085
3086 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3087
3088 /* Create a new node. */
3089 #ifdef GC_MALLOC_CHECK
3090 x = (struct mem_node *) _malloc_internal (sizeof *x);
3091 if (x == NULL)
3092 abort ();
3093 #else
3094 x = (struct mem_node *) xmalloc (sizeof *x);
3095 #endif
3096 x->start = start;
3097 x->end = end;
3098 x->type = type;
3099 x->parent = parent;
3100 x->left = x->right = MEM_NIL;
3101 x->color = MEM_RED;
3102
3103 /* Insert it as child of PARENT or install it as root. */
3104 if (parent)
3105 {
3106 if (start < parent->start)
3107 parent->left = x;
3108 else
3109 parent->right = x;
3110 }
3111 else
3112 mem_root = x;
3113
3114 /* Re-establish red-black tree properties. */
3115 mem_insert_fixup (x);
3116
3117 return x;
3118 }
3119
3120
3121 /* Re-establish the red-black properties of the tree, and thereby
3122 balance the tree, after node X has been inserted; X is always red. */
3123
3124 static void
3125 mem_insert_fixup (x)
3126 struct mem_node *x;
3127 {
3128 while (x != mem_root && x->parent->color == MEM_RED)
3129 {
3130 /* X is red and its parent is red. This is a violation of
3131 red-black tree property #3. */
3132
3133 if (x->parent == x->parent->parent->left)
3134 {
3135 /* We're on the left side of our grandparent, and Y is our
3136 "uncle". */
3137 struct mem_node *y = x->parent->parent->right;
3138
3139 if (y->color == MEM_RED)
3140 {
3141 /* Uncle and parent are red but should be black because
3142 X is red. Change the colors accordingly and proceed
3143 with the grandparent. */
3144 x->parent->color = MEM_BLACK;
3145 y->color = MEM_BLACK;
3146 x->parent->parent->color = MEM_RED;
3147 x = x->parent->parent;
3148 }
3149 else
3150 {
3151 /* Parent and uncle have different colors; parent is
3152 red, uncle is black. */
3153 if (x == x->parent->right)
3154 {
3155 x = x->parent;
3156 mem_rotate_left (x);
3157 }
3158
3159 x->parent->color = MEM_BLACK;
3160 x->parent->parent->color = MEM_RED;
3161 mem_rotate_right (x->parent->parent);
3162 }
3163 }
3164 else
3165 {
3166 /* This is the symmetrical case of above. */
3167 struct mem_node *y = x->parent->parent->left;
3168
3169 if (y->color == MEM_RED)
3170 {
3171 x->parent->color = MEM_BLACK;
3172 y->color = MEM_BLACK;
3173 x->parent->parent->color = MEM_RED;
3174 x = x->parent->parent;
3175 }
3176 else
3177 {
3178 if (x == x->parent->left)
3179 {
3180 x = x->parent;
3181 mem_rotate_right (x);
3182 }
3183
3184 x->parent->color = MEM_BLACK;
3185 x->parent->parent->color = MEM_RED;
3186 mem_rotate_left (x->parent->parent);
3187 }
3188 }
3189 }
3190
3191 /* The root may have been changed to red due to the algorithm. Set
3192 it to black so that property #5 is satisfied. */
3193 mem_root->color = MEM_BLACK;
3194 }
3195
3196
3197 /* (x) (y)
3198 / \ / \
3199 a (y) ===> (x) c
3200 / \ / \
3201 b c a b */
3202
3203 static void
3204 mem_rotate_left (x)
3205 struct mem_node *x;
3206 {
3207 struct mem_node *y;
3208
3209 /* Turn y's left sub-tree into x's right sub-tree. */
3210 y = x->right;
3211 x->right = y->left;
3212 if (y->left != MEM_NIL)
3213 y->left->parent = x;
3214
3215 /* Y's parent was x's parent. */
3216 if (y != MEM_NIL)
3217 y->parent = x->parent;
3218
3219 /* Get the parent to point to y instead of x. */
3220 if (x->parent)
3221 {
3222 if (x == x->parent->left)
3223 x->parent->left = y;
3224 else
3225 x->parent->right = y;
3226 }
3227 else
3228 mem_root = y;
3229
3230 /* Put x on y's left. */
3231 y->left = x;
3232 if (x != MEM_NIL)
3233 x->parent = y;
3234 }
3235
3236
3237 /* (x) (Y)
3238 / \ / \
3239 (y) c ===> a (x)
3240 / \ / \
3241 a b b c */
3242
3243 static void
3244 mem_rotate_right (x)
3245 struct mem_node *x;
3246 {
3247 struct mem_node *y = x->left;
3248
3249 x->left = y->right;
3250 if (y->right != MEM_NIL)
3251 y->right->parent = x;
3252
3253 if (y != MEM_NIL)
3254 y->parent = x->parent;
3255 if (x->parent)
3256 {
3257 if (x == x->parent->right)
3258 x->parent->right = y;
3259 else
3260 x->parent->left = y;
3261 }
3262 else
3263 mem_root = y;
3264
3265 y->right = x;
3266 if (x != MEM_NIL)
3267 x->parent = y;
3268 }
3269
3270
3271 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3272
3273 static void
3274 mem_delete (z)
3275 struct mem_node *z;
3276 {
3277 struct mem_node *x, *y;
3278
3279 if (!z || z == MEM_NIL)
3280 return;
3281
3282 if (z->left == MEM_NIL || z->right == MEM_NIL)
3283 y = z;
3284 else
3285 {
3286 y = z->right;
3287 while (y->left != MEM_NIL)
3288 y = y->left;
3289 }
3290
3291 if (y->left != MEM_NIL)
3292 x = y->left;
3293 else
3294 x = y->right;
3295
3296 x->parent = y->parent;
3297 if (y->parent)
3298 {
3299 if (y == y->parent->left)
3300 y->parent->left = x;
3301 else
3302 y->parent->right = x;
3303 }
3304 else
3305 mem_root = x;
3306
3307 if (y != z)
3308 {
3309 z->start = y->start;
3310 z->end = y->end;
3311 z->type = y->type;
3312 }
3313
3314 if (y->color == MEM_BLACK)
3315 mem_delete_fixup (x);
3316
3317 #ifdef GC_MALLOC_CHECK
3318 _free_internal (y);
3319 #else
3320 xfree (y);
3321 #endif
3322 }
3323
3324
3325 /* Re-establish the red-black properties of the tree, after a
3326 deletion. */
3327
3328 static void
3329 mem_delete_fixup (x)
3330 struct mem_node *x;
3331 {
3332 while (x != mem_root && x->color == MEM_BLACK)
3333 {
3334 if (x == x->parent->left)
3335 {
3336 struct mem_node *w = x->parent->right;
3337
3338 if (w->color == MEM_RED)
3339 {
3340 w->color = MEM_BLACK;
3341 x->parent->color = MEM_RED;
3342 mem_rotate_left (x->parent);
3343 w = x->parent->right;
3344 }
3345
3346 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3347 {
3348 w->color = MEM_RED;
3349 x = x->parent;
3350 }
3351 else
3352 {
3353 if (w->right->color == MEM_BLACK)
3354 {
3355 w->left->color = MEM_BLACK;
3356 w->color = MEM_RED;
3357 mem_rotate_right (w);
3358 w = x->parent->right;
3359 }
3360 w->color = x->parent->color;
3361 x->parent->color = MEM_BLACK;
3362 w->right->color = MEM_BLACK;
3363 mem_rotate_left (x->parent);
3364 x = mem_root;
3365 }
3366 }
3367 else
3368 {
3369 struct mem_node *w = x->parent->left;
3370
3371 if (w->color == MEM_RED)
3372 {
3373 w->color = MEM_BLACK;
3374 x->parent->color = MEM_RED;
3375 mem_rotate_right (x->parent);
3376 w = x->parent->left;
3377 }
3378
3379 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3380 {
3381 w->color = MEM_RED;
3382 x = x->parent;
3383 }
3384 else
3385 {
3386 if (w->left->color == MEM_BLACK)
3387 {
3388 w->right->color = MEM_BLACK;
3389 w->color = MEM_RED;
3390 mem_rotate_left (w);
3391 w = x->parent->left;
3392 }
3393
3394 w->color = x->parent->color;
3395 x->parent->color = MEM_BLACK;
3396 w->left->color = MEM_BLACK;
3397 mem_rotate_right (x->parent);
3398 x = mem_root;
3399 }
3400 }
3401 }
3402
3403 x->color = MEM_BLACK;
3404 }
3405
3406
3407 /* Value is non-zero if P is a pointer to a live Lisp string on
3408 the heap. M is a pointer to the mem_block for P. */
3409
3410 static INLINE int
3411 live_string_p (m, p)
3412 struct mem_node *m;
3413 void *p;
3414 {
3415 if (m->type == MEM_TYPE_STRING)
3416 {
3417 struct string_block *b = (struct string_block *) m->start;
3418 int offset = (char *) p - (char *) &b->strings[0];
3419
3420 /* P must point to the start of a Lisp_String structure, and it
3421 must not be on the free-list. */
3422 return (offset >= 0
3423 && offset % sizeof b->strings[0] == 0
3424 && ((struct Lisp_String *) p)->data != NULL);
3425 }
3426 else
3427 return 0;
3428 }
3429
3430
3431 /* Value is non-zero if P is a pointer to a live Lisp cons on
3432 the heap. M is a pointer to the mem_block for P. */
3433
3434 static INLINE int
3435 live_cons_p (m, p)
3436 struct mem_node *m;
3437 void *p;
3438 {
3439 if (m->type == MEM_TYPE_CONS)
3440 {
3441 struct cons_block *b = (struct cons_block *) m->start;
3442 int offset = (char *) p - (char *) &b->conses[0];
3443
3444 /* P must point to the start of a Lisp_Cons, not be
3445 one of the unused cells in the current cons block,
3446 and not be on the free-list. */
3447 return (offset >= 0
3448 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3449 && offset % sizeof b->conses[0] == 0
3450 && (b != cons_block
3451 || offset / sizeof b->conses[0] < cons_block_index)
3452 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3453 }
3454 else
3455 return 0;
3456 }
3457
3458
3459 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3460 the heap. M is a pointer to the mem_block for P. */
3461
3462 static INLINE int
3463 live_symbol_p (m, p)
3464 struct mem_node *m;
3465 void *p;
3466 {
3467 if (m->type == MEM_TYPE_SYMBOL)
3468 {
3469 struct symbol_block *b = (struct symbol_block *) m->start;
3470 int offset = (char *) p - (char *) &b->symbols[0];
3471
3472 /* P must point to the start of a Lisp_Symbol, not be
3473 one of the unused cells in the current symbol block,
3474 and not be on the free-list. */
3475 return (offset >= 0
3476 && offset % sizeof b->symbols[0] == 0
3477 && (b != symbol_block
3478 || offset / sizeof b->symbols[0] < symbol_block_index)
3479 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3480 }
3481 else
3482 return 0;
3483 }
3484
3485
3486 /* Value is non-zero if P is a pointer to a live Lisp float on
3487 the heap. M is a pointer to the mem_block for P. */
3488
3489 static INLINE int
3490 live_float_p (m, p)
3491 struct mem_node *m;
3492 void *p;
3493 {
3494 if (m->type == MEM_TYPE_FLOAT)
3495 {
3496 struct float_block *b = (struct float_block *) m->start;
3497 int offset = (char *) p - (char *) &b->floats[0];
3498
3499 /* P must point to the start of a Lisp_Float and not be
3500 one of the unused cells in the current float block. */
3501 return (offset >= 0
3502 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3503 && offset % sizeof b->floats[0] == 0
3504 && (b != float_block
3505 || offset / sizeof b->floats[0] < float_block_index));
3506 }
3507 else
3508 return 0;
3509 }
3510
3511
3512 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3513 the heap. M is a pointer to the mem_block for P. */
3514
3515 static INLINE int
3516 live_misc_p (m, p)
3517 struct mem_node *m;
3518 void *p;
3519 {
3520 if (m->type == MEM_TYPE_MISC)
3521 {
3522 struct marker_block *b = (struct marker_block *) m->start;
3523 int offset = (char *) p - (char *) &b->markers[0];
3524
3525 /* P must point to the start of a Lisp_Misc, not be
3526 one of the unused cells in the current misc block,
3527 and not be on the free-list. */
3528 return (offset >= 0
3529 && offset % sizeof b->markers[0] == 0
3530 && (b != marker_block
3531 || offset / sizeof b->markers[0] < marker_block_index)
3532 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3533 }
3534 else
3535 return 0;
3536 }
3537
3538
3539 /* Value is non-zero if P is a pointer to a live vector-like object.
3540 M is a pointer to the mem_block for P. */
3541
3542 static INLINE int
3543 live_vector_p (m, p)
3544 struct mem_node *m;
3545 void *p;
3546 {
3547 return (p == m->start
3548 && m->type >= MEM_TYPE_VECTOR
3549 && m->type <= MEM_TYPE_WINDOW);
3550 }
3551
3552
3553 /* Value is non-zero if P is a pointer to a live buffer. M is a
3554 pointer to the mem_block for P. */
3555
3556 static INLINE int
3557 live_buffer_p (m, p)
3558 struct mem_node *m;
3559 void *p;
3560 {
3561 /* P must point to the start of the block, and the buffer
3562 must not have been killed. */
3563 return (m->type == MEM_TYPE_BUFFER
3564 && p == m->start
3565 && !NILP (((struct buffer *) p)->name));
3566 }
3567
3568 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3569
3570 #if GC_MARK_STACK
3571
3572 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3573
3574 /* Array of objects that are kept alive because the C stack contains
3575 a pattern that looks like a reference to them . */
3576
3577 #define MAX_ZOMBIES 10
3578 static Lisp_Object zombies[MAX_ZOMBIES];
3579
3580 /* Number of zombie objects. */
3581
3582 static int nzombies;
3583
3584 /* Number of garbage collections. */
3585
3586 static int ngcs;
3587
3588 /* Average percentage of zombies per collection. */
3589
3590 static double avg_zombies;
3591
3592 /* Max. number of live and zombie objects. */
3593
3594 static int max_live, max_zombies;
3595
3596 /* Average number of live objects per GC. */
3597
3598 static double avg_live;
3599
3600 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3601 doc: /* Show information about live and zombie objects. */)
3602 ()
3603 {
3604 Lisp_Object args[8], zombie_list = Qnil;
3605 int i;
3606 for (i = 0; i < nzombies; i++)
3607 zombie_list = Fcons (zombies[i], zombie_list);
3608 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3609 args[1] = make_number (ngcs);
3610 args[2] = make_float (avg_live);
3611 args[3] = make_float (avg_zombies);
3612 args[4] = make_float (avg_zombies / avg_live / 100);
3613 args[5] = make_number (max_live);
3614 args[6] = make_number (max_zombies);
3615 args[7] = zombie_list;
3616 return Fmessage (8, args);
3617 }
3618
3619 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3620
3621
3622 /* Mark OBJ if we can prove it's a Lisp_Object. */
3623
3624 static INLINE void
3625 mark_maybe_object (obj)
3626 Lisp_Object obj;
3627 {
3628 void *po = (void *) XPNTR (obj);
3629 struct mem_node *m = mem_find (po);
3630
3631 if (m != MEM_NIL)
3632 {
3633 int mark_p = 0;
3634
3635 switch (XGCTYPE (obj))
3636 {
3637 case Lisp_String:
3638 mark_p = (live_string_p (m, po)
3639 && !STRING_MARKED_P ((struct Lisp_String *) po));
3640 break;
3641
3642 case Lisp_Cons:
3643 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3644 break;
3645
3646 case Lisp_Symbol:
3647 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3648 break;
3649
3650 case Lisp_Float:
3651 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3652 break;
3653
3654 case Lisp_Vectorlike:
3655 /* Note: can't check GC_BUFFERP before we know it's a
3656 buffer because checking that dereferences the pointer
3657 PO which might point anywhere. */
3658 if (live_vector_p (m, po))
3659 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3660 else if (live_buffer_p (m, po))
3661 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3662 break;
3663
3664 case Lisp_Misc:
3665 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3666 break;
3667
3668 case Lisp_Int:
3669 case Lisp_Type_Limit:
3670 break;
3671 }
3672
3673 if (mark_p)
3674 {
3675 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3676 if (nzombies < MAX_ZOMBIES)
3677 zombies[nzombies] = obj;
3678 ++nzombies;
3679 #endif
3680 mark_object (obj);
3681 }
3682 }
3683 }
3684
3685
3686 /* If P points to Lisp data, mark that as live if it isn't already
3687 marked. */
3688
3689 static INLINE void
3690 mark_maybe_pointer (p)
3691 void *p;
3692 {
3693 struct mem_node *m;
3694
3695 /* Quickly rule out some values which can't point to Lisp data. We
3696 assume that Lisp data is aligned on even addresses. */
3697 if ((EMACS_INT) p & 1)
3698 return;
3699
3700 m = mem_find (p);
3701 if (m != MEM_NIL)
3702 {
3703 Lisp_Object obj = Qnil;
3704
3705 switch (m->type)
3706 {
3707 case MEM_TYPE_NON_LISP:
3708 /* Nothing to do; not a pointer to Lisp memory. */
3709 break;
3710
3711 case MEM_TYPE_BUFFER:
3712 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3713 XSETVECTOR (obj, p);
3714 break;
3715
3716 case MEM_TYPE_CONS:
3717 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3718 XSETCONS (obj, p);
3719 break;
3720
3721 case MEM_TYPE_STRING:
3722 if (live_string_p (m, p)
3723 && !STRING_MARKED_P ((struct Lisp_String *) p))
3724 XSETSTRING (obj, p);
3725 break;
3726
3727 case MEM_TYPE_MISC:
3728 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3729 XSETMISC (obj, p);
3730 break;
3731
3732 case MEM_TYPE_SYMBOL:
3733 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3734 XSETSYMBOL (obj, p);
3735 break;
3736
3737 case MEM_TYPE_FLOAT:
3738 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3739 XSETFLOAT (obj, p);
3740 break;
3741
3742 case MEM_TYPE_VECTOR:
3743 case MEM_TYPE_PROCESS:
3744 case MEM_TYPE_HASH_TABLE:
3745 case MEM_TYPE_FRAME:
3746 case MEM_TYPE_WINDOW:
3747 if (live_vector_p (m, p))
3748 {
3749 Lisp_Object tem;
3750 XSETVECTOR (tem, p);
3751 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3752 obj = tem;
3753 }
3754 break;
3755
3756 default:
3757 abort ();
3758 }
3759
3760 if (!GC_NILP (obj))
3761 mark_object (obj);
3762 }
3763 }
3764
3765
3766 /* Mark Lisp objects referenced from the address range START..END. */
3767
3768 static void
3769 mark_memory (start, end)
3770 void *start, *end;
3771 {
3772 Lisp_Object *p;
3773 void **pp;
3774
3775 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3776 nzombies = 0;
3777 #endif
3778
3779 /* Make START the pointer to the start of the memory region,
3780 if it isn't already. */
3781 if (end < start)
3782 {
3783 void *tem = start;
3784 start = end;
3785 end = tem;
3786 }
3787
3788 /* Mark Lisp_Objects. */
3789 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3790 mark_maybe_object (*p);
3791
3792 /* Mark Lisp data pointed to. This is necessary because, in some
3793 situations, the C compiler optimizes Lisp objects away, so that
3794 only a pointer to them remains. Example:
3795
3796 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3797 ()
3798 {
3799 Lisp_Object obj = build_string ("test");
3800 struct Lisp_String *s = XSTRING (obj);
3801 Fgarbage_collect ();
3802 fprintf (stderr, "test `%s'\n", s->data);
3803 return Qnil;
3804 }
3805
3806 Here, `obj' isn't really used, and the compiler optimizes it
3807 away. The only reference to the life string is through the
3808 pointer `s'. */
3809
3810 for (pp = (void **) start; (void *) pp < end; ++pp)
3811 mark_maybe_pointer (*pp);
3812 }
3813
3814 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3815 the GCC system configuration. In gcc 3.2, the only systems for
3816 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3817 by others?) and ns32k-pc532-min. */
3818
3819 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3820
3821 static int setjmp_tested_p, longjmps_done;
3822
3823 #define SETJMP_WILL_LIKELY_WORK "\
3824 \n\
3825 Emacs garbage collector has been changed to use conservative stack\n\
3826 marking. Emacs has determined that the method it uses to do the\n\
3827 marking will likely work on your system, but this isn't sure.\n\
3828 \n\
3829 If you are a system-programmer, or can get the help of a local wizard\n\
3830 who is, please take a look at the function mark_stack in alloc.c, and\n\
3831 verify that the methods used are appropriate for your system.\n\
3832 \n\
3833 Please mail the result to <emacs-devel@gnu.org>.\n\
3834 "
3835
3836 #define SETJMP_WILL_NOT_WORK "\
3837 \n\
3838 Emacs garbage collector has been changed to use conservative stack\n\
3839 marking. Emacs has determined that the default method it uses to do the\n\
3840 marking will not work on your system. We will need a system-dependent\n\
3841 solution for your system.\n\
3842 \n\
3843 Please take a look at the function mark_stack in alloc.c, and\n\
3844 try to find a way to make it work on your system.\n\
3845 \n\
3846 Note that you may get false negatives, depending on the compiler.\n\
3847 In particular, you need to use -O with GCC for this test.\n\
3848 \n\
3849 Please mail the result to <emacs-devel@gnu.org>.\n\
3850 "
3851
3852
3853 /* Perform a quick check if it looks like setjmp saves registers in a
3854 jmp_buf. Print a message to stderr saying so. When this test
3855 succeeds, this is _not_ a proof that setjmp is sufficient for
3856 conservative stack marking. Only the sources or a disassembly
3857 can prove that. */
3858
3859 static void
3860 test_setjmp ()
3861 {
3862 char buf[10];
3863 register int x;
3864 jmp_buf jbuf;
3865 int result = 0;
3866
3867 /* Arrange for X to be put in a register. */
3868 sprintf (buf, "1");
3869 x = strlen (buf);
3870 x = 2 * x - 1;
3871
3872 setjmp (jbuf);
3873 if (longjmps_done == 1)
3874 {
3875 /* Came here after the longjmp at the end of the function.
3876
3877 If x == 1, the longjmp has restored the register to its
3878 value before the setjmp, and we can hope that setjmp
3879 saves all such registers in the jmp_buf, although that
3880 isn't sure.
3881
3882 For other values of X, either something really strange is
3883 taking place, or the setjmp just didn't save the register. */
3884
3885 if (x == 1)
3886 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3887 else
3888 {
3889 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3890 exit (1);
3891 }
3892 }
3893
3894 ++longjmps_done;
3895 x = 2;
3896 if (longjmps_done == 1)
3897 longjmp (jbuf, 1);
3898 }
3899
3900 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3901
3902
3903 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3904
3905 /* Abort if anything GCPRO'd doesn't survive the GC. */
3906
3907 static void
3908 check_gcpros ()
3909 {
3910 struct gcpro *p;
3911 int i;
3912
3913 for (p = gcprolist; p; p = p->next)
3914 for (i = 0; i < p->nvars; ++i)
3915 if (!survives_gc_p (p->var[i]))
3916 /* FIXME: It's not necessarily a bug. It might just be that the
3917 GCPRO is unnecessary or should release the object sooner. */
3918 abort ();
3919 }
3920
3921 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3922
3923 static void
3924 dump_zombies ()
3925 {
3926 int i;
3927
3928 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3929 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3930 {
3931 fprintf (stderr, " %d = ", i);
3932 debug_print (zombies[i]);
3933 }
3934 }
3935
3936 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3937
3938
3939 /* Mark live Lisp objects on the C stack.
3940
3941 There are several system-dependent problems to consider when
3942 porting this to new architectures:
3943
3944 Processor Registers
3945
3946 We have to mark Lisp objects in CPU registers that can hold local
3947 variables or are used to pass parameters.
3948
3949 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3950 something that either saves relevant registers on the stack, or
3951 calls mark_maybe_object passing it each register's contents.
3952
3953 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3954 implementation assumes that calling setjmp saves registers we need
3955 to see in a jmp_buf which itself lies on the stack. This doesn't
3956 have to be true! It must be verified for each system, possibly
3957 by taking a look at the source code of setjmp.
3958
3959 Stack Layout
3960
3961 Architectures differ in the way their processor stack is organized.
3962 For example, the stack might look like this
3963
3964 +----------------+
3965 | Lisp_Object | size = 4
3966 +----------------+
3967 | something else | size = 2
3968 +----------------+
3969 | Lisp_Object | size = 4
3970 +----------------+
3971 | ... |
3972
3973 In such a case, not every Lisp_Object will be aligned equally. To
3974 find all Lisp_Object on the stack it won't be sufficient to walk
3975 the stack in steps of 4 bytes. Instead, two passes will be
3976 necessary, one starting at the start of the stack, and a second
3977 pass starting at the start of the stack + 2. Likewise, if the
3978 minimal alignment of Lisp_Objects on the stack is 1, four passes
3979 would be necessary, each one starting with one byte more offset
3980 from the stack start.
3981
3982 The current code assumes by default that Lisp_Objects are aligned
3983 equally on the stack. */
3984
3985 static void
3986 mark_stack ()
3987 {
3988 int i;
3989 jmp_buf j;
3990 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3991 void *end;
3992
3993 /* This trick flushes the register windows so that all the state of
3994 the process is contained in the stack. */
3995 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3996 needed on ia64 too. See mach_dep.c, where it also says inline
3997 assembler doesn't work with relevant proprietary compilers. */
3998 #ifdef sparc
3999 asm ("ta 3");
4000 #endif
4001
4002 /* Save registers that we need to see on the stack. We need to see
4003 registers used to hold register variables and registers used to
4004 pass parameters. */
4005 #ifdef GC_SAVE_REGISTERS_ON_STACK
4006 GC_SAVE_REGISTERS_ON_STACK (end);
4007 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4008
4009 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4010 setjmp will definitely work, test it
4011 and print a message with the result
4012 of the test. */
4013 if (!setjmp_tested_p)
4014 {
4015 setjmp_tested_p = 1;
4016 test_setjmp ();
4017 }
4018 #endif /* GC_SETJMP_WORKS */
4019
4020 setjmp (j);
4021 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4022 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4023
4024 /* This assumes that the stack is a contiguous region in memory. If
4025 that's not the case, something has to be done here to iterate
4026 over the stack segments. */
4027 #ifndef GC_LISP_OBJECT_ALIGNMENT
4028 #ifdef __GNUC__
4029 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4030 #else
4031 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4032 #endif
4033 #endif
4034 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4035 mark_memory ((char *) stack_base + i, end);
4036
4037 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4038 check_gcpros ();
4039 #endif
4040 }
4041
4042
4043 #endif /* GC_MARK_STACK != 0 */
4044
4045
4046 \f
4047 /***********************************************************************
4048 Pure Storage Management
4049 ***********************************************************************/
4050
4051 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4052 pointer to it. TYPE is the Lisp type for which the memory is
4053 allocated. TYPE < 0 means it's not used for a Lisp object.
4054
4055 If store_pure_type_info is set and TYPE is >= 0, the type of
4056 the allocated object is recorded in pure_types. */
4057
4058 static POINTER_TYPE *
4059 pure_alloc (size, type)
4060 size_t size;
4061 int type;
4062 {
4063 POINTER_TYPE *result;
4064 size_t alignment = sizeof (EMACS_INT);
4065
4066 /* Give Lisp_Floats an extra alignment. */
4067 if (type == Lisp_Float)
4068 {
4069 #if defined __GNUC__ && __GNUC__ >= 2
4070 alignment = __alignof (struct Lisp_Float);
4071 #else
4072 alignment = sizeof (struct Lisp_Float);
4073 #endif
4074 }
4075
4076 again:
4077 result = ALIGN (purebeg + pure_bytes_used, alignment);
4078 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4079
4080 if (pure_bytes_used <= pure_size)
4081 return result;
4082
4083 /* Don't allocate a large amount here,
4084 because it might get mmap'd and then its address
4085 might not be usable. */
4086 purebeg = (char *) xmalloc (10000);
4087 pure_size = 10000;
4088 pure_bytes_used_before_overflow += pure_bytes_used - size;
4089 pure_bytes_used = 0;
4090 goto again;
4091 }
4092
4093
4094 /* Print a warning if PURESIZE is too small. */
4095
4096 void
4097 check_pure_size ()
4098 {
4099 if (pure_bytes_used_before_overflow)
4100 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4101 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4102 }
4103
4104
4105 /* Return a string allocated in pure space. DATA is a buffer holding
4106 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4107 non-zero means make the result string multibyte.
4108
4109 Must get an error if pure storage is full, since if it cannot hold
4110 a large string it may be able to hold conses that point to that
4111 string; then the string is not protected from gc. */
4112
4113 Lisp_Object
4114 make_pure_string (data, nchars, nbytes, multibyte)
4115 char *data;
4116 int nchars, nbytes;
4117 int multibyte;
4118 {
4119 Lisp_Object string;
4120 struct Lisp_String *s;
4121
4122 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4123 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4124 s->size = nchars;
4125 s->size_byte = multibyte ? nbytes : -1;
4126 bcopy (data, s->data, nbytes);
4127 s->data[nbytes] = '\0';
4128 s->intervals = NULL_INTERVAL;
4129 XSETSTRING (string, s);
4130 return string;
4131 }
4132
4133
4134 /* Return a cons allocated from pure space. Give it pure copies
4135 of CAR as car and CDR as cdr. */
4136
4137 Lisp_Object
4138 pure_cons (car, cdr)
4139 Lisp_Object car, cdr;
4140 {
4141 register Lisp_Object new;
4142 struct Lisp_Cons *p;
4143
4144 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4145 XSETCONS (new, p);
4146 XSETCAR (new, Fpurecopy (car));
4147 XSETCDR (new, Fpurecopy (cdr));
4148 return new;
4149 }
4150
4151
4152 /* Value is a float object with value NUM allocated from pure space. */
4153
4154 Lisp_Object
4155 make_pure_float (num)
4156 double num;
4157 {
4158 register Lisp_Object new;
4159 struct Lisp_Float *p;
4160
4161 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4162 XSETFLOAT (new, p);
4163 XFLOAT_DATA (new) = num;
4164 return new;
4165 }
4166
4167
4168 /* Return a vector with room for LEN Lisp_Objects allocated from
4169 pure space. */
4170
4171 Lisp_Object
4172 make_pure_vector (len)
4173 EMACS_INT len;
4174 {
4175 Lisp_Object new;
4176 struct Lisp_Vector *p;
4177 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4178
4179 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4180 XSETVECTOR (new, p);
4181 XVECTOR (new)->size = len;
4182 return new;
4183 }
4184
4185
4186 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4187 doc: /* Make a copy of OBJECT in pure storage.
4188 Recursively copies contents of vectors and cons cells.
4189 Does not copy symbols. Copies strings without text properties. */)
4190 (obj)
4191 register Lisp_Object obj;
4192 {
4193 if (NILP (Vpurify_flag))
4194 return obj;
4195
4196 if (PURE_POINTER_P (XPNTR (obj)))
4197 return obj;
4198
4199 if (CONSP (obj))
4200 return pure_cons (XCAR (obj), XCDR (obj));
4201 else if (FLOATP (obj))
4202 return make_pure_float (XFLOAT_DATA (obj));
4203 else if (STRINGP (obj))
4204 return make_pure_string (SDATA (obj), SCHARS (obj),
4205 SBYTES (obj),
4206 STRING_MULTIBYTE (obj));
4207 else if (COMPILEDP (obj) || VECTORP (obj))
4208 {
4209 register struct Lisp_Vector *vec;
4210 register int i, size;
4211
4212 size = XVECTOR (obj)->size;
4213 if (size & PSEUDOVECTOR_FLAG)
4214 size &= PSEUDOVECTOR_SIZE_MASK;
4215 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4216 for (i = 0; i < size; i++)
4217 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4218 if (COMPILEDP (obj))
4219 XSETCOMPILED (obj, vec);
4220 else
4221 XSETVECTOR (obj, vec);
4222 return obj;
4223 }
4224 else if (MARKERP (obj))
4225 error ("Attempt to copy a marker to pure storage");
4226
4227 return obj;
4228 }
4229
4230
4231 \f
4232 /***********************************************************************
4233 Protection from GC
4234 ***********************************************************************/
4235
4236 /* Put an entry in staticvec, pointing at the variable with address
4237 VARADDRESS. */
4238
4239 void
4240 staticpro (varaddress)
4241 Lisp_Object *varaddress;
4242 {
4243 staticvec[staticidx++] = varaddress;
4244 if (staticidx >= NSTATICS)
4245 abort ();
4246 }
4247
4248 struct catchtag
4249 {
4250 Lisp_Object tag;
4251 Lisp_Object val;
4252 struct catchtag *next;
4253 };
4254
4255 struct backtrace
4256 {
4257 struct backtrace *next;
4258 Lisp_Object *function;
4259 Lisp_Object *args; /* Points to vector of args. */
4260 int nargs; /* Length of vector. */
4261 /* If nargs is UNEVALLED, args points to slot holding list of
4262 unevalled args. */
4263 char evalargs;
4264 };
4265
4266
4267 \f
4268 /***********************************************************************
4269 Protection from GC
4270 ***********************************************************************/
4271
4272 /* Temporarily prevent garbage collection. */
4273
4274 int
4275 inhibit_garbage_collection ()
4276 {
4277 int count = SPECPDL_INDEX ();
4278 int nbits = min (VALBITS, BITS_PER_INT);
4279
4280 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4281 return count;
4282 }
4283
4284
4285 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4286 doc: /* Reclaim storage for Lisp objects no longer needed.
4287 Garbage collection happens automatically if you cons more than
4288 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4289 `garbage-collect' normally returns a list with info on amount of space in use:
4290 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4291 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4292 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4293 (USED-STRINGS . FREE-STRINGS))
4294 However, if there was overflow in pure space, `garbage-collect'
4295 returns nil, because real GC can't be done. */)
4296 ()
4297 {
4298 register struct specbinding *bind;
4299 struct catchtag *catch;
4300 struct handler *handler;
4301 register struct backtrace *backlist;
4302 char stack_top_variable;
4303 register int i;
4304 int message_p;
4305 Lisp_Object total[8];
4306 int count = SPECPDL_INDEX ();
4307 EMACS_TIME t1, t2, t3;
4308
4309 if (abort_on_gc)
4310 abort ();
4311
4312 EMACS_GET_TIME (t1);
4313
4314 /* Can't GC if pure storage overflowed because we can't determine
4315 if something is a pure object or not. */
4316 if (pure_bytes_used_before_overflow)
4317 return Qnil;
4318
4319 /* In case user calls debug_print during GC,
4320 don't let that cause a recursive GC. */
4321 consing_since_gc = 0;
4322
4323 /* Save what's currently displayed in the echo area. */
4324 message_p = push_message ();
4325 record_unwind_protect (pop_message_unwind, Qnil);
4326
4327 /* Save a copy of the contents of the stack, for debugging. */
4328 #if MAX_SAVE_STACK > 0
4329 if (NILP (Vpurify_flag))
4330 {
4331 i = &stack_top_variable - stack_bottom;
4332 if (i < 0) i = -i;
4333 if (i < MAX_SAVE_STACK)
4334 {
4335 if (stack_copy == 0)
4336 stack_copy = (char *) xmalloc (stack_copy_size = i);
4337 else if (stack_copy_size < i)
4338 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4339 if (stack_copy)
4340 {
4341 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4342 bcopy (stack_bottom, stack_copy, i);
4343 else
4344 bcopy (&stack_top_variable, stack_copy, i);
4345 }
4346 }
4347 }
4348 #endif /* MAX_SAVE_STACK > 0 */
4349
4350 if (garbage_collection_messages)
4351 message1_nolog ("Garbage collecting...");
4352
4353 BLOCK_INPUT;
4354
4355 shrink_regexp_cache ();
4356
4357 /* Don't keep undo information around forever. */
4358 {
4359 register struct buffer *nextb = all_buffers;
4360
4361 while (nextb)
4362 {
4363 /* If a buffer's undo list is Qt, that means that undo is
4364 turned off in that buffer. Calling truncate_undo_list on
4365 Qt tends to return NULL, which effectively turns undo back on.
4366 So don't call truncate_undo_list if undo_list is Qt. */
4367 if (! EQ (nextb->undo_list, Qt))
4368 nextb->undo_list
4369 = truncate_undo_list (nextb->undo_list, undo_limit,
4370 undo_strong_limit);
4371
4372 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4373 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4374 {
4375 /* If a buffer's gap size is more than 10% of the buffer
4376 size, or larger than 2000 bytes, then shrink it
4377 accordingly. Keep a minimum size of 20 bytes. */
4378 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4379
4380 if (nextb->text->gap_size > size)
4381 {
4382 struct buffer *save_current = current_buffer;
4383 current_buffer = nextb;
4384 make_gap (-(nextb->text->gap_size - size));
4385 current_buffer = save_current;
4386 }
4387 }
4388
4389 nextb = nextb->next;
4390 }
4391 }
4392
4393 gc_in_progress = 1;
4394
4395 /* clear_marks (); */
4396
4397 /* Mark all the special slots that serve as the roots of accessibility.
4398
4399 Usually the special slots to mark are contained in particular structures.
4400 Then we know no slot is marked twice because the structures don't overlap.
4401 In some cases, the structures point to the slots to be marked.
4402 For these, we use MARKBIT to avoid double marking of the slot. */
4403
4404 for (i = 0; i < staticidx; i++)
4405 mark_object (*staticvec[i]);
4406
4407 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4408 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4409 mark_stack ();
4410 #else
4411 {
4412 register struct gcpro *tail;
4413 for (tail = gcprolist; tail; tail = tail->next)
4414 for (i = 0; i < tail->nvars; i++)
4415 if (!XMARKBIT (tail->var[i]))
4416 {
4417 mark_object (tail->var[i]);
4418 XMARK (tail->var[i]);
4419 }
4420 }
4421 #endif
4422
4423 mark_byte_stack ();
4424 for (bind = specpdl; bind != specpdl_ptr; bind++)
4425 {
4426 mark_object (bind->symbol);
4427 mark_object (bind->old_value);
4428 }
4429 for (catch = catchlist; catch; catch = catch->next)
4430 {
4431 mark_object (catch->tag);
4432 mark_object (catch->val);
4433 }
4434 for (handler = handlerlist; handler; handler = handler->next)
4435 {
4436 mark_object (handler->handler);
4437 mark_object (handler->var);
4438 }
4439 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4440 {
4441 if (!XMARKBIT (*backlist->function))
4442 {
4443 mark_object (*backlist->function);
4444 XMARK (*backlist->function);
4445 }
4446 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4447 i = 0;
4448 else
4449 i = backlist->nargs - 1;
4450 for (; i >= 0; i--)
4451 if (!XMARKBIT (backlist->args[i]))
4452 {
4453 mark_object (backlist->args[i]);
4454 XMARK (backlist->args[i]);
4455 }
4456 }
4457 mark_kboards ();
4458
4459 /* Look thru every buffer's undo list
4460 for elements that update markers that were not marked,
4461 and delete them. */
4462 {
4463 register struct buffer *nextb = all_buffers;
4464
4465 while (nextb)
4466 {
4467 /* If a buffer's undo list is Qt, that means that undo is
4468 turned off in that buffer. Calling truncate_undo_list on
4469 Qt tends to return NULL, which effectively turns undo back on.
4470 So don't call truncate_undo_list if undo_list is Qt. */
4471 if (! EQ (nextb->undo_list, Qt))
4472 {
4473 Lisp_Object tail, prev;
4474 tail = nextb->undo_list;
4475 prev = Qnil;
4476 while (CONSP (tail))
4477 {
4478 if (GC_CONSP (XCAR (tail))
4479 && GC_MARKERP (XCAR (XCAR (tail)))
4480 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4481 {
4482 if (NILP (prev))
4483 nextb->undo_list = tail = XCDR (tail);
4484 else
4485 {
4486 tail = XCDR (tail);
4487 XSETCDR (prev, tail);
4488 }
4489 }
4490 else
4491 {
4492 prev = tail;
4493 tail = XCDR (tail);
4494 }
4495 }
4496 }
4497
4498 nextb = nextb->next;
4499 }
4500 }
4501
4502 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4503 mark_stack ();
4504 #endif
4505
4506 #ifdef USE_GTK
4507 {
4508 extern void xg_mark_data ();
4509 xg_mark_data ();
4510 }
4511 #endif
4512
4513 gc_sweep ();
4514
4515 /* Clear the mark bits that we set in certain root slots. */
4516
4517 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4518 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4519 {
4520 register struct gcpro *tail;
4521
4522 for (tail = gcprolist; tail; tail = tail->next)
4523 for (i = 0; i < tail->nvars; i++)
4524 XUNMARK (tail->var[i]);
4525 }
4526 #endif
4527
4528 unmark_byte_stack ();
4529 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4530 {
4531 XUNMARK (*backlist->function);
4532 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4533 i = 0;
4534 else
4535 i = backlist->nargs - 1;
4536 for (; i >= 0; i--)
4537 XUNMARK (backlist->args[i]);
4538 }
4539 VECTOR_UNMARK (&buffer_defaults);
4540 VECTOR_UNMARK (&buffer_local_symbols);
4541
4542 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4543 dump_zombies ();
4544 #endif
4545
4546 UNBLOCK_INPUT;
4547
4548 /* clear_marks (); */
4549 gc_in_progress = 0;
4550
4551 consing_since_gc = 0;
4552 if (gc_cons_threshold < 10000)
4553 gc_cons_threshold = 10000;
4554
4555 if (garbage_collection_messages)
4556 {
4557 if (message_p || minibuf_level > 0)
4558 restore_message ();
4559 else
4560 message1_nolog ("Garbage collecting...done");
4561 }
4562
4563 unbind_to (count, Qnil);
4564
4565 total[0] = Fcons (make_number (total_conses),
4566 make_number (total_free_conses));
4567 total[1] = Fcons (make_number (total_symbols),
4568 make_number (total_free_symbols));
4569 total[2] = Fcons (make_number (total_markers),
4570 make_number (total_free_markers));
4571 total[3] = make_number (total_string_size);
4572 total[4] = make_number (total_vector_size);
4573 total[5] = Fcons (make_number (total_floats),
4574 make_number (total_free_floats));
4575 total[6] = Fcons (make_number (total_intervals),
4576 make_number (total_free_intervals));
4577 total[7] = Fcons (make_number (total_strings),
4578 make_number (total_free_strings));
4579
4580 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4581 {
4582 /* Compute average percentage of zombies. */
4583 double nlive = 0;
4584
4585 for (i = 0; i < 7; ++i)
4586 if (CONSP (total[i]))
4587 nlive += XFASTINT (XCAR (total[i]));
4588
4589 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4590 max_live = max (nlive, max_live);
4591 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4592 max_zombies = max (nzombies, max_zombies);
4593 ++ngcs;
4594 }
4595 #endif
4596
4597 if (!NILP (Vpost_gc_hook))
4598 {
4599 int count = inhibit_garbage_collection ();
4600 safe_run_hooks (Qpost_gc_hook);
4601 unbind_to (count, Qnil);
4602 }
4603
4604 /* Accumulate statistics. */
4605 EMACS_GET_TIME (t2);
4606 EMACS_SUB_TIME (t3, t2, t1);
4607 if (FLOATP (Vgc_elapsed))
4608 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4609 EMACS_SECS (t3) +
4610 EMACS_USECS (t3) * 1.0e-6);
4611 gcs_done++;
4612
4613 return Flist (sizeof total / sizeof *total, total);
4614 }
4615
4616
4617 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4618 only interesting objects referenced from glyphs are strings. */
4619
4620 static void
4621 mark_glyph_matrix (matrix)
4622 struct glyph_matrix *matrix;
4623 {
4624 struct glyph_row *row = matrix->rows;
4625 struct glyph_row *end = row + matrix->nrows;
4626
4627 for (; row < end; ++row)
4628 if (row->enabled_p)
4629 {
4630 int area;
4631 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4632 {
4633 struct glyph *glyph = row->glyphs[area];
4634 struct glyph *end_glyph = glyph + row->used[area];
4635
4636 for (; glyph < end_glyph; ++glyph)
4637 if (GC_STRINGP (glyph->object)
4638 && !STRING_MARKED_P (XSTRING (glyph->object)))
4639 mark_object (glyph->object);
4640 }
4641 }
4642 }
4643
4644
4645 /* Mark Lisp faces in the face cache C. */
4646
4647 static void
4648 mark_face_cache (c)
4649 struct face_cache *c;
4650 {
4651 if (c)
4652 {
4653 int i, j;
4654 for (i = 0; i < c->used; ++i)
4655 {
4656 struct face *face = FACE_FROM_ID (c->f, i);
4657
4658 if (face)
4659 {
4660 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4661 mark_object (face->lface[j]);
4662 }
4663 }
4664 }
4665 }
4666
4667
4668 #ifdef HAVE_WINDOW_SYSTEM
4669
4670 /* Mark Lisp objects in image IMG. */
4671
4672 static void
4673 mark_image (img)
4674 struct image *img;
4675 {
4676 mark_object (img->spec);
4677
4678 if (!NILP (img->data.lisp_val))
4679 mark_object (img->data.lisp_val);
4680 }
4681
4682
4683 /* Mark Lisp objects in image cache of frame F. It's done this way so
4684 that we don't have to include xterm.h here. */
4685
4686 static void
4687 mark_image_cache (f)
4688 struct frame *f;
4689 {
4690 forall_images_in_image_cache (f, mark_image);
4691 }
4692
4693 #endif /* HAVE_X_WINDOWS */
4694
4695
4696 \f
4697 /* Mark reference to a Lisp_Object.
4698 If the object referred to has not been seen yet, recursively mark
4699 all the references contained in it. */
4700
4701 #define LAST_MARKED_SIZE 500
4702 Lisp_Object last_marked[LAST_MARKED_SIZE];
4703 int last_marked_index;
4704
4705 /* For debugging--call abort when we cdr down this many
4706 links of a list, in mark_object. In debugging,
4707 the call to abort will hit a breakpoint.
4708 Normally this is zero and the check never goes off. */
4709 int mark_object_loop_halt;
4710
4711 void
4712 mark_object (arg)
4713 Lisp_Object arg;
4714 {
4715 register Lisp_Object obj = arg;
4716 #ifdef GC_CHECK_MARKED_OBJECTS
4717 void *po;
4718 struct mem_node *m;
4719 #endif
4720 int cdr_count = 0;
4721
4722 loop:
4723 XUNMARK (obj);
4724
4725 if (PURE_POINTER_P (XPNTR (obj)))
4726 return;
4727
4728 last_marked[last_marked_index++] = obj;
4729 if (last_marked_index == LAST_MARKED_SIZE)
4730 last_marked_index = 0;
4731
4732 /* Perform some sanity checks on the objects marked here. Abort if
4733 we encounter an object we know is bogus. This increases GC time
4734 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4735 #ifdef GC_CHECK_MARKED_OBJECTS
4736
4737 po = (void *) XPNTR (obj);
4738
4739 /* Check that the object pointed to by PO is known to be a Lisp
4740 structure allocated from the heap. */
4741 #define CHECK_ALLOCATED() \
4742 do { \
4743 m = mem_find (po); \
4744 if (m == MEM_NIL) \
4745 abort (); \
4746 } while (0)
4747
4748 /* Check that the object pointed to by PO is live, using predicate
4749 function LIVEP. */
4750 #define CHECK_LIVE(LIVEP) \
4751 do { \
4752 if (!LIVEP (m, po)) \
4753 abort (); \
4754 } while (0)
4755
4756 /* Check both of the above conditions. */
4757 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4758 do { \
4759 CHECK_ALLOCATED (); \
4760 CHECK_LIVE (LIVEP); \
4761 } while (0) \
4762
4763 #else /* not GC_CHECK_MARKED_OBJECTS */
4764
4765 #define CHECK_ALLOCATED() (void) 0
4766 #define CHECK_LIVE(LIVEP) (void) 0
4767 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4768
4769 #endif /* not GC_CHECK_MARKED_OBJECTS */
4770
4771 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4772 {
4773 case Lisp_String:
4774 {
4775 register struct Lisp_String *ptr = XSTRING (obj);
4776 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4777 MARK_INTERVAL_TREE (ptr->intervals);
4778 MARK_STRING (ptr);
4779 #ifdef GC_CHECK_STRING_BYTES
4780 /* Check that the string size recorded in the string is the
4781 same as the one recorded in the sdata structure. */
4782 CHECK_STRING_BYTES (ptr);
4783 #endif /* GC_CHECK_STRING_BYTES */
4784 }
4785 break;
4786
4787 case Lisp_Vectorlike:
4788 #ifdef GC_CHECK_MARKED_OBJECTS
4789 m = mem_find (po);
4790 if (m == MEM_NIL && !GC_SUBRP (obj)
4791 && po != &buffer_defaults
4792 && po != &buffer_local_symbols)
4793 abort ();
4794 #endif /* GC_CHECK_MARKED_OBJECTS */
4795
4796 if (GC_BUFFERP (obj))
4797 {
4798 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4799 {
4800 #ifdef GC_CHECK_MARKED_OBJECTS
4801 if (po != &buffer_defaults && po != &buffer_local_symbols)
4802 {
4803 struct buffer *b;
4804 for (b = all_buffers; b && b != po; b = b->next)
4805 ;
4806 if (b == NULL)
4807 abort ();
4808 }
4809 #endif /* GC_CHECK_MARKED_OBJECTS */
4810 mark_buffer (obj);
4811 }
4812 }
4813 else if (GC_SUBRP (obj))
4814 break;
4815 else if (GC_COMPILEDP (obj))
4816 /* We could treat this just like a vector, but it is better to
4817 save the COMPILED_CONSTANTS element for last and avoid
4818 recursion there. */
4819 {
4820 register struct Lisp_Vector *ptr = XVECTOR (obj);
4821 register EMACS_INT size = ptr->size;
4822 register int i;
4823
4824 if (VECTOR_MARKED_P (ptr))
4825 break; /* Already marked */
4826
4827 CHECK_LIVE (live_vector_p);
4828 VECTOR_MARK (ptr); /* Else mark it */
4829 size &= PSEUDOVECTOR_SIZE_MASK;
4830 for (i = 0; i < size; i++) /* and then mark its elements */
4831 {
4832 if (i != COMPILED_CONSTANTS)
4833 mark_object (ptr->contents[i]);
4834 }
4835 obj = ptr->contents[COMPILED_CONSTANTS];
4836 goto loop;
4837 }
4838 else if (GC_FRAMEP (obj))
4839 {
4840 register struct frame *ptr = XFRAME (obj);
4841
4842 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4843 VECTOR_MARK (ptr); /* Else mark it */
4844
4845 CHECK_LIVE (live_vector_p);
4846 mark_object (ptr->name);
4847 mark_object (ptr->icon_name);
4848 mark_object (ptr->title);
4849 mark_object (ptr->focus_frame);
4850 mark_object (ptr->selected_window);
4851 mark_object (ptr->minibuffer_window);
4852 mark_object (ptr->param_alist);
4853 mark_object (ptr->scroll_bars);
4854 mark_object (ptr->condemned_scroll_bars);
4855 mark_object (ptr->menu_bar_items);
4856 mark_object (ptr->face_alist);
4857 mark_object (ptr->menu_bar_vector);
4858 mark_object (ptr->buffer_predicate);
4859 mark_object (ptr->buffer_list);
4860 mark_object (ptr->menu_bar_window);
4861 mark_object (ptr->tool_bar_window);
4862 mark_face_cache (ptr->face_cache);
4863 #ifdef HAVE_WINDOW_SYSTEM
4864 mark_image_cache (ptr);
4865 mark_object (ptr->tool_bar_items);
4866 mark_object (ptr->desired_tool_bar_string);
4867 mark_object (ptr->current_tool_bar_string);
4868 #endif /* HAVE_WINDOW_SYSTEM */
4869 }
4870 else if (GC_BOOL_VECTOR_P (obj))
4871 {
4872 register struct Lisp_Vector *ptr = XVECTOR (obj);
4873
4874 if (VECTOR_MARKED_P (ptr))
4875 break; /* Already marked */
4876 CHECK_LIVE (live_vector_p);
4877 VECTOR_MARK (ptr); /* Else mark it */
4878 }
4879 else if (GC_WINDOWP (obj))
4880 {
4881 register struct Lisp_Vector *ptr = XVECTOR (obj);
4882 struct window *w = XWINDOW (obj);
4883 register int i;
4884
4885 /* Stop if already marked. */
4886 if (VECTOR_MARKED_P (ptr))
4887 break;
4888
4889 /* Mark it. */
4890 CHECK_LIVE (live_vector_p);
4891 VECTOR_MARK (ptr);
4892
4893 /* There is no Lisp data above The member CURRENT_MATRIX in
4894 struct WINDOW. Stop marking when that slot is reached. */
4895 for (i = 0;
4896 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4897 i++)
4898 mark_object (ptr->contents[i]);
4899
4900 /* Mark glyphs for leaf windows. Marking window matrices is
4901 sufficient because frame matrices use the same glyph
4902 memory. */
4903 if (NILP (w->hchild)
4904 && NILP (w->vchild)
4905 && w->current_matrix)
4906 {
4907 mark_glyph_matrix (w->current_matrix);
4908 mark_glyph_matrix (w->desired_matrix);
4909 }
4910 }
4911 else if (GC_HASH_TABLE_P (obj))
4912 {
4913 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4914
4915 /* Stop if already marked. */
4916 if (VECTOR_MARKED_P (h))
4917 break;
4918
4919 /* Mark it. */
4920 CHECK_LIVE (live_vector_p);
4921 VECTOR_MARK (h);
4922
4923 /* Mark contents. */
4924 /* Do not mark next_free or next_weak.
4925 Being in the next_weak chain
4926 should not keep the hash table alive.
4927 No need to mark `count' since it is an integer. */
4928 mark_object (h->test);
4929 mark_object (h->weak);
4930 mark_object (h->rehash_size);
4931 mark_object (h->rehash_threshold);
4932 mark_object (h->hash);
4933 mark_object (h->next);
4934 mark_object (h->index);
4935 mark_object (h->user_hash_function);
4936 mark_object (h->user_cmp_function);
4937
4938 /* If hash table is not weak, mark all keys and values.
4939 For weak tables, mark only the vector. */
4940 if (GC_NILP (h->weak))
4941 mark_object (h->key_and_value);
4942 else
4943 VECTOR_MARK (XVECTOR (h->key_and_value));
4944 }
4945 else
4946 {
4947 register struct Lisp_Vector *ptr = XVECTOR (obj);
4948 register EMACS_INT size = ptr->size;
4949 register int i;
4950
4951 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4952 CHECK_LIVE (live_vector_p);
4953 VECTOR_MARK (ptr); /* Else mark it */
4954 if (size & PSEUDOVECTOR_FLAG)
4955 size &= PSEUDOVECTOR_SIZE_MASK;
4956
4957 for (i = 0; i < size; i++) /* and then mark its elements */
4958 mark_object (ptr->contents[i]);
4959 }
4960 break;
4961
4962 case Lisp_Symbol:
4963 {
4964 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4965 struct Lisp_Symbol *ptrx;
4966
4967 if (ptr->gcmarkbit) break;
4968 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4969 ptr->gcmarkbit = 1;
4970 mark_object (ptr->value);
4971 mark_object (ptr->function);
4972 mark_object (ptr->plist);
4973
4974 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4975 MARK_STRING (XSTRING (ptr->xname));
4976 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4977
4978 /* Note that we do not mark the obarray of the symbol.
4979 It is safe not to do so because nothing accesses that
4980 slot except to check whether it is nil. */
4981 ptr = ptr->next;
4982 if (ptr)
4983 {
4984 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4985 XSETSYMBOL (obj, ptrx);
4986 goto loop;
4987 }
4988 }
4989 break;
4990
4991 case Lisp_Misc:
4992 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4993 if (XMARKER (obj)->gcmarkbit)
4994 break;
4995 XMARKER (obj)->gcmarkbit = 1;
4996 switch (XMISCTYPE (obj))
4997 {
4998 case Lisp_Misc_Buffer_Local_Value:
4999 case Lisp_Misc_Some_Buffer_Local_Value:
5000 {
5001 register struct Lisp_Buffer_Local_Value *ptr
5002 = XBUFFER_LOCAL_VALUE (obj);
5003 /* If the cdr is nil, avoid recursion for the car. */
5004 if (EQ (ptr->cdr, Qnil))
5005 {
5006 obj = ptr->realvalue;
5007 goto loop;
5008 }
5009 mark_object (ptr->realvalue);
5010 mark_object (ptr->buffer);
5011 mark_object (ptr->frame);
5012 obj = ptr->cdr;
5013 goto loop;
5014 }
5015
5016 case Lisp_Misc_Marker:
5017 /* DO NOT mark thru the marker's chain.
5018 The buffer's markers chain does not preserve markers from gc;
5019 instead, markers are removed from the chain when freed by gc. */
5020 case Lisp_Misc_Intfwd:
5021 case Lisp_Misc_Boolfwd:
5022 case Lisp_Misc_Objfwd:
5023 case Lisp_Misc_Buffer_Objfwd:
5024 case Lisp_Misc_Kboard_Objfwd:
5025 /* Don't bother with Lisp_Buffer_Objfwd,
5026 since all markable slots in current buffer marked anyway. */
5027 /* Don't need to do Lisp_Objfwd, since the places they point
5028 are protected with staticpro. */
5029 case Lisp_Misc_Save_Value:
5030 break;
5031
5032 case Lisp_Misc_Overlay:
5033 {
5034 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5035 mark_object (ptr->start);
5036 mark_object (ptr->end);
5037 mark_object (ptr->plist);
5038 if (ptr->next)
5039 {
5040 XSETMISC (obj, ptr->next);
5041 goto loop;
5042 }
5043 }
5044 break;
5045
5046 default:
5047 abort ();
5048 }
5049 break;
5050
5051 case Lisp_Cons:
5052 {
5053 register struct Lisp_Cons *ptr = XCONS (obj);
5054 if (CONS_MARKED_P (ptr)) break;
5055 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5056 CONS_MARK (ptr);
5057 /* If the cdr is nil, avoid recursion for the car. */
5058 if (EQ (ptr->cdr, Qnil))
5059 {
5060 obj = ptr->car;
5061 cdr_count = 0;
5062 goto loop;
5063 }
5064 mark_object (ptr->car);
5065 obj = ptr->cdr;
5066 cdr_count++;
5067 if (cdr_count == mark_object_loop_halt)
5068 abort ();
5069 goto loop;
5070 }
5071
5072 case Lisp_Float:
5073 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5074 FLOAT_MARK (XFLOAT (obj));
5075 break;
5076
5077 case Lisp_Int:
5078 break;
5079
5080 default:
5081 abort ();
5082 }
5083
5084 #undef CHECK_LIVE
5085 #undef CHECK_ALLOCATED
5086 #undef CHECK_ALLOCATED_AND_LIVE
5087 }
5088
5089 /* Mark the pointers in a buffer structure. */
5090
5091 static void
5092 mark_buffer (buf)
5093 Lisp_Object buf;
5094 {
5095 register struct buffer *buffer = XBUFFER (buf);
5096 register Lisp_Object *ptr, tmp;
5097 Lisp_Object base_buffer;
5098
5099 VECTOR_MARK (buffer);
5100
5101 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5102
5103 if (CONSP (buffer->undo_list))
5104 {
5105 Lisp_Object tail;
5106 tail = buffer->undo_list;
5107
5108 /* We mark the undo list specially because
5109 its pointers to markers should be weak. */
5110
5111 while (CONSP (tail))
5112 {
5113 register struct Lisp_Cons *ptr = XCONS (tail);
5114
5115 if (CONS_MARKED_P (ptr))
5116 break;
5117 CONS_MARK (ptr);
5118 if (GC_CONSP (ptr->car)
5119 && !CONS_MARKED_P (XCONS (ptr->car))
5120 && GC_MARKERP (XCAR (ptr->car)))
5121 {
5122 CONS_MARK (XCONS (ptr->car));
5123 mark_object (XCDR (ptr->car));
5124 }
5125 else
5126 mark_object (ptr->car);
5127
5128 if (CONSP (ptr->cdr))
5129 tail = ptr->cdr;
5130 else
5131 break;
5132 }
5133
5134 mark_object (XCDR (tail));
5135 }
5136 else
5137 mark_object (buffer->undo_list);
5138
5139 if (buffer->overlays_before)
5140 {
5141 XSETMISC (tmp, buffer->overlays_before);
5142 mark_object (tmp);
5143 }
5144 if (buffer->overlays_after)
5145 {
5146 XSETMISC (tmp, buffer->overlays_after);
5147 mark_object (tmp);
5148 }
5149
5150 for (ptr = &buffer->name;
5151 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5152 ptr++)
5153 mark_object (*ptr);
5154
5155 /* If this is an indirect buffer, mark its base buffer. */
5156 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5157 {
5158 XSETBUFFER (base_buffer, buffer->base_buffer);
5159 mark_buffer (base_buffer);
5160 }
5161 }
5162
5163
5164 /* Value is non-zero if OBJ will survive the current GC because it's
5165 either marked or does not need to be marked to survive. */
5166
5167 int
5168 survives_gc_p (obj)
5169 Lisp_Object obj;
5170 {
5171 int survives_p;
5172
5173 switch (XGCTYPE (obj))
5174 {
5175 case Lisp_Int:
5176 survives_p = 1;
5177 break;
5178
5179 case Lisp_Symbol:
5180 survives_p = XSYMBOL (obj)->gcmarkbit;
5181 break;
5182
5183 case Lisp_Misc:
5184 survives_p = XMARKER (obj)->gcmarkbit;
5185 break;
5186
5187 case Lisp_String:
5188 survives_p = STRING_MARKED_P (XSTRING (obj));
5189 break;
5190
5191 case Lisp_Vectorlike:
5192 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5193 break;
5194
5195 case Lisp_Cons:
5196 survives_p = CONS_MARKED_P (XCONS (obj));
5197 break;
5198
5199 case Lisp_Float:
5200 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5201 break;
5202
5203 default:
5204 abort ();
5205 }
5206
5207 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5208 }
5209
5210
5211 \f
5212 /* Sweep: find all structures not marked, and free them. */
5213
5214 static void
5215 gc_sweep ()
5216 {
5217 /* Remove or mark entries in weak hash tables.
5218 This must be done before any object is unmarked. */
5219 sweep_weak_hash_tables ();
5220
5221 sweep_strings ();
5222 #ifdef GC_CHECK_STRING_BYTES
5223 if (!noninteractive)
5224 check_string_bytes (1);
5225 #endif
5226
5227 /* Put all unmarked conses on free list */
5228 {
5229 register struct cons_block *cblk;
5230 struct cons_block **cprev = &cons_block;
5231 register int lim = cons_block_index;
5232 register int num_free = 0, num_used = 0;
5233
5234 cons_free_list = 0;
5235
5236 for (cblk = cons_block; cblk; cblk = *cprev)
5237 {
5238 register int i;
5239 int this_free = 0;
5240 for (i = 0; i < lim; i++)
5241 if (!CONS_MARKED_P (&cblk->conses[i]))
5242 {
5243 this_free++;
5244 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5245 cons_free_list = &cblk->conses[i];
5246 #if GC_MARK_STACK
5247 cons_free_list->car = Vdead;
5248 #endif
5249 }
5250 else
5251 {
5252 num_used++;
5253 CONS_UNMARK (&cblk->conses[i]);
5254 }
5255 lim = CONS_BLOCK_SIZE;
5256 /* If this block contains only free conses and we have already
5257 seen more than two blocks worth of free conses then deallocate
5258 this block. */
5259 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5260 {
5261 *cprev = cblk->next;
5262 /* Unhook from the free list. */
5263 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5264 lisp_align_free (cblk);
5265 n_cons_blocks--;
5266 }
5267 else
5268 {
5269 num_free += this_free;
5270 cprev = &cblk->next;
5271 }
5272 }
5273 total_conses = num_used;
5274 total_free_conses = num_free;
5275 }
5276
5277 /* Put all unmarked floats on free list */
5278 {
5279 register struct float_block *fblk;
5280 struct float_block **fprev = &float_block;
5281 register int lim = float_block_index;
5282 register int num_free = 0, num_used = 0;
5283
5284 float_free_list = 0;
5285
5286 for (fblk = float_block; fblk; fblk = *fprev)
5287 {
5288 register int i;
5289 int this_free = 0;
5290 for (i = 0; i < lim; i++)
5291 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5292 {
5293 this_free++;
5294 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5295 float_free_list = &fblk->floats[i];
5296 }
5297 else
5298 {
5299 num_used++;
5300 FLOAT_UNMARK (&fblk->floats[i]);
5301 }
5302 lim = FLOAT_BLOCK_SIZE;
5303 /* If this block contains only free floats and we have already
5304 seen more than two blocks worth of free floats then deallocate
5305 this block. */
5306 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5307 {
5308 *fprev = fblk->next;
5309 /* Unhook from the free list. */
5310 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5311 lisp_align_free (fblk);
5312 n_float_blocks--;
5313 }
5314 else
5315 {
5316 num_free += this_free;
5317 fprev = &fblk->next;
5318 }
5319 }
5320 total_floats = num_used;
5321 total_free_floats = num_free;
5322 }
5323
5324 /* Put all unmarked intervals on free list */
5325 {
5326 register struct interval_block *iblk;
5327 struct interval_block **iprev = &interval_block;
5328 register int lim = interval_block_index;
5329 register int num_free = 0, num_used = 0;
5330
5331 interval_free_list = 0;
5332
5333 for (iblk = interval_block; iblk; iblk = *iprev)
5334 {
5335 register int i;
5336 int this_free = 0;
5337
5338 for (i = 0; i < lim; i++)
5339 {
5340 if (!iblk->intervals[i].gcmarkbit)
5341 {
5342 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5343 interval_free_list = &iblk->intervals[i];
5344 this_free++;
5345 }
5346 else
5347 {
5348 num_used++;
5349 iblk->intervals[i].gcmarkbit = 0;
5350 }
5351 }
5352 lim = INTERVAL_BLOCK_SIZE;
5353 /* If this block contains only free intervals and we have already
5354 seen more than two blocks worth of free intervals then
5355 deallocate this block. */
5356 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5357 {
5358 *iprev = iblk->next;
5359 /* Unhook from the free list. */
5360 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5361 lisp_free (iblk);
5362 n_interval_blocks--;
5363 }
5364 else
5365 {
5366 num_free += this_free;
5367 iprev = &iblk->next;
5368 }
5369 }
5370 total_intervals = num_used;
5371 total_free_intervals = num_free;
5372 }
5373
5374 /* Put all unmarked symbols on free list */
5375 {
5376 register struct symbol_block *sblk;
5377 struct symbol_block **sprev = &symbol_block;
5378 register int lim = symbol_block_index;
5379 register int num_free = 0, num_used = 0;
5380
5381 symbol_free_list = NULL;
5382
5383 for (sblk = symbol_block; sblk; sblk = *sprev)
5384 {
5385 int this_free = 0;
5386 struct Lisp_Symbol *sym = sblk->symbols;
5387 struct Lisp_Symbol *end = sym + lim;
5388
5389 for (; sym < end; ++sym)
5390 {
5391 /* Check if the symbol was created during loadup. In such a case
5392 it might be pointed to by pure bytecode which we don't trace,
5393 so we conservatively assume that it is live. */
5394 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5395
5396 if (!sym->gcmarkbit && !pure_p)
5397 {
5398 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5399 symbol_free_list = sym;
5400 #if GC_MARK_STACK
5401 symbol_free_list->function = Vdead;
5402 #endif
5403 ++this_free;
5404 }
5405 else
5406 {
5407 ++num_used;
5408 if (!pure_p)
5409 UNMARK_STRING (XSTRING (sym->xname));
5410 sym->gcmarkbit = 0;
5411 }
5412 }
5413
5414 lim = SYMBOL_BLOCK_SIZE;
5415 /* If this block contains only free symbols and we have already
5416 seen more than two blocks worth of free symbols then deallocate
5417 this block. */
5418 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5419 {
5420 *sprev = sblk->next;
5421 /* Unhook from the free list. */
5422 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5423 lisp_free (sblk);
5424 n_symbol_blocks--;
5425 }
5426 else
5427 {
5428 num_free += this_free;
5429 sprev = &sblk->next;
5430 }
5431 }
5432 total_symbols = num_used;
5433 total_free_symbols = num_free;
5434 }
5435
5436 /* Put all unmarked misc's on free list.
5437 For a marker, first unchain it from the buffer it points into. */
5438 {
5439 register struct marker_block *mblk;
5440 struct marker_block **mprev = &marker_block;
5441 register int lim = marker_block_index;
5442 register int num_free = 0, num_used = 0;
5443
5444 marker_free_list = 0;
5445
5446 for (mblk = marker_block; mblk; mblk = *mprev)
5447 {
5448 register int i;
5449 int this_free = 0;
5450
5451 for (i = 0; i < lim; i++)
5452 {
5453 if (!mblk->markers[i].u_marker.gcmarkbit)
5454 {
5455 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5456 unchain_marker (&mblk->markers[i].u_marker);
5457 /* Set the type of the freed object to Lisp_Misc_Free.
5458 We could leave the type alone, since nobody checks it,
5459 but this might catch bugs faster. */
5460 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5461 mblk->markers[i].u_free.chain = marker_free_list;
5462 marker_free_list = &mblk->markers[i];
5463 this_free++;
5464 }
5465 else
5466 {
5467 num_used++;
5468 mblk->markers[i].u_marker.gcmarkbit = 0;
5469 }
5470 }
5471 lim = MARKER_BLOCK_SIZE;
5472 /* If this block contains only free markers and we have already
5473 seen more than two blocks worth of free markers then deallocate
5474 this block. */
5475 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5476 {
5477 *mprev = mblk->next;
5478 /* Unhook from the free list. */
5479 marker_free_list = mblk->markers[0].u_free.chain;
5480 lisp_free (mblk);
5481 n_marker_blocks--;
5482 }
5483 else
5484 {
5485 num_free += this_free;
5486 mprev = &mblk->next;
5487 }
5488 }
5489
5490 total_markers = num_used;
5491 total_free_markers = num_free;
5492 }
5493
5494 /* Free all unmarked buffers */
5495 {
5496 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5497
5498 while (buffer)
5499 if (!VECTOR_MARKED_P (buffer))
5500 {
5501 if (prev)
5502 prev->next = buffer->next;
5503 else
5504 all_buffers = buffer->next;
5505 next = buffer->next;
5506 lisp_free (buffer);
5507 buffer = next;
5508 }
5509 else
5510 {
5511 VECTOR_UNMARK (buffer);
5512 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5513 prev = buffer, buffer = buffer->next;
5514 }
5515 }
5516
5517 /* Free all unmarked vectors */
5518 {
5519 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5520 total_vector_size = 0;
5521
5522 while (vector)
5523 if (!VECTOR_MARKED_P (vector))
5524 {
5525 if (prev)
5526 prev->next = vector->next;
5527 else
5528 all_vectors = vector->next;
5529 next = vector->next;
5530 lisp_free (vector);
5531 n_vectors--;
5532 vector = next;
5533
5534 }
5535 else
5536 {
5537 VECTOR_UNMARK (vector);
5538 if (vector->size & PSEUDOVECTOR_FLAG)
5539 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5540 else
5541 total_vector_size += vector->size;
5542 prev = vector, vector = vector->next;
5543 }
5544 }
5545
5546 #ifdef GC_CHECK_STRING_BYTES
5547 if (!noninteractive)
5548 check_string_bytes (1);
5549 #endif
5550 }
5551
5552
5553
5554 \f
5555 /* Debugging aids. */
5556
5557 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5558 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5559 This may be helpful in debugging Emacs's memory usage.
5560 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5561 ()
5562 {
5563 Lisp_Object end;
5564
5565 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5566
5567 return end;
5568 }
5569
5570 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5571 doc: /* Return a list of counters that measure how much consing there has been.
5572 Each of these counters increments for a certain kind of object.
5573 The counters wrap around from the largest positive integer to zero.
5574 Garbage collection does not decrease them.
5575 The elements of the value are as follows:
5576 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5577 All are in units of 1 = one object consed
5578 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5579 objects consed.
5580 MISCS include overlays, markers, and some internal types.
5581 Frames, windows, buffers, and subprocesses count as vectors
5582 (but the contents of a buffer's text do not count here). */)
5583 ()
5584 {
5585 Lisp_Object consed[8];
5586
5587 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5588 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5589 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5590 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5591 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5592 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5593 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5594 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5595
5596 return Flist (8, consed);
5597 }
5598
5599 int suppress_checking;
5600 void
5601 die (msg, file, line)
5602 const char *msg;
5603 const char *file;
5604 int line;
5605 {
5606 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5607 file, line, msg);
5608 abort ();
5609 }
5610 \f
5611 /* Initialization */
5612
5613 void
5614 init_alloc_once ()
5615 {
5616 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5617 purebeg = PUREBEG;
5618 pure_size = PURESIZE;
5619 pure_bytes_used = 0;
5620 pure_bytes_used_before_overflow = 0;
5621
5622 /* Initialize the list of free aligned blocks. */
5623 free_ablock = NULL;
5624
5625 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5626 mem_init ();
5627 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5628 #endif
5629
5630 all_vectors = 0;
5631 ignore_warnings = 1;
5632 #ifdef DOUG_LEA_MALLOC
5633 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5634 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5635 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5636 #endif
5637 init_strings ();
5638 init_cons ();
5639 init_symbol ();
5640 init_marker ();
5641 init_float ();
5642 init_intervals ();
5643
5644 #ifdef REL_ALLOC
5645 malloc_hysteresis = 32;
5646 #else
5647 malloc_hysteresis = 0;
5648 #endif
5649
5650 spare_memory = (char *) malloc (SPARE_MEMORY);
5651
5652 ignore_warnings = 0;
5653 gcprolist = 0;
5654 byte_stack_list = 0;
5655 staticidx = 0;
5656 consing_since_gc = 0;
5657 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5658 #ifdef VIRT_ADDR_VARIES
5659 malloc_sbrk_unused = 1<<22; /* A large number */
5660 malloc_sbrk_used = 100000; /* as reasonable as any number */
5661 #endif /* VIRT_ADDR_VARIES */
5662 }
5663
5664 void
5665 init_alloc ()
5666 {
5667 gcprolist = 0;
5668 byte_stack_list = 0;
5669 #if GC_MARK_STACK
5670 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5671 setjmp_tested_p = longjmps_done = 0;
5672 #endif
5673 #endif
5674 Vgc_elapsed = make_float (0.0);
5675 gcs_done = 0;
5676 }
5677
5678 void
5679 syms_of_alloc ()
5680 {
5681 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5682 doc: /* *Number of bytes of consing between garbage collections.
5683 Garbage collection can happen automatically once this many bytes have been
5684 allocated since the last garbage collection. All data types count.
5685
5686 Garbage collection happens automatically only when `eval' is called.
5687
5688 By binding this temporarily to a large number, you can effectively
5689 prevent garbage collection during a part of the program. */);
5690
5691 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5692 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5693
5694 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5695 doc: /* Number of cons cells that have been consed so far. */);
5696
5697 DEFVAR_INT ("floats-consed", &floats_consed,
5698 doc: /* Number of floats that have been consed so far. */);
5699
5700 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5701 doc: /* Number of vector cells that have been consed so far. */);
5702
5703 DEFVAR_INT ("symbols-consed", &symbols_consed,
5704 doc: /* Number of symbols that have been consed so far. */);
5705
5706 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5707 doc: /* Number of string characters that have been consed so far. */);
5708
5709 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5710 doc: /* Number of miscellaneous objects that have been consed so far. */);
5711
5712 DEFVAR_INT ("intervals-consed", &intervals_consed,
5713 doc: /* Number of intervals that have been consed so far. */);
5714
5715 DEFVAR_INT ("strings-consed", &strings_consed,
5716 doc: /* Number of strings that have been consed so far. */);
5717
5718 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5719 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5720 This means that certain objects should be allocated in shared (pure) space. */);
5721
5722 DEFVAR_INT ("undo-limit", &undo_limit,
5723 doc: /* Keep no more undo information once it exceeds this size.
5724 This limit is applied when garbage collection happens.
5725 The size is counted as the number of bytes occupied,
5726 which includes both saved text and other data. */);
5727 undo_limit = 20000;
5728
5729 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5730 doc: /* Don't keep more than this much size of undo information.
5731 A command which pushes past this size is itself forgotten.
5732 This limit is applied when garbage collection happens.
5733 The size is counted as the number of bytes occupied,
5734 which includes both saved text and other data. */);
5735 undo_strong_limit = 30000;
5736
5737 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5738 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5739 garbage_collection_messages = 0;
5740
5741 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5742 doc: /* Hook run after garbage collection has finished. */);
5743 Vpost_gc_hook = Qnil;
5744 Qpost_gc_hook = intern ("post-gc-hook");
5745 staticpro (&Qpost_gc_hook);
5746
5747 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5748 doc: /* Precomputed `signal' argument for memory-full error. */);
5749 /* We build this in advance because if we wait until we need it, we might
5750 not be able to allocate the memory to hold it. */
5751 Vmemory_signal_data
5752 = list2 (Qerror,
5753 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5754
5755 DEFVAR_LISP ("memory-full", &Vmemory_full,
5756 doc: /* Non-nil means we are handling a memory-full error. */);
5757 Vmemory_full = Qnil;
5758
5759 staticpro (&Qgc_cons_threshold);
5760 Qgc_cons_threshold = intern ("gc-cons-threshold");
5761
5762 staticpro (&Qchar_table_extra_slots);
5763 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5764
5765 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5766 doc: /* Accumulated time elapsed in garbage collections.
5767 The time is in seconds as a floating point value. */);
5768 DEFVAR_INT ("gcs-done", &gcs_done,
5769 doc: /* Accumulated number of garbage collections done. */);
5770
5771 defsubr (&Scons);
5772 defsubr (&Slist);
5773 defsubr (&Svector);
5774 defsubr (&Smake_byte_code);
5775 defsubr (&Smake_list);
5776 defsubr (&Smake_vector);
5777 defsubr (&Smake_char_table);
5778 defsubr (&Smake_string);
5779 defsubr (&Smake_bool_vector);
5780 defsubr (&Smake_symbol);
5781 defsubr (&Smake_marker);
5782 defsubr (&Spurecopy);
5783 defsubr (&Sgarbage_collect);
5784 defsubr (&Smemory_limit);
5785 defsubr (&Smemory_use_counts);
5786
5787 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5788 defsubr (&Sgc_status);
5789 #endif
5790 }