]> code.delx.au - gnu-emacs/blob - src/regex.c
*** empty log message ***
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993, 1994 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #define _GNU_SOURCE
28
29 #ifdef HAVE_CONFIG_H
30 #if defined (emacs) || defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
34 #include <config.h>
35 #else
36 #include "config.h"
37 #endif
38 #endif
39
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
42
43 /* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
45 #ifdef emacs
46
47 #include "lisp.h"
48 #include "buffer.h"
49 #include "syntax.h"
50
51 /* Emacs uses `NULL' as a predicate. */
52 #undef NULL
53
54 #else /* not emacs */
55
56 #ifdef STDC_HEADERS
57 #include <stdlib.h>
58 #else
59 char *malloc ();
60 char *realloc ();
61 #endif
62
63
64 /* We used to test for `BSTRING' here, but only GCC and Emacs define
65 `BSTRING', as far as I know, and neither of them use this code. */
66 #ifndef INHIBIT_STRING_HEADER
67 #if HAVE_STRING_H || STDC_HEADERS
68 #include <string.h>
69 #ifndef bcmp
70 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
71 #endif
72 #ifndef bcopy
73 #define bcopy(s, d, n) memcpy ((d), (s), (n))
74 #endif
75 #ifndef bzero
76 #define bzero(s, n) memset ((s), 0, (n))
77 #endif
78 #else
79 #include <strings.h>
80 #endif
81 #endif
82
83 /* Define the syntax stuff for \<, \>, etc. */
84
85 /* This must be nonzero for the wordchar and notwordchar pattern
86 commands in re_match_2. */
87 #ifndef Sword
88 #define Sword 1
89 #endif
90
91 #ifdef SYNTAX_TABLE
92
93 extern char *re_syntax_table;
94
95 #else /* not SYNTAX_TABLE */
96
97 /* How many characters in the character set. */
98 #define CHAR_SET_SIZE 256
99
100 static char re_syntax_table[CHAR_SET_SIZE];
101
102 static void
103 init_syntax_once ()
104 {
105 register int c;
106 static int done = 0;
107
108 if (done)
109 return;
110
111 bzero (re_syntax_table, sizeof re_syntax_table);
112
113 for (c = 'a'; c <= 'z'; c++)
114 re_syntax_table[c] = Sword;
115
116 for (c = 'A'; c <= 'Z'; c++)
117 re_syntax_table[c] = Sword;
118
119 for (c = '0'; c <= '9'; c++)
120 re_syntax_table[c] = Sword;
121
122 re_syntax_table['_'] = Sword;
123
124 done = 1;
125 }
126
127 #endif /* not SYNTAX_TABLE */
128
129 #define SYNTAX(c) re_syntax_table[c]
130
131 #endif /* not emacs */
132 \f
133 /* Get the interface, including the syntax bits. */
134 #include "regex.h"
135
136 /* isalpha etc. are used for the character classes. */
137 #include <ctype.h>
138
139 /* Jim Meyering writes:
140
141 "... Some ctype macros are valid only for character codes that
142 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
143 using /bin/cc or gcc but without giving an ansi option). So, all
144 ctype uses should be through macros like ISPRINT... If
145 STDC_HEADERS is defined, then autoconf has verified that the ctype
146 macros don't need to be guarded with references to isascii. ...
147 Defining isascii to 1 should let any compiler worth its salt
148 eliminate the && through constant folding." */
149
150 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
151 #define ISASCII(c) 1
152 #else
153 #define ISASCII(c) isascii(c)
154 #endif
155
156 #ifdef isblank
157 #define ISBLANK(c) (ISASCII (c) && isblank (c))
158 #else
159 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
160 #endif
161 #ifdef isgraph
162 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
163 #else
164 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
165 #endif
166
167 #define ISPRINT(c) (ISASCII (c) && isprint (c))
168 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
169 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
170 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
171 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
172 #define ISLOWER(c) (ISASCII (c) && islower (c))
173 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
174 #define ISSPACE(c) (ISASCII (c) && isspace (c))
175 #define ISUPPER(c) (ISASCII (c) && isupper (c))
176 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
177
178 #ifndef NULL
179 #define NULL 0
180 #endif
181
182 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
183 since ours (we hope) works properly with all combinations of
184 machines, compilers, `char' and `unsigned char' argument types.
185 (Per Bothner suggested the basic approach.) */
186 #undef SIGN_EXTEND_CHAR
187 #if __STDC__
188 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
189 #else /* not __STDC__ */
190 /* As in Harbison and Steele. */
191 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
192 #endif
193 \f
194 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
195 use `alloca' instead of `malloc'. This is because using malloc in
196 re_search* or re_match* could cause memory leaks when C-g is used in
197 Emacs; also, malloc is slower and causes storage fragmentation. On
198 the other hand, malloc is more portable, and easier to debug.
199
200 Because we sometimes use alloca, some routines have to be macros,
201 not functions -- `alloca'-allocated space disappears at the end of the
202 function it is called in. */
203
204 #ifdef REGEX_MALLOC
205
206 #define REGEX_ALLOCATE malloc
207 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
208
209 #else /* not REGEX_MALLOC */
210
211 /* Emacs already defines alloca, sometimes. */
212 #ifndef alloca
213
214 /* Make alloca work the best possible way. */
215 #ifdef __GNUC__
216 #define alloca __builtin_alloca
217 #else /* not __GNUC__ */
218 #if HAVE_ALLOCA_H
219 #include <alloca.h>
220 #else /* not __GNUC__ or HAVE_ALLOCA_H */
221 #ifndef _AIX /* Already did AIX, up at the top. */
222 char *alloca ();
223 #endif /* not _AIX */
224 #endif /* not HAVE_ALLOCA_H */
225 #endif /* not __GNUC__ */
226
227 #endif /* not alloca */
228
229 #define REGEX_ALLOCATE alloca
230
231 /* Assumes a `char *destination' variable. */
232 #define REGEX_REALLOCATE(source, osize, nsize) \
233 (destination = (char *) alloca (nsize), \
234 bcopy (source, destination, osize), \
235 destination)
236
237 #endif /* not REGEX_MALLOC */
238
239
240 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
241 `string1' or just past its end. This works if PTR is NULL, which is
242 a good thing. */
243 #define FIRST_STRING_P(ptr) \
244 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
245
246 /* (Re)Allocate N items of type T using malloc, or fail. */
247 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
248 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
249 #define RETALLOC_IF(addr, n, t) \
250 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
251 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
252
253 #define BYTEWIDTH 8 /* In bits. */
254
255 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
256
257 #undef MAX
258 #undef MIN
259 #define MAX(a, b) ((a) > (b) ? (a) : (b))
260 #define MIN(a, b) ((a) < (b) ? (a) : (b))
261
262 typedef char boolean;
263 #define false 0
264 #define true 1
265
266 static int re_match_2_internal ();
267 \f
268 /* These are the command codes that appear in compiled regular
269 expressions. Some opcodes are followed by argument bytes. A
270 command code can specify any interpretation whatsoever for its
271 arguments. Zero bytes may appear in the compiled regular expression.
272
273 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
274 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
275 `exactn' we use here must also be 1. */
276
277 typedef enum
278 {
279 no_op = 0,
280
281 /* Followed by one byte giving n, then by n literal bytes. */
282 exactn = 1,
283
284 /* Matches any (more or less) character. */
285 anychar,
286
287 /* Matches any one char belonging to specified set. First
288 following byte is number of bitmap bytes. Then come bytes
289 for a bitmap saying which chars are in. Bits in each byte
290 are ordered low-bit-first. A character is in the set if its
291 bit is 1. A character too large to have a bit in the map is
292 automatically not in the set. */
293 charset,
294
295 /* Same parameters as charset, but match any character that is
296 not one of those specified. */
297 charset_not,
298
299 /* Start remembering the text that is matched, for storing in a
300 register. Followed by one byte with the register number, in
301 the range 0 to one less than the pattern buffer's re_nsub
302 field. Then followed by one byte with the number of groups
303 inner to this one. (This last has to be part of the
304 start_memory only because we need it in the on_failure_jump
305 of re_match_2.) */
306 start_memory,
307
308 /* Stop remembering the text that is matched and store it in a
309 memory register. Followed by one byte with the register
310 number, in the range 0 to one less than `re_nsub' in the
311 pattern buffer, and one byte with the number of inner groups,
312 just like `start_memory'. (We need the number of inner
313 groups here because we don't have any easy way of finding the
314 corresponding start_memory when we're at a stop_memory.) */
315 stop_memory,
316
317 /* Match a duplicate of something remembered. Followed by one
318 byte containing the register number. */
319 duplicate,
320
321 /* Fail unless at beginning of line. */
322 begline,
323
324 /* Fail unless at end of line. */
325 endline,
326
327 /* Succeeds if at beginning of buffer (if emacs) or at beginning
328 of string to be matched (if not). */
329 begbuf,
330
331 /* Analogously, for end of buffer/string. */
332 endbuf,
333
334 /* Followed by two byte relative address to which to jump. */
335 jump,
336
337 /* Same as jump, but marks the end of an alternative. */
338 jump_past_alt,
339
340 /* Followed by two-byte relative address of place to resume at
341 in case of failure. */
342 on_failure_jump,
343
344 /* Like on_failure_jump, but pushes a placeholder instead of the
345 current string position when executed. */
346 on_failure_keep_string_jump,
347
348 /* Throw away latest failure point and then jump to following
349 two-byte relative address. */
350 pop_failure_jump,
351
352 /* Change to pop_failure_jump if know won't have to backtrack to
353 match; otherwise change to jump. This is used to jump
354 back to the beginning of a repeat. If what follows this jump
355 clearly won't match what the repeat does, such that we can be
356 sure that there is no use backtracking out of repetitions
357 already matched, then we change it to a pop_failure_jump.
358 Followed by two-byte address. */
359 maybe_pop_jump,
360
361 /* Jump to following two-byte address, and push a dummy failure
362 point. This failure point will be thrown away if an attempt
363 is made to use it for a failure. A `+' construct makes this
364 before the first repeat. Also used as an intermediary kind
365 of jump when compiling an alternative. */
366 dummy_failure_jump,
367
368 /* Push a dummy failure point and continue. Used at the end of
369 alternatives. */
370 push_dummy_failure,
371
372 /* Followed by two-byte relative address and two-byte number n.
373 After matching N times, jump to the address upon failure. */
374 succeed_n,
375
376 /* Followed by two-byte relative address, and two-byte number n.
377 Jump to the address N times, then fail. */
378 jump_n,
379
380 /* Set the following two-byte relative address to the
381 subsequent two-byte number. The address *includes* the two
382 bytes of number. */
383 set_number_at,
384
385 wordchar, /* Matches any word-constituent character. */
386 notwordchar, /* Matches any char that is not a word-constituent. */
387
388 wordbeg, /* Succeeds if at word beginning. */
389 wordend, /* Succeeds if at word end. */
390
391 wordbound, /* Succeeds if at a word boundary. */
392 notwordbound /* Succeeds if not at a word boundary. */
393
394 #ifdef emacs
395 ,before_dot, /* Succeeds if before point. */
396 at_dot, /* Succeeds if at point. */
397 after_dot, /* Succeeds if after point. */
398
399 /* Matches any character whose syntax is specified. Followed by
400 a byte which contains a syntax code, e.g., Sword. */
401 syntaxspec,
402
403 /* Matches any character whose syntax is not that specified. */
404 notsyntaxspec
405 #endif /* emacs */
406 } re_opcode_t;
407 \f
408 /* Common operations on the compiled pattern. */
409
410 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
411
412 #define STORE_NUMBER(destination, number) \
413 do { \
414 (destination)[0] = (number) & 0377; \
415 (destination)[1] = (number) >> 8; \
416 } while (0)
417
418 /* Same as STORE_NUMBER, except increment DESTINATION to
419 the byte after where the number is stored. Therefore, DESTINATION
420 must be an lvalue. */
421
422 #define STORE_NUMBER_AND_INCR(destination, number) \
423 do { \
424 STORE_NUMBER (destination, number); \
425 (destination) += 2; \
426 } while (0)
427
428 /* Put into DESTINATION a number stored in two contiguous bytes starting
429 at SOURCE. */
430
431 #define EXTRACT_NUMBER(destination, source) \
432 do { \
433 (destination) = *(source) & 0377; \
434 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
435 } while (0)
436
437 #ifdef DEBUG
438 static void
439 extract_number (dest, source)
440 int *dest;
441 unsigned char *source;
442 {
443 int temp = SIGN_EXTEND_CHAR (*(source + 1));
444 *dest = *source & 0377;
445 *dest += temp << 8;
446 }
447
448 #ifndef EXTRACT_MACROS /* To debug the macros. */
449 #undef EXTRACT_NUMBER
450 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
451 #endif /* not EXTRACT_MACROS */
452
453 #endif /* DEBUG */
454
455 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
456 SOURCE must be an lvalue. */
457
458 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
459 do { \
460 EXTRACT_NUMBER (destination, source); \
461 (source) += 2; \
462 } while (0)
463
464 #ifdef DEBUG
465 static void
466 extract_number_and_incr (destination, source)
467 int *destination;
468 unsigned char **source;
469 {
470 extract_number (destination, *source);
471 *source += 2;
472 }
473
474 #ifndef EXTRACT_MACROS
475 #undef EXTRACT_NUMBER_AND_INCR
476 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
477 extract_number_and_incr (&dest, &src)
478 #endif /* not EXTRACT_MACROS */
479
480 #endif /* DEBUG */
481 \f
482 /* If DEBUG is defined, Regex prints many voluminous messages about what
483 it is doing (if the variable `debug' is nonzero). If linked with the
484 main program in `iregex.c', you can enter patterns and strings
485 interactively. And if linked with the main program in `main.c' and
486 the other test files, you can run the already-written tests. */
487
488 #ifdef DEBUG
489
490 /* We use standard I/O for debugging. */
491 #include <stdio.h>
492
493 /* It is useful to test things that ``must'' be true when debugging. */
494 #include <assert.h>
495
496 static int debug = 0;
497
498 #define DEBUG_STATEMENT(e) e
499 #define DEBUG_PRINT1(x) if (debug) printf (x)
500 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
501 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
502 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
503 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
504 if (debug) print_partial_compiled_pattern (s, e)
505 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
506 if (debug) print_double_string (w, s1, sz1, s2, sz2)
507
508
509 extern void printchar ();
510
511 /* Print the fastmap in human-readable form. */
512
513 void
514 print_fastmap (fastmap)
515 char *fastmap;
516 {
517 unsigned was_a_range = 0;
518 unsigned i = 0;
519
520 while (i < (1 << BYTEWIDTH))
521 {
522 if (fastmap[i++])
523 {
524 was_a_range = 0;
525 printchar (i - 1);
526 while (i < (1 << BYTEWIDTH) && fastmap[i])
527 {
528 was_a_range = 1;
529 i++;
530 }
531 if (was_a_range)
532 {
533 printf ("-");
534 printchar (i - 1);
535 }
536 }
537 }
538 putchar ('\n');
539 }
540
541
542 /* Print a compiled pattern string in human-readable form, starting at
543 the START pointer into it and ending just before the pointer END. */
544
545 void
546 print_partial_compiled_pattern (start, end)
547 unsigned char *start;
548 unsigned char *end;
549 {
550 int mcnt, mcnt2;
551 unsigned char *p = start;
552 unsigned char *pend = end;
553
554 if (start == NULL)
555 {
556 printf ("(null)\n");
557 return;
558 }
559
560 /* Loop over pattern commands. */
561 while (p < pend)
562 {
563 printf ("%d:\t", p - start);
564
565 switch ((re_opcode_t) *p++)
566 {
567 case no_op:
568 printf ("/no_op");
569 break;
570
571 case exactn:
572 mcnt = *p++;
573 printf ("/exactn/%d", mcnt);
574 do
575 {
576 putchar ('/');
577 printchar (*p++);
578 }
579 while (--mcnt);
580 break;
581
582 case start_memory:
583 mcnt = *p++;
584 printf ("/start_memory/%d/%d", mcnt, *p++);
585 break;
586
587 case stop_memory:
588 mcnt = *p++;
589 printf ("/stop_memory/%d/%d", mcnt, *p++);
590 break;
591
592 case duplicate:
593 printf ("/duplicate/%d", *p++);
594 break;
595
596 case anychar:
597 printf ("/anychar");
598 break;
599
600 case charset:
601 case charset_not:
602 {
603 register int c, last = -100;
604 register int in_range = 0;
605
606 printf ("/charset [%s",
607 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
608
609 assert (p + *p < pend);
610
611 for (c = 0; c < 256; c++)
612 if (c / 8 < *p
613 && (p[1 + (c/8)] & (1 << (c % 8))))
614 {
615 /* Are we starting a range? */
616 if (last + 1 == c && ! in_range)
617 {
618 putchar ('-');
619 in_range = 1;
620 }
621 /* Have we broken a range? */
622 else if (last + 1 != c && in_range)
623 {
624 printchar (last);
625 in_range = 0;
626 }
627
628 if (! in_range)
629 printchar (c);
630
631 last = c;
632 }
633
634 if (in_range)
635 printchar (last);
636
637 putchar (']');
638
639 p += 1 + *p;
640 }
641 break;
642
643 case begline:
644 printf ("/begline");
645 break;
646
647 case endline:
648 printf ("/endline");
649 break;
650
651 case on_failure_jump:
652 extract_number_and_incr (&mcnt, &p);
653 printf ("/on_failure_jump to %d", p + mcnt - start);
654 break;
655
656 case on_failure_keep_string_jump:
657 extract_number_and_incr (&mcnt, &p);
658 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
659 break;
660
661 case dummy_failure_jump:
662 extract_number_and_incr (&mcnt, &p);
663 printf ("/dummy_failure_jump to %d", p + mcnt - start);
664 break;
665
666 case push_dummy_failure:
667 printf ("/push_dummy_failure");
668 break;
669
670 case maybe_pop_jump:
671 extract_number_and_incr (&mcnt, &p);
672 printf ("/maybe_pop_jump to %d", p + mcnt - start);
673 break;
674
675 case pop_failure_jump:
676 extract_number_and_incr (&mcnt, &p);
677 printf ("/pop_failure_jump to %d", p + mcnt - start);
678 break;
679
680 case jump_past_alt:
681 extract_number_and_incr (&mcnt, &p);
682 printf ("/jump_past_alt to %d", p + mcnt - start);
683 break;
684
685 case jump:
686 extract_number_and_incr (&mcnt, &p);
687 printf ("/jump to %d", p + mcnt - start);
688 break;
689
690 case succeed_n:
691 extract_number_and_incr (&mcnt, &p);
692 extract_number_and_incr (&mcnt2, &p);
693 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
694 break;
695
696 case jump_n:
697 extract_number_and_incr (&mcnt, &p);
698 extract_number_and_incr (&mcnt2, &p);
699 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
700 break;
701
702 case set_number_at:
703 extract_number_and_incr (&mcnt, &p);
704 extract_number_and_incr (&mcnt2, &p);
705 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
706 break;
707
708 case wordbound:
709 printf ("/wordbound");
710 break;
711
712 case notwordbound:
713 printf ("/notwordbound");
714 break;
715
716 case wordbeg:
717 printf ("/wordbeg");
718 break;
719
720 case wordend:
721 printf ("/wordend");
722
723 #ifdef emacs
724 case before_dot:
725 printf ("/before_dot");
726 break;
727
728 case at_dot:
729 printf ("/at_dot");
730 break;
731
732 case after_dot:
733 printf ("/after_dot");
734 break;
735
736 case syntaxspec:
737 printf ("/syntaxspec");
738 mcnt = *p++;
739 printf ("/%d", mcnt);
740 break;
741
742 case notsyntaxspec:
743 printf ("/notsyntaxspec");
744 mcnt = *p++;
745 printf ("/%d", mcnt);
746 break;
747 #endif /* emacs */
748
749 case wordchar:
750 printf ("/wordchar");
751 break;
752
753 case notwordchar:
754 printf ("/notwordchar");
755 break;
756
757 case begbuf:
758 printf ("/begbuf");
759 break;
760
761 case endbuf:
762 printf ("/endbuf");
763 break;
764
765 default:
766 printf ("?%d", *(p-1));
767 }
768
769 putchar ('\n');
770 }
771
772 printf ("%d:\tend of pattern.\n", p - start);
773 }
774
775
776 void
777 print_compiled_pattern (bufp)
778 struct re_pattern_buffer *bufp;
779 {
780 unsigned char *buffer = bufp->buffer;
781
782 print_partial_compiled_pattern (buffer, buffer + bufp->used);
783 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
784
785 if (bufp->fastmap_accurate && bufp->fastmap)
786 {
787 printf ("fastmap: ");
788 print_fastmap (bufp->fastmap);
789 }
790
791 printf ("re_nsub: %d\t", bufp->re_nsub);
792 printf ("regs_alloc: %d\t", bufp->regs_allocated);
793 printf ("can_be_null: %d\t", bufp->can_be_null);
794 printf ("newline_anchor: %d\n", bufp->newline_anchor);
795 printf ("no_sub: %d\t", bufp->no_sub);
796 printf ("not_bol: %d\t", bufp->not_bol);
797 printf ("not_eol: %d\t", bufp->not_eol);
798 printf ("syntax: %d\n", bufp->syntax);
799 /* Perhaps we should print the translate table? */
800 }
801
802
803 void
804 print_double_string (where, string1, size1, string2, size2)
805 const char *where;
806 const char *string1;
807 const char *string2;
808 int size1;
809 int size2;
810 {
811 unsigned this_char;
812
813 if (where == NULL)
814 printf ("(null)");
815 else
816 {
817 if (FIRST_STRING_P (where))
818 {
819 for (this_char = where - string1; this_char < size1; this_char++)
820 printchar (string1[this_char]);
821
822 where = string2;
823 }
824
825 for (this_char = where - string2; this_char < size2; this_char++)
826 printchar (string2[this_char]);
827 }
828 }
829
830 #else /* not DEBUG */
831
832 #undef assert
833 #define assert(e)
834
835 #define DEBUG_STATEMENT(e)
836 #define DEBUG_PRINT1(x)
837 #define DEBUG_PRINT2(x1, x2)
838 #define DEBUG_PRINT3(x1, x2, x3)
839 #define DEBUG_PRINT4(x1, x2, x3, x4)
840 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
841 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
842
843 #endif /* not DEBUG */
844 \f
845 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
846 also be assigned to arbitrarily: each pattern buffer stores its own
847 syntax, so it can be changed between regex compilations. */
848 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
849
850
851 /* Specify the precise syntax of regexps for compilation. This provides
852 for compatibility for various utilities which historically have
853 different, incompatible syntaxes.
854
855 The argument SYNTAX is a bit mask comprised of the various bits
856 defined in regex.h. We return the old syntax. */
857
858 reg_syntax_t
859 re_set_syntax (syntax)
860 reg_syntax_t syntax;
861 {
862 reg_syntax_t ret = re_syntax_options;
863
864 re_syntax_options = syntax;
865 return ret;
866 }
867 \f
868 /* This table gives an error message for each of the error codes listed
869 in regex.h. Obviously the order here has to be same as there. */
870
871 static const char *re_error_msg[] =
872 { NULL, /* REG_NOERROR */
873 "No match", /* REG_NOMATCH */
874 "Invalid regular expression", /* REG_BADPAT */
875 "Invalid collation character", /* REG_ECOLLATE */
876 "Invalid character class name", /* REG_ECTYPE */
877 "Trailing backslash", /* REG_EESCAPE */
878 "Invalid back reference", /* REG_ESUBREG */
879 "Unmatched [ or [^", /* REG_EBRACK */
880 "Unmatched ( or \\(", /* REG_EPAREN */
881 "Unmatched \\{", /* REG_EBRACE */
882 "Invalid content of \\{\\}", /* REG_BADBR */
883 "Invalid range end", /* REG_ERANGE */
884 "Memory exhausted", /* REG_ESPACE */
885 "Invalid preceding regular expression", /* REG_BADRPT */
886 "Premature end of regular expression", /* REG_EEND */
887 "Regular expression too big", /* REG_ESIZE */
888 "Unmatched ) or \\)", /* REG_ERPAREN */
889 };
890 \f
891 /* Avoiding alloca during matching, to placate r_alloc. */
892
893 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
894 searching and matching functions should not call alloca. On some
895 systems, alloca is implemented in terms of malloc, and if we're
896 using the relocating allocator routines, then malloc could cause a
897 relocation, which might (if the strings being searched are in the
898 ralloc heap) shift the data out from underneath the regexp
899 routines.
900
901 Here's another reason to avoid allocation: Emacs insists on
902 processing input from X in a signal handler; processing X input may
903 call malloc; if input arrives while a matching routine is calling
904 malloc, then we're scrod. But Emacs can't just block input while
905 calling matching routines; then we don't notice interrupts when
906 they come in. So, Emacs blocks input around all regexp calls
907 except the matching calls, which it leaves unprotected, in the
908 faith that they will not malloc. */
909
910 /* Normally, this is fine. */
911 #define MATCH_MAY_ALLOCATE
912
913 /* But under some circumstances, it's not. */
914 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
915 #undef MATCH_MAY_ALLOCATE
916 #endif
917
918 \f
919 /* Failure stack declarations and macros; both re_compile_fastmap and
920 re_match_2 use a failure stack. These have to be macros because of
921 REGEX_ALLOCATE. */
922
923
924 /* Number of failure points for which to initially allocate space
925 when matching. If this number is exceeded, we allocate more
926 space, so it is not a hard limit. */
927 #ifndef INIT_FAILURE_ALLOC
928 #define INIT_FAILURE_ALLOC 5
929 #endif
930
931 /* Roughly the maximum number of failure points on the stack. Would be
932 exactly that if always used MAX_FAILURE_SPACE each time we failed.
933 This is a variable only so users of regex can assign to it; we never
934 change it ourselves. */
935 int re_max_failures = 2000;
936
937 typedef unsigned char *fail_stack_elt_t;
938
939 typedef struct
940 {
941 fail_stack_elt_t *stack;
942 unsigned size;
943 unsigned avail; /* Offset of next open position. */
944 } fail_stack_type;
945
946 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
947 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
948 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
949 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
950
951
952 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
953
954 #ifdef MATCH_MAY_ALLOCATE
955 #define INIT_FAIL_STACK() \
956 do { \
957 fail_stack.stack = (fail_stack_elt_t *) \
958 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
959 \
960 if (fail_stack.stack == NULL) \
961 return -2; \
962 \
963 fail_stack.size = INIT_FAILURE_ALLOC; \
964 fail_stack.avail = 0; \
965 } while (0)
966 #else
967 #define INIT_FAIL_STACK() \
968 do { \
969 fail_stack.avail = 0; \
970 } while (0)
971 #endif
972
973
974 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
975
976 Return 1 if succeeds, and 0 if either ran out of memory
977 allocating space for it or it was already too large.
978
979 REGEX_REALLOCATE requires `destination' be declared. */
980
981 #define DOUBLE_FAIL_STACK(fail_stack) \
982 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
983 ? 0 \
984 : ((fail_stack).stack = (fail_stack_elt_t *) \
985 REGEX_REALLOCATE ((fail_stack).stack, \
986 (fail_stack).size * sizeof (fail_stack_elt_t), \
987 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
988 \
989 (fail_stack).stack == NULL \
990 ? 0 \
991 : ((fail_stack).size <<= 1, \
992 1)))
993
994
995 /* Push PATTERN_OP on FAIL_STACK.
996
997 Return 1 if was able to do so and 0 if ran out of memory allocating
998 space to do so. */
999 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
1000 ((FAIL_STACK_FULL () \
1001 && !DOUBLE_FAIL_STACK (fail_stack)) \
1002 ? 0 \
1003 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1004 1))
1005
1006 /* This pushes an item onto the failure stack. Must be a four-byte
1007 value. Assumes the variable `fail_stack'. Probably should only
1008 be called from within `PUSH_FAILURE_POINT'. */
1009 #define PUSH_FAILURE_ITEM(item) \
1010 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1011
1012 /* The complement operation. Assumes `fail_stack' is nonempty. */
1013 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1014
1015 /* Used to omit pushing failure point id's when we're not debugging. */
1016 #ifdef DEBUG
1017 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1018 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1019 #else
1020 #define DEBUG_PUSH(item)
1021 #define DEBUG_POP(item_addr)
1022 #endif
1023
1024
1025 /* Push the information about the state we will need
1026 if we ever fail back to it.
1027
1028 Requires variables fail_stack, regstart, regend, reg_info, and
1029 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1030 declared.
1031
1032 Does `return FAILURE_CODE' if runs out of memory. */
1033
1034 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1035 do { \
1036 char *destination; \
1037 /* Must be int, so when we don't save any registers, the arithmetic \
1038 of 0 + -1 isn't done as unsigned. */ \
1039 int this_reg; \
1040 \
1041 DEBUG_STATEMENT (failure_id++); \
1042 DEBUG_STATEMENT (nfailure_points_pushed++); \
1043 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1044 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1045 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1046 \
1047 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1048 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1049 \
1050 /* Ensure we have enough space allocated for what we will push. */ \
1051 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1052 { \
1053 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1054 return failure_code; \
1055 \
1056 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1057 (fail_stack).size); \
1058 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1059 } \
1060 \
1061 /* Push the info, starting with the registers. */ \
1062 DEBUG_PRINT1 ("\n"); \
1063 \
1064 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1065 this_reg++) \
1066 { \
1067 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1068 DEBUG_STATEMENT (num_regs_pushed++); \
1069 \
1070 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1071 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1072 \
1073 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1074 PUSH_FAILURE_ITEM (regend[this_reg]); \
1075 \
1076 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1077 DEBUG_PRINT2 (" match_null=%d", \
1078 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1079 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" matched_something=%d", \
1081 MATCHED_SOMETHING (reg_info[this_reg])); \
1082 DEBUG_PRINT2 (" ever_matched=%d", \
1083 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1084 DEBUG_PRINT1 ("\n"); \
1085 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1086 } \
1087 \
1088 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1089 PUSH_FAILURE_ITEM (lowest_active_reg); \
1090 \
1091 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1092 PUSH_FAILURE_ITEM (highest_active_reg); \
1093 \
1094 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1095 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1096 PUSH_FAILURE_ITEM (pattern_place); \
1097 \
1098 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1099 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1100 size2); \
1101 DEBUG_PRINT1 ("'\n"); \
1102 PUSH_FAILURE_ITEM (string_place); \
1103 \
1104 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1105 DEBUG_PUSH (failure_id); \
1106 } while (0)
1107
1108 /* This is the number of items that are pushed and popped on the stack
1109 for each register. */
1110 #define NUM_REG_ITEMS 3
1111
1112 /* Individual items aside from the registers. */
1113 #ifdef DEBUG
1114 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1115 #else
1116 #define NUM_NONREG_ITEMS 4
1117 #endif
1118
1119 /* We push at most this many items on the stack. */
1120 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1121
1122 /* We actually push this many items. */
1123 #define NUM_FAILURE_ITEMS \
1124 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1125 + NUM_NONREG_ITEMS)
1126
1127 /* How many items can still be added to the stack without overflowing it. */
1128 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1129
1130
1131 /* Pops what PUSH_FAIL_STACK pushes.
1132
1133 We restore into the parameters, all of which should be lvalues:
1134 STR -- the saved data position.
1135 PAT -- the saved pattern position.
1136 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1137 REGSTART, REGEND -- arrays of string positions.
1138 REG_INFO -- array of information about each subexpression.
1139
1140 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1141 `pend', `string1', `size1', `string2', and `size2'. */
1142
1143 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1144 { \
1145 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1146 int this_reg; \
1147 const unsigned char *string_temp; \
1148 \
1149 assert (!FAIL_STACK_EMPTY ()); \
1150 \
1151 /* Remove failure points and point to how many regs pushed. */ \
1152 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1153 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1154 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1155 \
1156 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1157 \
1158 DEBUG_POP (&failure_id); \
1159 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1160 \
1161 /* If the saved string location is NULL, it came from an \
1162 on_failure_keep_string_jump opcode, and we want to throw away the \
1163 saved NULL, thus retaining our current position in the string. */ \
1164 string_temp = POP_FAILURE_ITEM (); \
1165 if (string_temp != NULL) \
1166 str = (const char *) string_temp; \
1167 \
1168 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1169 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1170 DEBUG_PRINT1 ("'\n"); \
1171 \
1172 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1173 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1174 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1175 \
1176 /* Restore register info. */ \
1177 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1178 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1179 \
1180 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1181 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1182 \
1183 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1184 { \
1185 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1186 \
1187 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1188 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1189 \
1190 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1191 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1192 \
1193 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1194 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1195 } \
1196 \
1197 DEBUG_STATEMENT (nfailure_points_popped++); \
1198 } /* POP_FAILURE_POINT */
1199
1200
1201 \f
1202 /* Structure for per-register (a.k.a. per-group) information.
1203 This must not be longer than one word, because we push this value
1204 onto the failure stack. Other register information, such as the
1205 starting and ending positions (which are addresses), and the list of
1206 inner groups (which is a bits list) are maintained in separate
1207 variables.
1208
1209 We are making a (strictly speaking) nonportable assumption here: that
1210 the compiler will pack our bit fields into something that fits into
1211 the type of `word', i.e., is something that fits into one item on the
1212 failure stack. */
1213 typedef union
1214 {
1215 fail_stack_elt_t word;
1216 struct
1217 {
1218 /* This field is one if this group can match the empty string,
1219 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1220 #define MATCH_NULL_UNSET_VALUE 3
1221 unsigned match_null_string_p : 2;
1222 unsigned is_active : 1;
1223 unsigned matched_something : 1;
1224 unsigned ever_matched_something : 1;
1225 } bits;
1226 } register_info_type;
1227
1228 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1229 #define IS_ACTIVE(R) ((R).bits.is_active)
1230 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1231 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1232
1233
1234 /* Call this when have matched a real character; it sets `matched' flags
1235 for the subexpressions which we are currently inside. Also records
1236 that those subexprs have matched. */
1237 #define SET_REGS_MATCHED() \
1238 do \
1239 { \
1240 unsigned r; \
1241 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1242 { \
1243 MATCHED_SOMETHING (reg_info[r]) \
1244 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1245 = 1; \
1246 } \
1247 } \
1248 while (0)
1249
1250
1251 /* Registers are set to a sentinel when they haven't yet matched. */
1252 #define REG_UNSET_VALUE ((char *) -1)
1253 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1254
1255
1256 \f
1257 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1258 We make the fail stack a global thing, and then grow it to
1259 re_max_failures when we compile. */
1260 #ifndef MATCH_MAY_ALLOCATE
1261 static fail_stack_type fail_stack;
1262
1263 static const char ** regstart, ** regend;
1264 static const char ** old_regstart, ** old_regend;
1265 static const char **best_regstart, **best_regend;
1266 static register_info_type *reg_info;
1267 static const char **reg_dummy;
1268 static register_info_type *reg_info_dummy;
1269 #endif
1270
1271 \f
1272 /* Subroutine declarations and macros for regex_compile. */
1273
1274 static void store_op1 (), store_op2 ();
1275 static void insert_op1 (), insert_op2 ();
1276 static boolean at_begline_loc_p (), at_endline_loc_p ();
1277 static boolean group_in_compile_stack ();
1278 static reg_errcode_t compile_range ();
1279
1280 /* Fetch the next character in the uncompiled pattern---translating it
1281 if necessary. Also cast from a signed character in the constant
1282 string passed to us by the user to an unsigned char that we can use
1283 as an array index (in, e.g., `translate'). */
1284 #define PATFETCH(c) \
1285 do {if (p == pend) return REG_EEND; \
1286 c = (unsigned char) *p++; \
1287 if (translate) c = translate[c]; \
1288 } while (0)
1289
1290 /* Fetch the next character in the uncompiled pattern, with no
1291 translation. */
1292 #define PATFETCH_RAW(c) \
1293 do {if (p == pend) return REG_EEND; \
1294 c = (unsigned char) *p++; \
1295 } while (0)
1296
1297 /* Go backwards one character in the pattern. */
1298 #define PATUNFETCH p--
1299
1300
1301 /* If `translate' is non-null, return translate[D], else just D. We
1302 cast the subscript to translate because some data is declared as
1303 `char *', to avoid warnings when a string constant is passed. But
1304 when we use a character as a subscript we must make it unsigned. */
1305 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1306
1307
1308 /* Macros for outputting the compiled pattern into `buffer'. */
1309
1310 /* If the buffer isn't allocated when it comes in, use this. */
1311 #define INIT_BUF_SIZE 32
1312
1313 /* Make sure we have at least N more bytes of space in buffer. */
1314 #define GET_BUFFER_SPACE(n) \
1315 while (b - bufp->buffer + (n) > bufp->allocated) \
1316 EXTEND_BUFFER ()
1317
1318 /* Make sure we have one more byte of buffer space and then add C to it. */
1319 #define BUF_PUSH(c) \
1320 do { \
1321 GET_BUFFER_SPACE (1); \
1322 *b++ = (unsigned char) (c); \
1323 } while (0)
1324
1325
1326 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1327 #define BUF_PUSH_2(c1, c2) \
1328 do { \
1329 GET_BUFFER_SPACE (2); \
1330 *b++ = (unsigned char) (c1); \
1331 *b++ = (unsigned char) (c2); \
1332 } while (0)
1333
1334
1335 /* As with BUF_PUSH_2, except for three bytes. */
1336 #define BUF_PUSH_3(c1, c2, c3) \
1337 do { \
1338 GET_BUFFER_SPACE (3); \
1339 *b++ = (unsigned char) (c1); \
1340 *b++ = (unsigned char) (c2); \
1341 *b++ = (unsigned char) (c3); \
1342 } while (0)
1343
1344
1345 /* Store a jump with opcode OP at LOC to location TO. We store a
1346 relative address offset by the three bytes the jump itself occupies. */
1347 #define STORE_JUMP(op, loc, to) \
1348 store_op1 (op, loc, (to) - (loc) - 3)
1349
1350 /* Likewise, for a two-argument jump. */
1351 #define STORE_JUMP2(op, loc, to, arg) \
1352 store_op2 (op, loc, (to) - (loc) - 3, arg)
1353
1354 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1355 #define INSERT_JUMP(op, loc, to) \
1356 insert_op1 (op, loc, (to) - (loc) - 3, b)
1357
1358 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1359 #define INSERT_JUMP2(op, loc, to, arg) \
1360 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1361
1362
1363 /* This is not an arbitrary limit: the arguments which represent offsets
1364 into the pattern are two bytes long. So if 2^16 bytes turns out to
1365 be too small, many things would have to change. */
1366 #define MAX_BUF_SIZE (1L << 16)
1367
1368
1369 /* Extend the buffer by twice its current size via realloc and
1370 reset the pointers that pointed into the old block to point to the
1371 correct places in the new one. If extending the buffer results in it
1372 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1373 #define EXTEND_BUFFER() \
1374 do { \
1375 unsigned char *old_buffer = bufp->buffer; \
1376 if (bufp->allocated == MAX_BUF_SIZE) \
1377 return REG_ESIZE; \
1378 bufp->allocated <<= 1; \
1379 if (bufp->allocated > MAX_BUF_SIZE) \
1380 bufp->allocated = MAX_BUF_SIZE; \
1381 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1382 if (bufp->buffer == NULL) \
1383 return REG_ESPACE; \
1384 /* If the buffer moved, move all the pointers into it. */ \
1385 if (old_buffer != bufp->buffer) \
1386 { \
1387 b = (b - old_buffer) + bufp->buffer; \
1388 begalt = (begalt - old_buffer) + bufp->buffer; \
1389 if (fixup_alt_jump) \
1390 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1391 if (laststart) \
1392 laststart = (laststart - old_buffer) + bufp->buffer; \
1393 if (pending_exact) \
1394 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1395 } \
1396 } while (0)
1397
1398
1399 /* Since we have one byte reserved for the register number argument to
1400 {start,stop}_memory, the maximum number of groups we can report
1401 things about is what fits in that byte. */
1402 #define MAX_REGNUM 255
1403
1404 /* But patterns can have more than `MAX_REGNUM' registers. We just
1405 ignore the excess. */
1406 typedef unsigned regnum_t;
1407
1408
1409 /* Macros for the compile stack. */
1410
1411 /* Since offsets can go either forwards or backwards, this type needs to
1412 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1413 typedef int pattern_offset_t;
1414
1415 typedef struct
1416 {
1417 pattern_offset_t begalt_offset;
1418 pattern_offset_t fixup_alt_jump;
1419 pattern_offset_t inner_group_offset;
1420 pattern_offset_t laststart_offset;
1421 regnum_t regnum;
1422 } compile_stack_elt_t;
1423
1424
1425 typedef struct
1426 {
1427 compile_stack_elt_t *stack;
1428 unsigned size;
1429 unsigned avail; /* Offset of next open position. */
1430 } compile_stack_type;
1431
1432
1433 #define INIT_COMPILE_STACK_SIZE 32
1434
1435 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1436 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1437
1438 /* The next available element. */
1439 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1440
1441
1442 /* Set the bit for character C in a list. */
1443 #define SET_LIST_BIT(c) \
1444 (b[((unsigned char) (c)) / BYTEWIDTH] \
1445 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1446
1447
1448 /* Get the next unsigned number in the uncompiled pattern. */
1449 #define GET_UNSIGNED_NUMBER(num) \
1450 { if (p != pend) \
1451 { \
1452 PATFETCH (c); \
1453 while (ISDIGIT (c)) \
1454 { \
1455 if (num < 0) \
1456 num = 0; \
1457 num = num * 10 + c - '0'; \
1458 if (p == pend) \
1459 break; \
1460 PATFETCH (c); \
1461 } \
1462 } \
1463 }
1464
1465 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1466
1467 #define IS_CHAR_CLASS(string) \
1468 (STREQ (string, "alpha") || STREQ (string, "upper") \
1469 || STREQ (string, "lower") || STREQ (string, "digit") \
1470 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1471 || STREQ (string, "space") || STREQ (string, "print") \
1472 || STREQ (string, "punct") || STREQ (string, "graph") \
1473 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1474 \f
1475 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1476 Returns one of error codes defined in `regex.h', or zero for success.
1477
1478 Assumes the `allocated' (and perhaps `buffer') and `translate'
1479 fields are set in BUFP on entry.
1480
1481 If it succeeds, results are put in BUFP (if it returns an error, the
1482 contents of BUFP are undefined):
1483 `buffer' is the compiled pattern;
1484 `syntax' is set to SYNTAX;
1485 `used' is set to the length of the compiled pattern;
1486 `fastmap_accurate' is zero;
1487 `re_nsub' is the number of subexpressions in PATTERN;
1488 `not_bol' and `not_eol' are zero;
1489
1490 The `fastmap' and `newline_anchor' fields are neither
1491 examined nor set. */
1492
1493 static reg_errcode_t
1494 regex_compile (pattern, size, syntax, bufp)
1495 const char *pattern;
1496 int size;
1497 reg_syntax_t syntax;
1498 struct re_pattern_buffer *bufp;
1499 {
1500 /* We fetch characters from PATTERN here. Even though PATTERN is
1501 `char *' (i.e., signed), we declare these variables as unsigned, so
1502 they can be reliably used as array indices. */
1503 register unsigned char c, c1;
1504
1505 /* A random temporary spot in PATTERN. */
1506 const char *p1;
1507
1508 /* Points to the end of the buffer, where we should append. */
1509 register unsigned char *b;
1510
1511 /* Keeps track of unclosed groups. */
1512 compile_stack_type compile_stack;
1513
1514 /* Points to the current (ending) position in the pattern. */
1515 const char *p = pattern;
1516 const char *pend = pattern + size;
1517
1518 /* How to translate the characters in the pattern. */
1519 char *translate = bufp->translate;
1520
1521 /* Address of the count-byte of the most recently inserted `exactn'
1522 command. This makes it possible to tell if a new exact-match
1523 character can be added to that command or if the character requires
1524 a new `exactn' command. */
1525 unsigned char *pending_exact = 0;
1526
1527 /* Address of start of the most recently finished expression.
1528 This tells, e.g., postfix * where to find the start of its
1529 operand. Reset at the beginning of groups and alternatives. */
1530 unsigned char *laststart = 0;
1531
1532 /* Address of beginning of regexp, or inside of last group. */
1533 unsigned char *begalt;
1534
1535 /* Place in the uncompiled pattern (i.e., the {) to
1536 which to go back if the interval is invalid. */
1537 const char *beg_interval;
1538
1539 /* Address of the place where a forward jump should go to the end of
1540 the containing expression. Each alternative of an `or' -- except the
1541 last -- ends with a forward jump of this sort. */
1542 unsigned char *fixup_alt_jump = 0;
1543
1544 /* Counts open-groups as they are encountered. Remembered for the
1545 matching close-group on the compile stack, so the same register
1546 number is put in the stop_memory as the start_memory. */
1547 regnum_t regnum = 0;
1548
1549 #ifdef DEBUG
1550 DEBUG_PRINT1 ("\nCompiling pattern: ");
1551 if (debug)
1552 {
1553 unsigned debug_count;
1554
1555 for (debug_count = 0; debug_count < size; debug_count++)
1556 printchar (pattern[debug_count]);
1557 putchar ('\n');
1558 }
1559 #endif /* DEBUG */
1560
1561 /* Initialize the compile stack. */
1562 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1563 if (compile_stack.stack == NULL)
1564 return REG_ESPACE;
1565
1566 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1567 compile_stack.avail = 0;
1568
1569 /* Initialize the pattern buffer. */
1570 bufp->syntax = syntax;
1571 bufp->fastmap_accurate = 0;
1572 bufp->not_bol = bufp->not_eol = 0;
1573
1574 /* Set `used' to zero, so that if we return an error, the pattern
1575 printer (for debugging) will think there's no pattern. We reset it
1576 at the end. */
1577 bufp->used = 0;
1578
1579 /* Always count groups, whether or not bufp->no_sub is set. */
1580 bufp->re_nsub = 0;
1581
1582 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1583 /* Initialize the syntax table. */
1584 init_syntax_once ();
1585 #endif
1586
1587 if (bufp->allocated == 0)
1588 {
1589 if (bufp->buffer)
1590 { /* If zero allocated, but buffer is non-null, try to realloc
1591 enough space. This loses if buffer's address is bogus, but
1592 that is the user's responsibility. */
1593 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1594 }
1595 else
1596 { /* Caller did not allocate a buffer. Do it for them. */
1597 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1598 }
1599 if (!bufp->buffer) return REG_ESPACE;
1600
1601 bufp->allocated = INIT_BUF_SIZE;
1602 }
1603
1604 begalt = b = bufp->buffer;
1605
1606 /* Loop through the uncompiled pattern until we're at the end. */
1607 while (p != pend)
1608 {
1609 PATFETCH (c);
1610
1611 switch (c)
1612 {
1613 case '^':
1614 {
1615 if ( /* If at start of pattern, it's an operator. */
1616 p == pattern + 1
1617 /* If context independent, it's an operator. */
1618 || syntax & RE_CONTEXT_INDEP_ANCHORS
1619 /* Otherwise, depends on what's come before. */
1620 || at_begline_loc_p (pattern, p, syntax))
1621 BUF_PUSH (begline);
1622 else
1623 goto normal_char;
1624 }
1625 break;
1626
1627
1628 case '$':
1629 {
1630 if ( /* If at end of pattern, it's an operator. */
1631 p == pend
1632 /* If context independent, it's an operator. */
1633 || syntax & RE_CONTEXT_INDEP_ANCHORS
1634 /* Otherwise, depends on what's next. */
1635 || at_endline_loc_p (p, pend, syntax))
1636 BUF_PUSH (endline);
1637 else
1638 goto normal_char;
1639 }
1640 break;
1641
1642
1643 case '+':
1644 case '?':
1645 if ((syntax & RE_BK_PLUS_QM)
1646 || (syntax & RE_LIMITED_OPS))
1647 goto normal_char;
1648 handle_plus:
1649 case '*':
1650 /* If there is no previous pattern... */
1651 if (!laststart)
1652 {
1653 if (syntax & RE_CONTEXT_INVALID_OPS)
1654 return REG_BADRPT;
1655 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1656 goto normal_char;
1657 }
1658
1659 {
1660 /* Are we optimizing this jump? */
1661 boolean keep_string_p = false;
1662
1663 /* 1 means zero (many) matches is allowed. */
1664 char zero_times_ok = 0, many_times_ok = 0;
1665
1666 /* If there is a sequence of repetition chars, collapse it
1667 down to just one (the right one). We can't combine
1668 interval operators with these because of, e.g., `a{2}*',
1669 which should only match an even number of `a's. */
1670
1671 for (;;)
1672 {
1673 zero_times_ok |= c != '+';
1674 many_times_ok |= c != '?';
1675
1676 if (p == pend)
1677 break;
1678
1679 PATFETCH (c);
1680
1681 if (c == '*'
1682 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1683 ;
1684
1685 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1686 {
1687 if (p == pend) return REG_EESCAPE;
1688
1689 PATFETCH (c1);
1690 if (!(c1 == '+' || c1 == '?'))
1691 {
1692 PATUNFETCH;
1693 PATUNFETCH;
1694 break;
1695 }
1696
1697 c = c1;
1698 }
1699 else
1700 {
1701 PATUNFETCH;
1702 break;
1703 }
1704
1705 /* If we get here, we found another repeat character. */
1706 }
1707
1708 /* Star, etc. applied to an empty pattern is equivalent
1709 to an empty pattern. */
1710 if (!laststart)
1711 break;
1712
1713 /* Now we know whether or not zero matches is allowed
1714 and also whether or not two or more matches is allowed. */
1715 if (many_times_ok)
1716 { /* More than one repetition is allowed, so put in at the
1717 end a backward relative jump from `b' to before the next
1718 jump we're going to put in below (which jumps from
1719 laststart to after this jump).
1720
1721 But if we are at the `*' in the exact sequence `.*\n',
1722 insert an unconditional jump backwards to the .,
1723 instead of the beginning of the loop. This way we only
1724 push a failure point once, instead of every time
1725 through the loop. */
1726 assert (p - 1 > pattern);
1727
1728 /* Allocate the space for the jump. */
1729 GET_BUFFER_SPACE (3);
1730
1731 /* We know we are not at the first character of the pattern,
1732 because laststart was nonzero. And we've already
1733 incremented `p', by the way, to be the character after
1734 the `*'. Do we have to do something analogous here
1735 for null bytes, because of RE_DOT_NOT_NULL? */
1736 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1737 && zero_times_ok
1738 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1739 && !(syntax & RE_DOT_NEWLINE))
1740 { /* We have .*\n. */
1741 STORE_JUMP (jump, b, laststart);
1742 keep_string_p = true;
1743 }
1744 else
1745 /* Anything else. */
1746 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1747
1748 /* We've added more stuff to the buffer. */
1749 b += 3;
1750 }
1751
1752 /* On failure, jump from laststart to b + 3, which will be the
1753 end of the buffer after this jump is inserted. */
1754 GET_BUFFER_SPACE (3);
1755 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1756 : on_failure_jump,
1757 laststart, b + 3);
1758 pending_exact = 0;
1759 b += 3;
1760
1761 if (!zero_times_ok)
1762 {
1763 /* At least one repetition is required, so insert a
1764 `dummy_failure_jump' before the initial
1765 `on_failure_jump' instruction of the loop. This
1766 effects a skip over that instruction the first time
1767 we hit that loop. */
1768 GET_BUFFER_SPACE (3);
1769 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1770 b += 3;
1771 }
1772 }
1773 break;
1774
1775
1776 case '.':
1777 laststart = b;
1778 BUF_PUSH (anychar);
1779 break;
1780
1781
1782 case '[':
1783 {
1784 boolean had_char_class = false;
1785
1786 if (p == pend) return REG_EBRACK;
1787
1788 /* Ensure that we have enough space to push a charset: the
1789 opcode, the length count, and the bitset; 34 bytes in all. */
1790 GET_BUFFER_SPACE (34);
1791
1792 laststart = b;
1793
1794 /* We test `*p == '^' twice, instead of using an if
1795 statement, so we only need one BUF_PUSH. */
1796 BUF_PUSH (*p == '^' ? charset_not : charset);
1797 if (*p == '^')
1798 p++;
1799
1800 /* Remember the first position in the bracket expression. */
1801 p1 = p;
1802
1803 /* Push the number of bytes in the bitmap. */
1804 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1805
1806 /* Clear the whole map. */
1807 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1808
1809 /* charset_not matches newline according to a syntax bit. */
1810 if ((re_opcode_t) b[-2] == charset_not
1811 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1812 SET_LIST_BIT ('\n');
1813
1814 /* Read in characters and ranges, setting map bits. */
1815 for (;;)
1816 {
1817 if (p == pend) return REG_EBRACK;
1818
1819 PATFETCH (c);
1820
1821 /* \ might escape characters inside [...] and [^...]. */
1822 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1823 {
1824 if (p == pend) return REG_EESCAPE;
1825
1826 PATFETCH (c1);
1827 SET_LIST_BIT (c1);
1828 continue;
1829 }
1830
1831 /* Could be the end of the bracket expression. If it's
1832 not (i.e., when the bracket expression is `[]' so
1833 far), the ']' character bit gets set way below. */
1834 if (c == ']' && p != p1 + 1)
1835 break;
1836
1837 /* Look ahead to see if it's a range when the last thing
1838 was a character class. */
1839 if (had_char_class && c == '-' && *p != ']')
1840 return REG_ERANGE;
1841
1842 /* Look ahead to see if it's a range when the last thing
1843 was a character: if this is a hyphen not at the
1844 beginning or the end of a list, then it's the range
1845 operator. */
1846 if (c == '-'
1847 && !(p - 2 >= pattern && p[-2] == '[')
1848 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1849 && *p != ']')
1850 {
1851 reg_errcode_t ret
1852 = compile_range (&p, pend, translate, syntax, b);
1853 if (ret != REG_NOERROR) return ret;
1854 }
1855
1856 else if (p[0] == '-' && p[1] != ']')
1857 { /* This handles ranges made up of characters only. */
1858 reg_errcode_t ret;
1859
1860 /* Move past the `-'. */
1861 PATFETCH (c1);
1862
1863 ret = compile_range (&p, pend, translate, syntax, b);
1864 if (ret != REG_NOERROR) return ret;
1865 }
1866
1867 /* See if we're at the beginning of a possible character
1868 class. */
1869
1870 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1871 { /* Leave room for the null. */
1872 char str[CHAR_CLASS_MAX_LENGTH + 1];
1873
1874 PATFETCH (c);
1875 c1 = 0;
1876
1877 /* If pattern is `[[:'. */
1878 if (p == pend) return REG_EBRACK;
1879
1880 for (;;)
1881 {
1882 PATFETCH (c);
1883 if (c == ':' || c == ']' || p == pend
1884 || c1 == CHAR_CLASS_MAX_LENGTH)
1885 break;
1886 str[c1++] = c;
1887 }
1888 str[c1] = '\0';
1889
1890 /* If isn't a word bracketed by `[:' and:`]':
1891 undo the ending character, the letters, and leave
1892 the leading `:' and `[' (but set bits for them). */
1893 if (c == ':' && *p == ']')
1894 {
1895 int ch;
1896 boolean is_alnum = STREQ (str, "alnum");
1897 boolean is_alpha = STREQ (str, "alpha");
1898 boolean is_blank = STREQ (str, "blank");
1899 boolean is_cntrl = STREQ (str, "cntrl");
1900 boolean is_digit = STREQ (str, "digit");
1901 boolean is_graph = STREQ (str, "graph");
1902 boolean is_lower = STREQ (str, "lower");
1903 boolean is_print = STREQ (str, "print");
1904 boolean is_punct = STREQ (str, "punct");
1905 boolean is_space = STREQ (str, "space");
1906 boolean is_upper = STREQ (str, "upper");
1907 boolean is_xdigit = STREQ (str, "xdigit");
1908
1909 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1910
1911 /* Throw away the ] at the end of the character
1912 class. */
1913 PATFETCH (c);
1914
1915 if (p == pend) return REG_EBRACK;
1916
1917 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1918 {
1919 if ( (is_alnum && ISALNUM (ch))
1920 || (is_alpha && ISALPHA (ch))
1921 || (is_blank && ISBLANK (ch))
1922 || (is_cntrl && ISCNTRL (ch))
1923 || (is_digit && ISDIGIT (ch))
1924 || (is_graph && ISGRAPH (ch))
1925 || (is_lower && ISLOWER (ch))
1926 || (is_print && ISPRINT (ch))
1927 || (is_punct && ISPUNCT (ch))
1928 || (is_space && ISSPACE (ch))
1929 || (is_upper && ISUPPER (ch))
1930 || (is_xdigit && ISXDIGIT (ch)))
1931 SET_LIST_BIT (ch);
1932 }
1933 had_char_class = true;
1934 }
1935 else
1936 {
1937 c1++;
1938 while (c1--)
1939 PATUNFETCH;
1940 SET_LIST_BIT ('[');
1941 SET_LIST_BIT (':');
1942 had_char_class = false;
1943 }
1944 }
1945 else
1946 {
1947 had_char_class = false;
1948 SET_LIST_BIT (c);
1949 }
1950 }
1951
1952 /* Discard any (non)matching list bytes that are all 0 at the
1953 end of the map. Decrease the map-length byte too. */
1954 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1955 b[-1]--;
1956 b += b[-1];
1957 }
1958 break;
1959
1960
1961 case '(':
1962 if (syntax & RE_NO_BK_PARENS)
1963 goto handle_open;
1964 else
1965 goto normal_char;
1966
1967
1968 case ')':
1969 if (syntax & RE_NO_BK_PARENS)
1970 goto handle_close;
1971 else
1972 goto normal_char;
1973
1974
1975 case '\n':
1976 if (syntax & RE_NEWLINE_ALT)
1977 goto handle_alt;
1978 else
1979 goto normal_char;
1980
1981
1982 case '|':
1983 if (syntax & RE_NO_BK_VBAR)
1984 goto handle_alt;
1985 else
1986 goto normal_char;
1987
1988
1989 case '{':
1990 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1991 goto handle_interval;
1992 else
1993 goto normal_char;
1994
1995
1996 case '\\':
1997 if (p == pend) return REG_EESCAPE;
1998
1999 /* Do not translate the character after the \, so that we can
2000 distinguish, e.g., \B from \b, even if we normally would
2001 translate, e.g., B to b. */
2002 PATFETCH_RAW (c);
2003
2004 switch (c)
2005 {
2006 case '(':
2007 if (syntax & RE_NO_BK_PARENS)
2008 goto normal_backslash;
2009
2010 handle_open:
2011 bufp->re_nsub++;
2012 regnum++;
2013
2014 if (COMPILE_STACK_FULL)
2015 {
2016 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2017 compile_stack_elt_t);
2018 if (compile_stack.stack == NULL) return REG_ESPACE;
2019
2020 compile_stack.size <<= 1;
2021 }
2022
2023 /* These are the values to restore when we hit end of this
2024 group. They are all relative offsets, so that if the
2025 whole pattern moves because of realloc, they will still
2026 be valid. */
2027 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2028 COMPILE_STACK_TOP.fixup_alt_jump
2029 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2030 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2031 COMPILE_STACK_TOP.regnum = regnum;
2032
2033 /* We will eventually replace the 0 with the number of
2034 groups inner to this one. But do not push a
2035 start_memory for groups beyond the last one we can
2036 represent in the compiled pattern. */
2037 if (regnum <= MAX_REGNUM)
2038 {
2039 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2040 BUF_PUSH_3 (start_memory, regnum, 0);
2041 }
2042
2043 compile_stack.avail++;
2044
2045 fixup_alt_jump = 0;
2046 laststart = 0;
2047 begalt = b;
2048 /* If we've reached MAX_REGNUM groups, then this open
2049 won't actually generate any code, so we'll have to
2050 clear pending_exact explicitly. */
2051 pending_exact = 0;
2052 break;
2053
2054
2055 case ')':
2056 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2057
2058 if (COMPILE_STACK_EMPTY)
2059 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2060 goto normal_backslash;
2061 else
2062 return REG_ERPAREN;
2063
2064 handle_close:
2065 if (fixup_alt_jump)
2066 { /* Push a dummy failure point at the end of the
2067 alternative for a possible future
2068 `pop_failure_jump' to pop. See comments at
2069 `push_dummy_failure' in `re_match_2'. */
2070 BUF_PUSH (push_dummy_failure);
2071
2072 /* We allocated space for this jump when we assigned
2073 to `fixup_alt_jump', in the `handle_alt' case below. */
2074 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2075 }
2076
2077 /* See similar code for backslashed left paren above. */
2078 if (COMPILE_STACK_EMPTY)
2079 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2080 goto normal_char;
2081 else
2082 return REG_ERPAREN;
2083
2084 /* Since we just checked for an empty stack above, this
2085 ``can't happen''. */
2086 assert (compile_stack.avail != 0);
2087 {
2088 /* We don't just want to restore into `regnum', because
2089 later groups should continue to be numbered higher,
2090 as in `(ab)c(de)' -- the second group is #2. */
2091 regnum_t this_group_regnum;
2092
2093 compile_stack.avail--;
2094 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2095 fixup_alt_jump
2096 = COMPILE_STACK_TOP.fixup_alt_jump
2097 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2098 : 0;
2099 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2100 this_group_regnum = COMPILE_STACK_TOP.regnum;
2101 /* If we've reached MAX_REGNUM groups, then this open
2102 won't actually generate any code, so we'll have to
2103 clear pending_exact explicitly. */
2104 pending_exact = 0;
2105
2106 /* We're at the end of the group, so now we know how many
2107 groups were inside this one. */
2108 if (this_group_regnum <= MAX_REGNUM)
2109 {
2110 unsigned char *inner_group_loc
2111 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2112
2113 *inner_group_loc = regnum - this_group_regnum;
2114 BUF_PUSH_3 (stop_memory, this_group_regnum,
2115 regnum - this_group_regnum);
2116 }
2117 }
2118 break;
2119
2120
2121 case '|': /* `\|'. */
2122 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2123 goto normal_backslash;
2124 handle_alt:
2125 if (syntax & RE_LIMITED_OPS)
2126 goto normal_char;
2127
2128 /* Insert before the previous alternative a jump which
2129 jumps to this alternative if the former fails. */
2130 GET_BUFFER_SPACE (3);
2131 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2132 pending_exact = 0;
2133 b += 3;
2134
2135 /* The alternative before this one has a jump after it
2136 which gets executed if it gets matched. Adjust that
2137 jump so it will jump to this alternative's analogous
2138 jump (put in below, which in turn will jump to the next
2139 (if any) alternative's such jump, etc.). The last such
2140 jump jumps to the correct final destination. A picture:
2141 _____ _____
2142 | | | |
2143 | v | v
2144 a | b | c
2145
2146 If we are at `b', then fixup_alt_jump right now points to a
2147 three-byte space after `a'. We'll put in the jump, set
2148 fixup_alt_jump to right after `b', and leave behind three
2149 bytes which we'll fill in when we get to after `c'. */
2150
2151 if (fixup_alt_jump)
2152 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2153
2154 /* Mark and leave space for a jump after this alternative,
2155 to be filled in later either by next alternative or
2156 when know we're at the end of a series of alternatives. */
2157 fixup_alt_jump = b;
2158 GET_BUFFER_SPACE (3);
2159 b += 3;
2160
2161 laststart = 0;
2162 begalt = b;
2163 break;
2164
2165
2166 case '{':
2167 /* If \{ is a literal. */
2168 if (!(syntax & RE_INTERVALS)
2169 /* If we're at `\{' and it's not the open-interval
2170 operator. */
2171 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2172 || (p - 2 == pattern && p == pend))
2173 goto normal_backslash;
2174
2175 handle_interval:
2176 {
2177 /* If got here, then the syntax allows intervals. */
2178
2179 /* At least (most) this many matches must be made. */
2180 int lower_bound = -1, upper_bound = -1;
2181
2182 beg_interval = p - 1;
2183
2184 if (p == pend)
2185 {
2186 if (syntax & RE_NO_BK_BRACES)
2187 goto unfetch_interval;
2188 else
2189 return REG_EBRACE;
2190 }
2191
2192 GET_UNSIGNED_NUMBER (lower_bound);
2193
2194 if (c == ',')
2195 {
2196 GET_UNSIGNED_NUMBER (upper_bound);
2197 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2198 }
2199 else
2200 /* Interval such as `{1}' => match exactly once. */
2201 upper_bound = lower_bound;
2202
2203 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2204 || lower_bound > upper_bound)
2205 {
2206 if (syntax & RE_NO_BK_BRACES)
2207 goto unfetch_interval;
2208 else
2209 return REG_BADBR;
2210 }
2211
2212 if (!(syntax & RE_NO_BK_BRACES))
2213 {
2214 if (c != '\\') return REG_EBRACE;
2215
2216 PATFETCH (c);
2217 }
2218
2219 if (c != '}')
2220 {
2221 if (syntax & RE_NO_BK_BRACES)
2222 goto unfetch_interval;
2223 else
2224 return REG_BADBR;
2225 }
2226
2227 /* We just parsed a valid interval. */
2228
2229 /* If it's invalid to have no preceding re. */
2230 if (!laststart)
2231 {
2232 if (syntax & RE_CONTEXT_INVALID_OPS)
2233 return REG_BADRPT;
2234 else if (syntax & RE_CONTEXT_INDEP_OPS)
2235 laststart = b;
2236 else
2237 goto unfetch_interval;
2238 }
2239
2240 /* If the upper bound is zero, don't want to succeed at
2241 all; jump from `laststart' to `b + 3', which will be
2242 the end of the buffer after we insert the jump. */
2243 if (upper_bound == 0)
2244 {
2245 GET_BUFFER_SPACE (3);
2246 INSERT_JUMP (jump, laststart, b + 3);
2247 b += 3;
2248 }
2249
2250 /* Otherwise, we have a nontrivial interval. When
2251 we're all done, the pattern will look like:
2252 set_number_at <jump count> <upper bound>
2253 set_number_at <succeed_n count> <lower bound>
2254 succeed_n <after jump addr> <succeed_n count>
2255 <body of loop>
2256 jump_n <succeed_n addr> <jump count>
2257 (The upper bound and `jump_n' are omitted if
2258 `upper_bound' is 1, though.) */
2259 else
2260 { /* If the upper bound is > 1, we need to insert
2261 more at the end of the loop. */
2262 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2263
2264 GET_BUFFER_SPACE (nbytes);
2265
2266 /* Initialize lower bound of the `succeed_n', even
2267 though it will be set during matching by its
2268 attendant `set_number_at' (inserted next),
2269 because `re_compile_fastmap' needs to know.
2270 Jump to the `jump_n' we might insert below. */
2271 INSERT_JUMP2 (succeed_n, laststart,
2272 b + 5 + (upper_bound > 1) * 5,
2273 lower_bound);
2274 b += 5;
2275
2276 /* Code to initialize the lower bound. Insert
2277 before the `succeed_n'. The `5' is the last two
2278 bytes of this `set_number_at', plus 3 bytes of
2279 the following `succeed_n'. */
2280 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2281 b += 5;
2282
2283 if (upper_bound > 1)
2284 { /* More than one repetition is allowed, so
2285 append a backward jump to the `succeed_n'
2286 that starts this interval.
2287
2288 When we've reached this during matching,
2289 we'll have matched the interval once, so
2290 jump back only `upper_bound - 1' times. */
2291 STORE_JUMP2 (jump_n, b, laststart + 5,
2292 upper_bound - 1);
2293 b += 5;
2294
2295 /* The location we want to set is the second
2296 parameter of the `jump_n'; that is `b-2' as
2297 an absolute address. `laststart' will be
2298 the `set_number_at' we're about to insert;
2299 `laststart+3' the number to set, the source
2300 for the relative address. But we are
2301 inserting into the middle of the pattern --
2302 so everything is getting moved up by 5.
2303 Conclusion: (b - 2) - (laststart + 3) + 5,
2304 i.e., b - laststart.
2305
2306 We insert this at the beginning of the loop
2307 so that if we fail during matching, we'll
2308 reinitialize the bounds. */
2309 insert_op2 (set_number_at, laststart, b - laststart,
2310 upper_bound - 1, b);
2311 b += 5;
2312 }
2313 }
2314 pending_exact = 0;
2315 beg_interval = NULL;
2316 }
2317 break;
2318
2319 unfetch_interval:
2320 /* If an invalid interval, match the characters as literals. */
2321 assert (beg_interval);
2322 p = beg_interval;
2323 beg_interval = NULL;
2324
2325 /* normal_char and normal_backslash need `c'. */
2326 PATFETCH (c);
2327
2328 if (!(syntax & RE_NO_BK_BRACES))
2329 {
2330 if (p > pattern && p[-1] == '\\')
2331 goto normal_backslash;
2332 }
2333 goto normal_char;
2334
2335 #ifdef emacs
2336 /* There is no way to specify the before_dot and after_dot
2337 operators. rms says this is ok. --karl */
2338 case '=':
2339 BUF_PUSH (at_dot);
2340 break;
2341
2342 case 's':
2343 laststart = b;
2344 PATFETCH (c);
2345 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2346 break;
2347
2348 case 'S':
2349 laststart = b;
2350 PATFETCH (c);
2351 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2352 break;
2353 #endif /* emacs */
2354
2355
2356 case 'w':
2357 laststart = b;
2358 BUF_PUSH (wordchar);
2359 break;
2360
2361
2362 case 'W':
2363 laststart = b;
2364 BUF_PUSH (notwordchar);
2365 break;
2366
2367
2368 case '<':
2369 BUF_PUSH (wordbeg);
2370 break;
2371
2372 case '>':
2373 BUF_PUSH (wordend);
2374 break;
2375
2376 case 'b':
2377 BUF_PUSH (wordbound);
2378 break;
2379
2380 case 'B':
2381 BUF_PUSH (notwordbound);
2382 break;
2383
2384 case '`':
2385 BUF_PUSH (begbuf);
2386 break;
2387
2388 case '\'':
2389 BUF_PUSH (endbuf);
2390 break;
2391
2392 case '1': case '2': case '3': case '4': case '5':
2393 case '6': case '7': case '8': case '9':
2394 if (syntax & RE_NO_BK_REFS)
2395 goto normal_char;
2396
2397 c1 = c - '0';
2398
2399 if (c1 > regnum)
2400 return REG_ESUBREG;
2401
2402 /* Can't back reference to a subexpression if inside of it. */
2403 if (group_in_compile_stack (compile_stack, c1))
2404 goto normal_char;
2405
2406 laststart = b;
2407 BUF_PUSH_2 (duplicate, c1);
2408 break;
2409
2410
2411 case '+':
2412 case '?':
2413 if (syntax & RE_BK_PLUS_QM)
2414 goto handle_plus;
2415 else
2416 goto normal_backslash;
2417
2418 default:
2419 normal_backslash:
2420 /* You might think it would be useful for \ to mean
2421 not to translate; but if we don't translate it
2422 it will never match anything. */
2423 c = TRANSLATE (c);
2424 goto normal_char;
2425 }
2426 break;
2427
2428
2429 default:
2430 /* Expects the character in `c'. */
2431 normal_char:
2432 /* If no exactn currently being built. */
2433 if (!pending_exact
2434
2435 /* If last exactn not at current position. */
2436 || pending_exact + *pending_exact + 1 != b
2437
2438 /* We have only one byte following the exactn for the count. */
2439 || *pending_exact == (1 << BYTEWIDTH) - 1
2440
2441 /* If followed by a repetition operator. */
2442 || *p == '*' || *p == '^'
2443 || ((syntax & RE_BK_PLUS_QM)
2444 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2445 : (*p == '+' || *p == '?'))
2446 || ((syntax & RE_INTERVALS)
2447 && ((syntax & RE_NO_BK_BRACES)
2448 ? *p == '{'
2449 : (p[0] == '\\' && p[1] == '{'))))
2450 {
2451 /* Start building a new exactn. */
2452
2453 laststart = b;
2454
2455 BUF_PUSH_2 (exactn, 0);
2456 pending_exact = b - 1;
2457 }
2458
2459 BUF_PUSH (c);
2460 (*pending_exact)++;
2461 break;
2462 } /* switch (c) */
2463 } /* while p != pend */
2464
2465
2466 /* Through the pattern now. */
2467
2468 if (fixup_alt_jump)
2469 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2470
2471 if (!COMPILE_STACK_EMPTY)
2472 return REG_EPAREN;
2473
2474 free (compile_stack.stack);
2475
2476 /* We have succeeded; set the length of the buffer. */
2477 bufp->used = b - bufp->buffer;
2478
2479 #ifdef DEBUG
2480 if (debug)
2481 {
2482 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2483 print_compiled_pattern (bufp);
2484 }
2485 #endif /* DEBUG */
2486
2487 #ifndef MATCH_MAY_ALLOCATE
2488 /* Initialize the failure stack to the largest possible stack. This
2489 isn't necessary unless we're trying to avoid calling alloca in
2490 the search and match routines. */
2491 {
2492 int num_regs = bufp->re_nsub + 1;
2493
2494 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2495 is strictly greater than re_max_failures, the largest possible stack
2496 is 2 * re_max_failures failure points. */
2497 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2498 {
2499 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2500
2501 #ifdef emacs
2502 if (! fail_stack.stack)
2503 fail_stack.stack
2504 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2505 * sizeof (fail_stack_elt_t));
2506 else
2507 fail_stack.stack
2508 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2509 (fail_stack.size
2510 * sizeof (fail_stack_elt_t)));
2511 #else /* not emacs */
2512 if (! fail_stack.stack)
2513 fail_stack.stack
2514 = (fail_stack_elt_t *) malloc (fail_stack.size
2515 * sizeof (fail_stack_elt_t));
2516 else
2517 fail_stack.stack
2518 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2519 (fail_stack.size
2520 * sizeof (fail_stack_elt_t)));
2521 #endif /* not emacs */
2522 }
2523
2524 /* Initialize some other variables the matcher uses. */
2525 RETALLOC_IF (regstart, num_regs, const char *);
2526 RETALLOC_IF (regend, num_regs, const char *);
2527 RETALLOC_IF (old_regstart, num_regs, const char *);
2528 RETALLOC_IF (old_regend, num_regs, const char *);
2529 RETALLOC_IF (best_regstart, num_regs, const char *);
2530 RETALLOC_IF (best_regend, num_regs, const char *);
2531 RETALLOC_IF (reg_info, num_regs, register_info_type);
2532 RETALLOC_IF (reg_dummy, num_regs, const char *);
2533 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2534 }
2535 #endif
2536
2537 return REG_NOERROR;
2538 } /* regex_compile */
2539 \f
2540 /* Subroutines for `regex_compile'. */
2541
2542 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2543
2544 static void
2545 store_op1 (op, loc, arg)
2546 re_opcode_t op;
2547 unsigned char *loc;
2548 int arg;
2549 {
2550 *loc = (unsigned char) op;
2551 STORE_NUMBER (loc + 1, arg);
2552 }
2553
2554
2555 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2556
2557 static void
2558 store_op2 (op, loc, arg1, arg2)
2559 re_opcode_t op;
2560 unsigned char *loc;
2561 int arg1, arg2;
2562 {
2563 *loc = (unsigned char) op;
2564 STORE_NUMBER (loc + 1, arg1);
2565 STORE_NUMBER (loc + 3, arg2);
2566 }
2567
2568
2569 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2570 for OP followed by two-byte integer parameter ARG. */
2571
2572 static void
2573 insert_op1 (op, loc, arg, end)
2574 re_opcode_t op;
2575 unsigned char *loc;
2576 int arg;
2577 unsigned char *end;
2578 {
2579 register unsigned char *pfrom = end;
2580 register unsigned char *pto = end + 3;
2581
2582 while (pfrom != loc)
2583 *--pto = *--pfrom;
2584
2585 store_op1 (op, loc, arg);
2586 }
2587
2588
2589 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2590
2591 static void
2592 insert_op2 (op, loc, arg1, arg2, end)
2593 re_opcode_t op;
2594 unsigned char *loc;
2595 int arg1, arg2;
2596 unsigned char *end;
2597 {
2598 register unsigned char *pfrom = end;
2599 register unsigned char *pto = end + 5;
2600
2601 while (pfrom != loc)
2602 *--pto = *--pfrom;
2603
2604 store_op2 (op, loc, arg1, arg2);
2605 }
2606
2607
2608 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2609 after an alternative or a begin-subexpression. We assume there is at
2610 least one character before the ^. */
2611
2612 static boolean
2613 at_begline_loc_p (pattern, p, syntax)
2614 const char *pattern, *p;
2615 reg_syntax_t syntax;
2616 {
2617 const char *prev = p - 2;
2618 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2619
2620 return
2621 /* After a subexpression? */
2622 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2623 /* After an alternative? */
2624 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2625 }
2626
2627
2628 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2629 at least one character after the $, i.e., `P < PEND'. */
2630
2631 static boolean
2632 at_endline_loc_p (p, pend, syntax)
2633 const char *p, *pend;
2634 int syntax;
2635 {
2636 const char *next = p;
2637 boolean next_backslash = *next == '\\';
2638 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2639
2640 return
2641 /* Before a subexpression? */
2642 (syntax & RE_NO_BK_PARENS ? *next == ')'
2643 : next_backslash && next_next && *next_next == ')')
2644 /* Before an alternative? */
2645 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2646 : next_backslash && next_next && *next_next == '|');
2647 }
2648
2649
2650 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2651 false if it's not. */
2652
2653 static boolean
2654 group_in_compile_stack (compile_stack, regnum)
2655 compile_stack_type compile_stack;
2656 regnum_t regnum;
2657 {
2658 int this_element;
2659
2660 for (this_element = compile_stack.avail - 1;
2661 this_element >= 0;
2662 this_element--)
2663 if (compile_stack.stack[this_element].regnum == regnum)
2664 return true;
2665
2666 return false;
2667 }
2668
2669
2670 /* Read the ending character of a range (in a bracket expression) from the
2671 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2672 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2673 Then we set the translation of all bits between the starting and
2674 ending characters (inclusive) in the compiled pattern B.
2675
2676 Return an error code.
2677
2678 We use these short variable names so we can use the same macros as
2679 `regex_compile' itself. */
2680
2681 static reg_errcode_t
2682 compile_range (p_ptr, pend, translate, syntax, b)
2683 const char **p_ptr, *pend;
2684 char *translate;
2685 reg_syntax_t syntax;
2686 unsigned char *b;
2687 {
2688 unsigned this_char;
2689
2690 const char *p = *p_ptr;
2691 int range_start, range_end;
2692
2693 if (p == pend)
2694 return REG_ERANGE;
2695
2696 /* Even though the pattern is a signed `char *', we need to fetch
2697 with unsigned char *'s; if the high bit of the pattern character
2698 is set, the range endpoints will be negative if we fetch using a
2699 signed char *.
2700
2701 We also want to fetch the endpoints without translating them; the
2702 appropriate translation is done in the bit-setting loop below. */
2703 range_start = ((unsigned char *) p)[-2];
2704 range_end = ((unsigned char *) p)[0];
2705
2706 /* Have to increment the pointer into the pattern string, so the
2707 caller isn't still at the ending character. */
2708 (*p_ptr)++;
2709
2710 /* If the start is after the end, the range is empty. */
2711 if (range_start > range_end)
2712 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2713
2714 /* Here we see why `this_char' has to be larger than an `unsigned
2715 char' -- the range is inclusive, so if `range_end' == 0xff
2716 (assuming 8-bit characters), we would otherwise go into an infinite
2717 loop, since all characters <= 0xff. */
2718 for (this_char = range_start; this_char <= range_end; this_char++)
2719 {
2720 SET_LIST_BIT (TRANSLATE (this_char));
2721 }
2722
2723 return REG_NOERROR;
2724 }
2725 \f
2726 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2727 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2728 characters can start a string that matches the pattern. This fastmap
2729 is used by re_search to skip quickly over impossible starting points.
2730
2731 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2732 area as BUFP->fastmap.
2733
2734 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2735 the pattern buffer.
2736
2737 Returns 0 if we succeed, -2 if an internal error. */
2738
2739 int
2740 re_compile_fastmap (bufp)
2741 struct re_pattern_buffer *bufp;
2742 {
2743 int j, k;
2744 #ifdef MATCH_MAY_ALLOCATE
2745 fail_stack_type fail_stack;
2746 #endif
2747 #ifndef REGEX_MALLOC
2748 char *destination;
2749 #endif
2750 /* We don't push any register information onto the failure stack. */
2751 unsigned num_regs = 0;
2752
2753 register char *fastmap = bufp->fastmap;
2754 unsigned char *pattern = bufp->buffer;
2755 unsigned long size = bufp->used;
2756 unsigned char *p = pattern;
2757 register unsigned char *pend = pattern + size;
2758
2759 /* Assume that each path through the pattern can be null until
2760 proven otherwise. We set this false at the bottom of switch
2761 statement, to which we get only if a particular path doesn't
2762 match the empty string. */
2763 boolean path_can_be_null = true;
2764
2765 /* We aren't doing a `succeed_n' to begin with. */
2766 boolean succeed_n_p = false;
2767
2768 assert (fastmap != NULL && p != NULL);
2769
2770 INIT_FAIL_STACK ();
2771 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2772 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2773 bufp->can_be_null = 0;
2774
2775 while (p != pend || !FAIL_STACK_EMPTY ())
2776 {
2777 if (p == pend)
2778 {
2779 bufp->can_be_null |= path_can_be_null;
2780
2781 /* Reset for next path. */
2782 path_can_be_null = true;
2783
2784 p = fail_stack.stack[--fail_stack.avail];
2785 }
2786
2787 /* We should never be about to go beyond the end of the pattern. */
2788 assert (p < pend);
2789
2790 #ifdef SWITCH_ENUM_BUG
2791 switch ((int) ((re_opcode_t) *p++))
2792 #else
2793 switch ((re_opcode_t) *p++)
2794 #endif
2795 {
2796
2797 /* I guess the idea here is to simply not bother with a fastmap
2798 if a backreference is used, since it's too hard to figure out
2799 the fastmap for the corresponding group. Setting
2800 `can_be_null' stops `re_search_2' from using the fastmap, so
2801 that is all we do. */
2802 case duplicate:
2803 bufp->can_be_null = 1;
2804 return 0;
2805
2806
2807 /* Following are the cases which match a character. These end
2808 with `break'. */
2809
2810 case exactn:
2811 fastmap[p[1]] = 1;
2812 break;
2813
2814
2815 case charset:
2816 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2817 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2818 fastmap[j] = 1;
2819 break;
2820
2821
2822 case charset_not:
2823 /* Chars beyond end of map must be allowed. */
2824 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2825 fastmap[j] = 1;
2826
2827 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2828 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2829 fastmap[j] = 1;
2830 break;
2831
2832
2833 case wordchar:
2834 for (j = 0; j < (1 << BYTEWIDTH); j++)
2835 if (SYNTAX (j) == Sword)
2836 fastmap[j] = 1;
2837 break;
2838
2839
2840 case notwordchar:
2841 for (j = 0; j < (1 << BYTEWIDTH); j++)
2842 if (SYNTAX (j) != Sword)
2843 fastmap[j] = 1;
2844 break;
2845
2846
2847 case anychar:
2848 /* `.' matches anything ... */
2849 for (j = 0; j < (1 << BYTEWIDTH); j++)
2850 fastmap[j] = 1;
2851
2852 /* ... except perhaps newline. */
2853 if (!(bufp->syntax & RE_DOT_NEWLINE))
2854 fastmap['\n'] = 0;
2855
2856 /* Return if we have already set `can_be_null'; if we have,
2857 then the fastmap is irrelevant. Something's wrong here. */
2858 else if (bufp->can_be_null)
2859 return 0;
2860
2861 /* Otherwise, have to check alternative paths. */
2862 break;
2863
2864
2865 #ifdef emacs
2866 case syntaxspec:
2867 k = *p++;
2868 for (j = 0; j < (1 << BYTEWIDTH); j++)
2869 if (SYNTAX (j) == (enum syntaxcode) k)
2870 fastmap[j] = 1;
2871 break;
2872
2873
2874 case notsyntaxspec:
2875 k = *p++;
2876 for (j = 0; j < (1 << BYTEWIDTH); j++)
2877 if (SYNTAX (j) != (enum syntaxcode) k)
2878 fastmap[j] = 1;
2879 break;
2880
2881
2882 /* All cases after this match the empty string. These end with
2883 `continue'. */
2884
2885
2886 case before_dot:
2887 case at_dot:
2888 case after_dot:
2889 continue;
2890 #endif /* not emacs */
2891
2892
2893 case no_op:
2894 case begline:
2895 case endline:
2896 case begbuf:
2897 case endbuf:
2898 case wordbound:
2899 case notwordbound:
2900 case wordbeg:
2901 case wordend:
2902 case push_dummy_failure:
2903 continue;
2904
2905
2906 case jump_n:
2907 case pop_failure_jump:
2908 case maybe_pop_jump:
2909 case jump:
2910 case jump_past_alt:
2911 case dummy_failure_jump:
2912 EXTRACT_NUMBER_AND_INCR (j, p);
2913 p += j;
2914 if (j > 0)
2915 continue;
2916
2917 /* Jump backward implies we just went through the body of a
2918 loop and matched nothing. Opcode jumped to should be
2919 `on_failure_jump' or `succeed_n'. Just treat it like an
2920 ordinary jump. For a * loop, it has pushed its failure
2921 point already; if so, discard that as redundant. */
2922 if ((re_opcode_t) *p != on_failure_jump
2923 && (re_opcode_t) *p != succeed_n)
2924 continue;
2925
2926 p++;
2927 EXTRACT_NUMBER_AND_INCR (j, p);
2928 p += j;
2929
2930 /* If what's on the stack is where we are now, pop it. */
2931 if (!FAIL_STACK_EMPTY ()
2932 && fail_stack.stack[fail_stack.avail - 1] == p)
2933 fail_stack.avail--;
2934
2935 continue;
2936
2937
2938 case on_failure_jump:
2939 case on_failure_keep_string_jump:
2940 handle_on_failure_jump:
2941 EXTRACT_NUMBER_AND_INCR (j, p);
2942
2943 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2944 end of the pattern. We don't want to push such a point,
2945 since when we restore it above, entering the switch will
2946 increment `p' past the end of the pattern. We don't need
2947 to push such a point since we obviously won't find any more
2948 fastmap entries beyond `pend'. Such a pattern can match
2949 the null string, though. */
2950 if (p + j < pend)
2951 {
2952 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2953 return -2;
2954 }
2955 else
2956 bufp->can_be_null = 1;
2957
2958 if (succeed_n_p)
2959 {
2960 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2961 succeed_n_p = false;
2962 }
2963
2964 continue;
2965
2966
2967 case succeed_n:
2968 /* Get to the number of times to succeed. */
2969 p += 2;
2970
2971 /* Increment p past the n for when k != 0. */
2972 EXTRACT_NUMBER_AND_INCR (k, p);
2973 if (k == 0)
2974 {
2975 p -= 4;
2976 succeed_n_p = true; /* Spaghetti code alert. */
2977 goto handle_on_failure_jump;
2978 }
2979 continue;
2980
2981
2982 case set_number_at:
2983 p += 4;
2984 continue;
2985
2986
2987 case start_memory:
2988 case stop_memory:
2989 p += 2;
2990 continue;
2991
2992
2993 default:
2994 abort (); /* We have listed all the cases. */
2995 } /* switch *p++ */
2996
2997 /* Getting here means we have found the possible starting
2998 characters for one path of the pattern -- and that the empty
2999 string does not match. We need not follow this path further.
3000 Instead, look at the next alternative (remembered on the
3001 stack), or quit if no more. The test at the top of the loop
3002 does these things. */
3003 path_can_be_null = false;
3004 p = pend;
3005 } /* while p */
3006
3007 /* Set `can_be_null' for the last path (also the first path, if the
3008 pattern is empty). */
3009 bufp->can_be_null |= path_can_be_null;
3010 return 0;
3011 } /* re_compile_fastmap */
3012 \f
3013 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3014 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3015 this memory for recording register information. STARTS and ENDS
3016 must be allocated using the malloc library routine, and must each
3017 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3018
3019 If NUM_REGS == 0, then subsequent matches should allocate their own
3020 register data.
3021
3022 Unless this function is called, the first search or match using
3023 PATTERN_BUFFER will allocate its own register data, without
3024 freeing the old data. */
3025
3026 void
3027 re_set_registers (bufp, regs, num_regs, starts, ends)
3028 struct re_pattern_buffer *bufp;
3029 struct re_registers *regs;
3030 unsigned num_regs;
3031 regoff_t *starts, *ends;
3032 {
3033 if (num_regs)
3034 {
3035 bufp->regs_allocated = REGS_REALLOCATE;
3036 regs->num_regs = num_regs;
3037 regs->start = starts;
3038 regs->end = ends;
3039 }
3040 else
3041 {
3042 bufp->regs_allocated = REGS_UNALLOCATED;
3043 regs->num_regs = 0;
3044 regs->start = regs->end = (regoff_t *) 0;
3045 }
3046 }
3047 \f
3048 /* Searching routines. */
3049
3050 /* Like re_search_2, below, but only one string is specified, and
3051 doesn't let you say where to stop matching. */
3052
3053 int
3054 re_search (bufp, string, size, startpos, range, regs)
3055 struct re_pattern_buffer *bufp;
3056 const char *string;
3057 int size, startpos, range;
3058 struct re_registers *regs;
3059 {
3060 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3061 regs, size);
3062 }
3063
3064
3065 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3066 virtual concatenation of STRING1 and STRING2, starting first at index
3067 STARTPOS, then at STARTPOS + 1, and so on.
3068
3069 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3070
3071 RANGE is how far to scan while trying to match. RANGE = 0 means try
3072 only at STARTPOS; in general, the last start tried is STARTPOS +
3073 RANGE.
3074
3075 In REGS, return the indices of the virtual concatenation of STRING1
3076 and STRING2 that matched the entire BUFP->buffer and its contained
3077 subexpressions.
3078
3079 Do not consider matching one past the index STOP in the virtual
3080 concatenation of STRING1 and STRING2.
3081
3082 We return either the position in the strings at which the match was
3083 found, -1 if no match, or -2 if error (such as failure
3084 stack overflow). */
3085
3086 int
3087 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3088 struct re_pattern_buffer *bufp;
3089 const char *string1, *string2;
3090 int size1, size2;
3091 int startpos;
3092 int range;
3093 struct re_registers *regs;
3094 int stop;
3095 {
3096 int val;
3097 register char *fastmap = bufp->fastmap;
3098 register char *translate = bufp->translate;
3099 int total_size = size1 + size2;
3100 int endpos = startpos + range;
3101
3102 /* Check for out-of-range STARTPOS. */
3103 if (startpos < 0 || startpos > total_size)
3104 return -1;
3105
3106 /* Fix up RANGE if it might eventually take us outside
3107 the virtual concatenation of STRING1 and STRING2. */
3108 if (endpos < -1)
3109 range = -1 - startpos;
3110 else if (endpos > total_size)
3111 range = total_size - startpos;
3112
3113 /* If the search isn't to be a backwards one, don't waste time in a
3114 search for a pattern that must be anchored. */
3115 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3116 {
3117 if (startpos > 0)
3118 return -1;
3119 else
3120 range = 1;
3121 }
3122
3123 /* Update the fastmap now if not correct already. */
3124 if (fastmap && !bufp->fastmap_accurate)
3125 if (re_compile_fastmap (bufp) == -2)
3126 return -2;
3127
3128 /* Loop through the string, looking for a place to start matching. */
3129 for (;;)
3130 {
3131 /* If a fastmap is supplied, skip quickly over characters that
3132 cannot be the start of a match. If the pattern can match the
3133 null string, however, we don't need to skip characters; we want
3134 the first null string. */
3135 if (fastmap && startpos < total_size && !bufp->can_be_null)
3136 {
3137 if (range > 0) /* Searching forwards. */
3138 {
3139 register const char *d;
3140 register int lim = 0;
3141 int irange = range;
3142
3143 if (startpos < size1 && startpos + range >= size1)
3144 lim = range - (size1 - startpos);
3145
3146 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3147
3148 /* Written out as an if-else to avoid testing `translate'
3149 inside the loop. */
3150 if (translate)
3151 while (range > lim
3152 && !fastmap[(unsigned char)
3153 translate[(unsigned char) *d++]])
3154 range--;
3155 else
3156 while (range > lim && !fastmap[(unsigned char) *d++])
3157 range--;
3158
3159 startpos += irange - range;
3160 }
3161 else /* Searching backwards. */
3162 {
3163 register char c = (size1 == 0 || startpos >= size1
3164 ? string2[startpos - size1]
3165 : string1[startpos]);
3166
3167 if (!fastmap[(unsigned char) TRANSLATE (c)])
3168 goto advance;
3169 }
3170 }
3171
3172 /* If can't match the null string, and that's all we have left, fail. */
3173 if (range >= 0 && startpos == total_size && fastmap
3174 && !bufp->can_be_null)
3175 return -1;
3176
3177 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3178 startpos, regs, stop);
3179 #ifndef REGEX_MALLOC
3180 #ifdef C_ALLOCA
3181 alloca (0);
3182 #endif
3183 #endif
3184
3185 if (val >= 0)
3186 return startpos;
3187
3188 if (val == -2)
3189 return -2;
3190
3191 advance:
3192 if (!range)
3193 break;
3194 else if (range > 0)
3195 {
3196 range--;
3197 startpos++;
3198 }
3199 else
3200 {
3201 range++;
3202 startpos--;
3203 }
3204 }
3205 return -1;
3206 } /* re_search_2 */
3207 \f
3208 /* Declarations and macros for re_match_2. */
3209
3210 static int bcmp_translate ();
3211 static boolean alt_match_null_string_p (),
3212 common_op_match_null_string_p (),
3213 group_match_null_string_p ();
3214
3215 /* This converts PTR, a pointer into one of the search strings `string1'
3216 and `string2' into an offset from the beginning of that string. */
3217 #define POINTER_TO_OFFSET(ptr) \
3218 (FIRST_STRING_P (ptr) \
3219 ? ((regoff_t) ((ptr) - string1)) \
3220 : ((regoff_t) ((ptr) - string2 + size1)))
3221
3222 /* Macros for dealing with the split strings in re_match_2. */
3223
3224 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3225
3226 /* Call before fetching a character with *d. This switches over to
3227 string2 if necessary. */
3228 #define PREFETCH() \
3229 while (d == dend) \
3230 { \
3231 /* End of string2 => fail. */ \
3232 if (dend == end_match_2) \
3233 goto fail; \
3234 /* End of string1 => advance to string2. */ \
3235 d = string2; \
3236 dend = end_match_2; \
3237 }
3238
3239
3240 /* Test if at very beginning or at very end of the virtual concatenation
3241 of `string1' and `string2'. If only one string, it's `string2'. */
3242 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3243 #define AT_STRINGS_END(d) ((d) == end2)
3244
3245
3246 /* Test if D points to a character which is word-constituent. We have
3247 two special cases to check for: if past the end of string1, look at
3248 the first character in string2; and if before the beginning of
3249 string2, look at the last character in string1. */
3250 #define WORDCHAR_P(d) \
3251 (SYNTAX ((d) == end1 ? *string2 \
3252 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3253 == Sword)
3254
3255 /* Test if the character before D and the one at D differ with respect
3256 to being word-constituent. */
3257 #define AT_WORD_BOUNDARY(d) \
3258 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3259 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3260
3261
3262 /* Free everything we malloc. */
3263 #ifdef MATCH_MAY_ALLOCATE
3264 #ifdef REGEX_MALLOC
3265 #define FREE_VAR(var) if (var) free (var); var = NULL
3266 #define FREE_VARIABLES() \
3267 do { \
3268 FREE_VAR (fail_stack.stack); \
3269 FREE_VAR (regstart); \
3270 FREE_VAR (regend); \
3271 FREE_VAR (old_regstart); \
3272 FREE_VAR (old_regend); \
3273 FREE_VAR (best_regstart); \
3274 FREE_VAR (best_regend); \
3275 FREE_VAR (reg_info); \
3276 FREE_VAR (reg_dummy); \
3277 FREE_VAR (reg_info_dummy); \
3278 } while (0)
3279 #else /* not REGEX_MALLOC */
3280 /* This used to do alloca (0), but now we do that in the caller. */
3281 #define FREE_VARIABLES() /* Nothing */
3282 #endif /* not REGEX_MALLOC */
3283 #else
3284 #define FREE_VARIABLES() /* Do nothing! */
3285 #endif /* not MATCH_MAY_ALLOCATE */
3286
3287 /* These values must meet several constraints. They must not be valid
3288 register values; since we have a limit of 255 registers (because
3289 we use only one byte in the pattern for the register number), we can
3290 use numbers larger than 255. They must differ by 1, because of
3291 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3292 be larger than the value for the highest register, so we do not try
3293 to actually save any registers when none are active. */
3294 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3295 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3296 \f
3297 /* Matching routines. */
3298
3299 #ifndef emacs /* Emacs never uses this. */
3300 /* re_match is like re_match_2 except it takes only a single string. */
3301
3302 int
3303 re_match (bufp, string, size, pos, regs)
3304 struct re_pattern_buffer *bufp;
3305 const char *string;
3306 int size, pos;
3307 struct re_registers *regs;
3308 {
3309 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3310 pos, regs, size);
3311 alloca (0);
3312 return result;
3313 }
3314 #endif /* not emacs */
3315
3316
3317 /* re_match_2 matches the compiled pattern in BUFP against the
3318 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3319 and SIZE2, respectively). We start matching at POS, and stop
3320 matching at STOP.
3321
3322 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3323 store offsets for the substring each group matched in REGS. See the
3324 documentation for exactly how many groups we fill.
3325
3326 We return -1 if no match, -2 if an internal error (such as the
3327 failure stack overflowing). Otherwise, we return the length of the
3328 matched substring. */
3329
3330 int
3331 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3332 struct re_pattern_buffer *bufp;
3333 const char *string1, *string2;
3334 int size1, size2;
3335 int pos;
3336 struct re_registers *regs;
3337 int stop;
3338 {
3339 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3340 pos, regs, stop);
3341 alloca (0);
3342 return result;
3343 }
3344
3345 /* This is a separate function so that we can force an alloca cleanup
3346 afterwards. */
3347 static int
3348 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3349 struct re_pattern_buffer *bufp;
3350 const char *string1, *string2;
3351 int size1, size2;
3352 int pos;
3353 struct re_registers *regs;
3354 int stop;
3355 {
3356 /* General temporaries. */
3357 int mcnt;
3358 unsigned char *p1;
3359
3360 /* Just past the end of the corresponding string. */
3361 const char *end1, *end2;
3362
3363 /* Pointers into string1 and string2, just past the last characters in
3364 each to consider matching. */
3365 const char *end_match_1, *end_match_2;
3366
3367 /* Where we are in the data, and the end of the current string. */
3368 const char *d, *dend;
3369
3370 /* Where we are in the pattern, and the end of the pattern. */
3371 unsigned char *p = bufp->buffer;
3372 register unsigned char *pend = p + bufp->used;
3373
3374 /* Mark the opcode just after a start_memory, so we can test for an
3375 empty subpattern when we get to the stop_memory. */
3376 unsigned char *just_past_start_mem = 0;
3377
3378 /* We use this to map every character in the string. */
3379 char *translate = bufp->translate;
3380
3381 /* Failure point stack. Each place that can handle a failure further
3382 down the line pushes a failure point on this stack. It consists of
3383 restart, regend, and reg_info for all registers corresponding to
3384 the subexpressions we're currently inside, plus the number of such
3385 registers, and, finally, two char *'s. The first char * is where
3386 to resume scanning the pattern; the second one is where to resume
3387 scanning the strings. If the latter is zero, the failure point is
3388 a ``dummy''; if a failure happens and the failure point is a dummy,
3389 it gets discarded and the next next one is tried. */
3390 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3391 fail_stack_type fail_stack;
3392 #endif
3393 #ifdef DEBUG
3394 static unsigned failure_id = 0;
3395 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3396 #endif
3397
3398 /* We fill all the registers internally, independent of what we
3399 return, for use in backreferences. The number here includes
3400 an element for register zero. */
3401 unsigned num_regs = bufp->re_nsub + 1;
3402
3403 /* The currently active registers. */
3404 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3405 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3406
3407 /* Information on the contents of registers. These are pointers into
3408 the input strings; they record just what was matched (on this
3409 attempt) by a subexpression part of the pattern, that is, the
3410 regnum-th regstart pointer points to where in the pattern we began
3411 matching and the regnum-th regend points to right after where we
3412 stopped matching the regnum-th subexpression. (The zeroth register
3413 keeps track of what the whole pattern matches.) */
3414 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3415 const char **regstart, **regend;
3416 #endif
3417
3418 /* If a group that's operated upon by a repetition operator fails to
3419 match anything, then the register for its start will need to be
3420 restored because it will have been set to wherever in the string we
3421 are when we last see its open-group operator. Similarly for a
3422 register's end. */
3423 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3424 const char **old_regstart, **old_regend;
3425 #endif
3426
3427 /* The is_active field of reg_info helps us keep track of which (possibly
3428 nested) subexpressions we are currently in. The matched_something
3429 field of reg_info[reg_num] helps us tell whether or not we have
3430 matched any of the pattern so far this time through the reg_num-th
3431 subexpression. These two fields get reset each time through any
3432 loop their register is in. */
3433 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3434 register_info_type *reg_info;
3435 #endif
3436
3437 /* The following record the register info as found in the above
3438 variables when we find a match better than any we've seen before.
3439 This happens as we backtrack through the failure points, which in
3440 turn happens only if we have not yet matched the entire string. */
3441 unsigned best_regs_set = false;
3442 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3443 const char **best_regstart, **best_regend;
3444 #endif
3445
3446 /* Logically, this is `best_regend[0]'. But we don't want to have to
3447 allocate space for that if we're not allocating space for anything
3448 else (see below). Also, we never need info about register 0 for
3449 any of the other register vectors, and it seems rather a kludge to
3450 treat `best_regend' differently than the rest. So we keep track of
3451 the end of the best match so far in a separate variable. We
3452 initialize this to NULL so that when we backtrack the first time
3453 and need to test it, it's not garbage. */
3454 const char *match_end = NULL;
3455
3456 /* Used when we pop values we don't care about. */
3457 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3458 const char **reg_dummy;
3459 register_info_type *reg_info_dummy;
3460 #endif
3461
3462 #ifdef DEBUG
3463 /* Counts the total number of registers pushed. */
3464 unsigned num_regs_pushed = 0;
3465 #endif
3466
3467 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3468
3469 INIT_FAIL_STACK ();
3470
3471 #ifdef MATCH_MAY_ALLOCATE
3472 /* Do not bother to initialize all the register variables if there are
3473 no groups in the pattern, as it takes a fair amount of time. If
3474 there are groups, we include space for register 0 (the whole
3475 pattern), even though we never use it, since it simplifies the
3476 array indexing. We should fix this. */
3477 if (bufp->re_nsub)
3478 {
3479 regstart = REGEX_TALLOC (num_regs, const char *);
3480 regend = REGEX_TALLOC (num_regs, const char *);
3481 old_regstart = REGEX_TALLOC (num_regs, const char *);
3482 old_regend = REGEX_TALLOC (num_regs, const char *);
3483 best_regstart = REGEX_TALLOC (num_regs, const char *);
3484 best_regend = REGEX_TALLOC (num_regs, const char *);
3485 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3486 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3487 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3488
3489 if (!(regstart && regend && old_regstart && old_regend && reg_info
3490 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3491 {
3492 FREE_VARIABLES ();
3493 return -2;
3494 }
3495 }
3496 #if defined (REGEX_MALLOC)
3497 else
3498 {
3499 /* We must initialize all our variables to NULL, so that
3500 `FREE_VARIABLES' doesn't try to free them. */
3501 regstart = regend = old_regstart = old_regend = best_regstart
3502 = best_regend = reg_dummy = NULL;
3503 reg_info = reg_info_dummy = (register_info_type *) NULL;
3504 }
3505 #endif /* REGEX_MALLOC */
3506 #endif /* MATCH_MAY_ALLOCATE */
3507
3508 /* The starting position is bogus. */
3509 if (pos < 0 || pos > size1 + size2)
3510 {
3511 FREE_VARIABLES ();
3512 return -1;
3513 }
3514
3515 /* Initialize subexpression text positions to -1 to mark ones that no
3516 start_memory/stop_memory has been seen for. Also initialize the
3517 register information struct. */
3518 for (mcnt = 1; mcnt < num_regs; mcnt++)
3519 {
3520 regstart[mcnt] = regend[mcnt]
3521 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3522
3523 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3524 IS_ACTIVE (reg_info[mcnt]) = 0;
3525 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3526 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3527 }
3528
3529 /* We move `string1' into `string2' if the latter's empty -- but not if
3530 `string1' is null. */
3531 if (size2 == 0 && string1 != NULL)
3532 {
3533 string2 = string1;
3534 size2 = size1;
3535 string1 = 0;
3536 size1 = 0;
3537 }
3538 end1 = string1 + size1;
3539 end2 = string2 + size2;
3540
3541 /* Compute where to stop matching, within the two strings. */
3542 if (stop <= size1)
3543 {
3544 end_match_1 = string1 + stop;
3545 end_match_2 = string2;
3546 }
3547 else
3548 {
3549 end_match_1 = end1;
3550 end_match_2 = string2 + stop - size1;
3551 }
3552
3553 /* `p' scans through the pattern as `d' scans through the data.
3554 `dend' is the end of the input string that `d' points within. `d'
3555 is advanced into the following input string whenever necessary, but
3556 this happens before fetching; therefore, at the beginning of the
3557 loop, `d' can be pointing at the end of a string, but it cannot
3558 equal `string2'. */
3559 if (size1 > 0 && pos <= size1)
3560 {
3561 d = string1 + pos;
3562 dend = end_match_1;
3563 }
3564 else
3565 {
3566 d = string2 + pos - size1;
3567 dend = end_match_2;
3568 }
3569
3570 DEBUG_PRINT1 ("The compiled pattern is: ");
3571 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3572 DEBUG_PRINT1 ("The string to match is: `");
3573 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3574 DEBUG_PRINT1 ("'\n");
3575
3576 /* This loops over pattern commands. It exits by returning from the
3577 function if the match is complete, or it drops through if the match
3578 fails at this starting point in the input data. */
3579 for (;;)
3580 {
3581 DEBUG_PRINT2 ("\n0x%x: ", p);
3582
3583 if (p == pend)
3584 { /* End of pattern means we might have succeeded. */
3585 DEBUG_PRINT1 ("end of pattern ... ");
3586
3587 /* If we haven't matched the entire string, and we want the
3588 longest match, try backtracking. */
3589 if (d != end_match_2)
3590 {
3591 DEBUG_PRINT1 ("backtracking.\n");
3592
3593 if (!FAIL_STACK_EMPTY ())
3594 { /* More failure points to try. */
3595 boolean same_str_p = (FIRST_STRING_P (match_end)
3596 == MATCHING_IN_FIRST_STRING);
3597
3598 /* If exceeds best match so far, save it. */
3599 if (!best_regs_set
3600 || (same_str_p && d > match_end)
3601 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3602 {
3603 best_regs_set = true;
3604 match_end = d;
3605
3606 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3607
3608 for (mcnt = 1; mcnt < num_regs; mcnt++)
3609 {
3610 best_regstart[mcnt] = regstart[mcnt];
3611 best_regend[mcnt] = regend[mcnt];
3612 }
3613 }
3614 goto fail;
3615 }
3616
3617 /* If no failure points, don't restore garbage. */
3618 else if (best_regs_set)
3619 {
3620 restore_best_regs:
3621 /* Restore best match. It may happen that `dend ==
3622 end_match_1' while the restored d is in string2.
3623 For example, the pattern `x.*y.*z' against the
3624 strings `x-' and `y-z-', if the two strings are
3625 not consecutive in memory. */
3626 DEBUG_PRINT1 ("Restoring best registers.\n");
3627
3628 d = match_end;
3629 dend = ((d >= string1 && d <= end1)
3630 ? end_match_1 : end_match_2);
3631
3632 for (mcnt = 1; mcnt < num_regs; mcnt++)
3633 {
3634 regstart[mcnt] = best_regstart[mcnt];
3635 regend[mcnt] = best_regend[mcnt];
3636 }
3637 }
3638 } /* d != end_match_2 */
3639
3640 DEBUG_PRINT1 ("Accepting match.\n");
3641
3642 /* If caller wants register contents data back, do it. */
3643 if (regs && !bufp->no_sub)
3644 {
3645 /* Have the register data arrays been allocated? */
3646 if (bufp->regs_allocated == REGS_UNALLOCATED)
3647 { /* No. So allocate them with malloc. We need one
3648 extra element beyond `num_regs' for the `-1' marker
3649 GNU code uses. */
3650 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3651 regs->start = TALLOC (regs->num_regs, regoff_t);
3652 regs->end = TALLOC (regs->num_regs, regoff_t);
3653 if (regs->start == NULL || regs->end == NULL)
3654 return -2;
3655 bufp->regs_allocated = REGS_REALLOCATE;
3656 }
3657 else if (bufp->regs_allocated == REGS_REALLOCATE)
3658 { /* Yes. If we need more elements than were already
3659 allocated, reallocate them. If we need fewer, just
3660 leave it alone. */
3661 if (regs->num_regs < num_regs + 1)
3662 {
3663 regs->num_regs = num_regs + 1;
3664 RETALLOC (regs->start, regs->num_regs, regoff_t);
3665 RETALLOC (regs->end, regs->num_regs, regoff_t);
3666 if (regs->start == NULL || regs->end == NULL)
3667 return -2;
3668 }
3669 }
3670 else
3671 {
3672 /* These braces fend off a "empty body in an else-statement"
3673 warning under GCC when assert expands to nothing. */
3674 assert (bufp->regs_allocated == REGS_FIXED);
3675 }
3676
3677 /* Convert the pointer data in `regstart' and `regend' to
3678 indices. Register zero has to be set differently,
3679 since we haven't kept track of any info for it. */
3680 if (regs->num_regs > 0)
3681 {
3682 regs->start[0] = pos;
3683 regs->end[0] = (MATCHING_IN_FIRST_STRING
3684 ? ((regoff_t) (d - string1))
3685 : ((regoff_t) (d - string2 + size1)));
3686 }
3687
3688 /* Go through the first `min (num_regs, regs->num_regs)'
3689 registers, since that is all we initialized. */
3690 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3691 {
3692 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3693 regs->start[mcnt] = regs->end[mcnt] = -1;
3694 else
3695 {
3696 regs->start[mcnt]
3697 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3698 regs->end[mcnt]
3699 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3700 }
3701 }
3702
3703 /* If the regs structure we return has more elements than
3704 were in the pattern, set the extra elements to -1. If
3705 we (re)allocated the registers, this is the case,
3706 because we always allocate enough to have at least one
3707 -1 at the end. */
3708 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3709 regs->start[mcnt] = regs->end[mcnt] = -1;
3710 } /* regs && !bufp->no_sub */
3711
3712 FREE_VARIABLES ();
3713 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3714 nfailure_points_pushed, nfailure_points_popped,
3715 nfailure_points_pushed - nfailure_points_popped);
3716 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3717
3718 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3719 ? string1
3720 : string2 - size1);
3721
3722 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3723
3724 return mcnt;
3725 }
3726
3727 /* Otherwise match next pattern command. */
3728 #ifdef SWITCH_ENUM_BUG
3729 switch ((int) ((re_opcode_t) *p++))
3730 #else
3731 switch ((re_opcode_t) *p++)
3732 #endif
3733 {
3734 /* Ignore these. Used to ignore the n of succeed_n's which
3735 currently have n == 0. */
3736 case no_op:
3737 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3738 break;
3739
3740
3741 /* Match the next n pattern characters exactly. The following
3742 byte in the pattern defines n, and the n bytes after that
3743 are the characters to match. */
3744 case exactn:
3745 mcnt = *p++;
3746 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3747
3748 /* This is written out as an if-else so we don't waste time
3749 testing `translate' inside the loop. */
3750 if (translate)
3751 {
3752 do
3753 {
3754 PREFETCH ();
3755 if (translate[(unsigned char) *d++] != (char) *p++)
3756 goto fail;
3757 }
3758 while (--mcnt);
3759 }
3760 else
3761 {
3762 do
3763 {
3764 PREFETCH ();
3765 if (*d++ != (char) *p++) goto fail;
3766 }
3767 while (--mcnt);
3768 }
3769 SET_REGS_MATCHED ();
3770 break;
3771
3772
3773 /* Match any character except possibly a newline or a null. */
3774 case anychar:
3775 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3776
3777 PREFETCH ();
3778
3779 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3780 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3781 goto fail;
3782
3783 SET_REGS_MATCHED ();
3784 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3785 d++;
3786 break;
3787
3788
3789 case charset:
3790 case charset_not:
3791 {
3792 register unsigned char c;
3793 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3794
3795 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3796
3797 PREFETCH ();
3798 c = TRANSLATE (*d); /* The character to match. */
3799
3800 /* Cast to `unsigned' instead of `unsigned char' in case the
3801 bit list is a full 32 bytes long. */
3802 if (c < (unsigned) (*p * BYTEWIDTH)
3803 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3804 not = !not;
3805
3806 p += 1 + *p;
3807
3808 if (!not) goto fail;
3809
3810 SET_REGS_MATCHED ();
3811 d++;
3812 break;
3813 }
3814
3815
3816 /* The beginning of a group is represented by start_memory.
3817 The arguments are the register number in the next byte, and the
3818 number of groups inner to this one in the next. The text
3819 matched within the group is recorded (in the internal
3820 registers data structure) under the register number. */
3821 case start_memory:
3822 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3823
3824 /* Find out if this group can match the empty string. */
3825 p1 = p; /* To send to group_match_null_string_p. */
3826
3827 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3828 REG_MATCH_NULL_STRING_P (reg_info[*p])
3829 = group_match_null_string_p (&p1, pend, reg_info);
3830
3831 /* Save the position in the string where we were the last time
3832 we were at this open-group operator in case the group is
3833 operated upon by a repetition operator, e.g., with `(a*)*b'
3834 against `ab'; then we want to ignore where we are now in
3835 the string in case this attempt to match fails. */
3836 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3837 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3838 : regstart[*p];
3839 DEBUG_PRINT2 (" old_regstart: %d\n",
3840 POINTER_TO_OFFSET (old_regstart[*p]));
3841
3842 regstart[*p] = d;
3843 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3844
3845 IS_ACTIVE (reg_info[*p]) = 1;
3846 MATCHED_SOMETHING (reg_info[*p]) = 0;
3847
3848 /* This is the new highest active register. */
3849 highest_active_reg = *p;
3850
3851 /* If nothing was active before, this is the new lowest active
3852 register. */
3853 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3854 lowest_active_reg = *p;
3855
3856 /* Move past the register number and inner group count. */
3857 p += 2;
3858 just_past_start_mem = p;
3859 break;
3860
3861
3862 /* The stop_memory opcode represents the end of a group. Its
3863 arguments are the same as start_memory's: the register
3864 number, and the number of inner groups. */
3865 case stop_memory:
3866 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3867
3868 /* We need to save the string position the last time we were at
3869 this close-group operator in case the group is operated
3870 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3871 against `aba'; then we want to ignore where we are now in
3872 the string in case this attempt to match fails. */
3873 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3874 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3875 : regend[*p];
3876 DEBUG_PRINT2 (" old_regend: %d\n",
3877 POINTER_TO_OFFSET (old_regend[*p]));
3878
3879 regend[*p] = d;
3880 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3881
3882 /* This register isn't active anymore. */
3883 IS_ACTIVE (reg_info[*p]) = 0;
3884
3885 /* If this was the only register active, nothing is active
3886 anymore. */
3887 if (lowest_active_reg == highest_active_reg)
3888 {
3889 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3890 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3891 }
3892 else
3893 { /* We must scan for the new highest active register, since
3894 it isn't necessarily one less than now: consider
3895 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3896 new highest active register is 1. */
3897 unsigned char r = *p - 1;
3898 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3899 r--;
3900
3901 /* If we end up at register zero, that means that we saved
3902 the registers as the result of an `on_failure_jump', not
3903 a `start_memory', and we jumped to past the innermost
3904 `stop_memory'. For example, in ((.)*) we save
3905 registers 1 and 2 as a result of the *, but when we pop
3906 back to the second ), we are at the stop_memory 1.
3907 Thus, nothing is active. */
3908 if (r == 0)
3909 {
3910 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3911 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3912 }
3913 else
3914 highest_active_reg = r;
3915 }
3916
3917 /* If just failed to match something this time around with a
3918 group that's operated on by a repetition operator, try to
3919 force exit from the ``loop'', and restore the register
3920 information for this group that we had before trying this
3921 last match. */
3922 if ((!MATCHED_SOMETHING (reg_info[*p])
3923 || just_past_start_mem == p - 1)
3924 && (p + 2) < pend)
3925 {
3926 boolean is_a_jump_n = false;
3927
3928 p1 = p + 2;
3929 mcnt = 0;
3930 switch ((re_opcode_t) *p1++)
3931 {
3932 case jump_n:
3933 is_a_jump_n = true;
3934 case pop_failure_jump:
3935 case maybe_pop_jump:
3936 case jump:
3937 case dummy_failure_jump:
3938 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3939 if (is_a_jump_n)
3940 p1 += 2;
3941 break;
3942
3943 default:
3944 /* do nothing */ ;
3945 }
3946 p1 += mcnt;
3947
3948 /* If the next operation is a jump backwards in the pattern
3949 to an on_failure_jump right before the start_memory
3950 corresponding to this stop_memory, exit from the loop
3951 by forcing a failure after pushing on the stack the
3952 on_failure_jump's jump in the pattern, and d. */
3953 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3954 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3955 {
3956 /* If this group ever matched anything, then restore
3957 what its registers were before trying this last
3958 failed match, e.g., with `(a*)*b' against `ab' for
3959 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3960 against `aba' for regend[3].
3961
3962 Also restore the registers for inner groups for,
3963 e.g., `((a*)(b*))*' against `aba' (register 3 would
3964 otherwise get trashed). */
3965
3966 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3967 {
3968 unsigned r;
3969
3970 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3971
3972 /* Restore this and inner groups' (if any) registers. */
3973 for (r = *p; r < *p + *(p + 1); r++)
3974 {
3975 regstart[r] = old_regstart[r];
3976
3977 /* xx why this test? */
3978 if ((int) old_regend[r] >= (int) regstart[r])
3979 regend[r] = old_regend[r];
3980 }
3981 }
3982 p1++;
3983 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3984 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3985
3986 goto fail;
3987 }
3988 }
3989
3990 /* Move past the register number and the inner group count. */
3991 p += 2;
3992 break;
3993
3994
3995 /* \<digit> has been turned into a `duplicate' command which is
3996 followed by the numeric value of <digit> as the register number. */
3997 case duplicate:
3998 {
3999 register const char *d2, *dend2;
4000 int regno = *p++; /* Get which register to match against. */
4001 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4002
4003 /* Can't back reference a group which we've never matched. */
4004 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4005 goto fail;
4006
4007 /* Where in input to try to start matching. */
4008 d2 = regstart[regno];
4009
4010 /* Where to stop matching; if both the place to start and
4011 the place to stop matching are in the same string, then
4012 set to the place to stop, otherwise, for now have to use
4013 the end of the first string. */
4014
4015 dend2 = ((FIRST_STRING_P (regstart[regno])
4016 == FIRST_STRING_P (regend[regno]))
4017 ? regend[regno] : end_match_1);
4018 for (;;)
4019 {
4020 /* If necessary, advance to next segment in register
4021 contents. */
4022 while (d2 == dend2)
4023 {
4024 if (dend2 == end_match_2) break;
4025 if (dend2 == regend[regno]) break;
4026
4027 /* End of string1 => advance to string2. */
4028 d2 = string2;
4029 dend2 = regend[regno];
4030 }
4031 /* At end of register contents => success */
4032 if (d2 == dend2) break;
4033
4034 /* If necessary, advance to next segment in data. */
4035 PREFETCH ();
4036
4037 /* How many characters left in this segment to match. */
4038 mcnt = dend - d;
4039
4040 /* Want how many consecutive characters we can match in
4041 one shot, so, if necessary, adjust the count. */
4042 if (mcnt > dend2 - d2)
4043 mcnt = dend2 - d2;
4044
4045 /* Compare that many; failure if mismatch, else move
4046 past them. */
4047 if (translate
4048 ? bcmp_translate (d, d2, mcnt, translate)
4049 : bcmp (d, d2, mcnt))
4050 goto fail;
4051 d += mcnt, d2 += mcnt;
4052 }
4053 }
4054 break;
4055
4056
4057 /* begline matches the empty string at the beginning of the string
4058 (unless `not_bol' is set in `bufp'), and, if
4059 `newline_anchor' is set, after newlines. */
4060 case begline:
4061 DEBUG_PRINT1 ("EXECUTING begline.\n");
4062
4063 if (AT_STRINGS_BEG (d))
4064 {
4065 if (!bufp->not_bol) break;
4066 }
4067 else if (d[-1] == '\n' && bufp->newline_anchor)
4068 {
4069 break;
4070 }
4071 /* In all other cases, we fail. */
4072 goto fail;
4073
4074
4075 /* endline is the dual of begline. */
4076 case endline:
4077 DEBUG_PRINT1 ("EXECUTING endline.\n");
4078
4079 if (AT_STRINGS_END (d))
4080 {
4081 if (!bufp->not_eol) break;
4082 }
4083
4084 /* We have to ``prefetch'' the next character. */
4085 else if ((d == end1 ? *string2 : *d) == '\n'
4086 && bufp->newline_anchor)
4087 {
4088 break;
4089 }
4090 goto fail;
4091
4092
4093 /* Match at the very beginning of the data. */
4094 case begbuf:
4095 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4096 if (AT_STRINGS_BEG (d))
4097 break;
4098 goto fail;
4099
4100
4101 /* Match at the very end of the data. */
4102 case endbuf:
4103 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4104 if (AT_STRINGS_END (d))
4105 break;
4106 goto fail;
4107
4108
4109 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4110 pushes NULL as the value for the string on the stack. Then
4111 `pop_failure_point' will keep the current value for the
4112 string, instead of restoring it. To see why, consider
4113 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4114 then the . fails against the \n. But the next thing we want
4115 to do is match the \n against the \n; if we restored the
4116 string value, we would be back at the foo.
4117
4118 Because this is used only in specific cases, we don't need to
4119 check all the things that `on_failure_jump' does, to make
4120 sure the right things get saved on the stack. Hence we don't
4121 share its code. The only reason to push anything on the
4122 stack at all is that otherwise we would have to change
4123 `anychar's code to do something besides goto fail in this
4124 case; that seems worse than this. */
4125 case on_failure_keep_string_jump:
4126 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4127
4128 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4129 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4130
4131 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4132 break;
4133
4134
4135 /* Uses of on_failure_jump:
4136
4137 Each alternative starts with an on_failure_jump that points
4138 to the beginning of the next alternative. Each alternative
4139 except the last ends with a jump that in effect jumps past
4140 the rest of the alternatives. (They really jump to the
4141 ending jump of the following alternative, because tensioning
4142 these jumps is a hassle.)
4143
4144 Repeats start with an on_failure_jump that points past both
4145 the repetition text and either the following jump or
4146 pop_failure_jump back to this on_failure_jump. */
4147 case on_failure_jump:
4148 on_failure:
4149 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4150
4151 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4152 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4153
4154 /* If this on_failure_jump comes right before a group (i.e.,
4155 the original * applied to a group), save the information
4156 for that group and all inner ones, so that if we fail back
4157 to this point, the group's information will be correct.
4158 For example, in \(a*\)*\1, we need the preceding group,
4159 and in \(\(a*\)b*\)\2, we need the inner group. */
4160
4161 /* We can't use `p' to check ahead because we push
4162 a failure point to `p + mcnt' after we do this. */
4163 p1 = p;
4164
4165 /* We need to skip no_op's before we look for the
4166 start_memory in case this on_failure_jump is happening as
4167 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4168 against aba. */
4169 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4170 p1++;
4171
4172 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4173 {
4174 /* We have a new highest active register now. This will
4175 get reset at the start_memory we are about to get to,
4176 but we will have saved all the registers relevant to
4177 this repetition op, as described above. */
4178 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4179 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4180 lowest_active_reg = *(p1 + 1);
4181 }
4182
4183 DEBUG_PRINT1 (":\n");
4184 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4185 break;
4186
4187
4188 /* A smart repeat ends with `maybe_pop_jump'.
4189 We change it to either `pop_failure_jump' or `jump'. */
4190 case maybe_pop_jump:
4191 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4192 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4193 {
4194 register unsigned char *p2 = p;
4195
4196 /* Compare the beginning of the repeat with what in the
4197 pattern follows its end. If we can establish that there
4198 is nothing that they would both match, i.e., that we
4199 would have to backtrack because of (as in, e.g., `a*a')
4200 then we can change to pop_failure_jump, because we'll
4201 never have to backtrack.
4202
4203 This is not true in the case of alternatives: in
4204 `(a|ab)*' we do need to backtrack to the `ab' alternative
4205 (e.g., if the string was `ab'). But instead of trying to
4206 detect that here, the alternative has put on a dummy
4207 failure point which is what we will end up popping. */
4208
4209 /* Skip over open/close-group commands.
4210 If what follows this loop is a ...+ construct,
4211 look at what begins its body, since we will have to
4212 match at least one of that. */
4213 while (1)
4214 {
4215 if (p2 + 2 < pend
4216 && ((re_opcode_t) *p2 == stop_memory
4217 || (re_opcode_t) *p2 == start_memory))
4218 p2 += 3;
4219 else if (p2 + 6 < pend
4220 && (re_opcode_t) *p2 == dummy_failure_jump)
4221 p2 += 6;
4222 else
4223 break;
4224 }
4225
4226 p1 = p + mcnt;
4227 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4228 to the `maybe_finalize_jump' of this case. Examine what
4229 follows. */
4230
4231 /* If we're at the end of the pattern, we can change. */
4232 if (p2 == pend)
4233 {
4234 /* Consider what happens when matching ":\(.*\)"
4235 against ":/". I don't really understand this code
4236 yet. */
4237 p[-3] = (unsigned char) pop_failure_jump;
4238 DEBUG_PRINT1
4239 (" End of pattern: change to `pop_failure_jump'.\n");
4240 }
4241
4242 else if ((re_opcode_t) *p2 == exactn
4243 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4244 {
4245 register unsigned char c
4246 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4247
4248 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4249 {
4250 p[-3] = (unsigned char) pop_failure_jump;
4251 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4252 c, p1[5]);
4253 }
4254
4255 else if ((re_opcode_t) p1[3] == charset
4256 || (re_opcode_t) p1[3] == charset_not)
4257 {
4258 int not = (re_opcode_t) p1[3] == charset_not;
4259
4260 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4261 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4262 not = !not;
4263
4264 /* `not' is equal to 1 if c would match, which means
4265 that we can't change to pop_failure_jump. */
4266 if (!not)
4267 {
4268 p[-3] = (unsigned char) pop_failure_jump;
4269 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4270 }
4271 }
4272 }
4273 else if ((re_opcode_t) *p2 == charset)
4274 {
4275 register unsigned char c
4276 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4277
4278 if ((re_opcode_t) p1[3] == exactn
4279 && ! (p2[1] * BYTEWIDTH > p1[4]
4280 && (p2[1 + p1[4] / BYTEWIDTH]
4281 & (1 << (p1[4] % BYTEWIDTH)))))
4282 {
4283 p[-3] = (unsigned char) pop_failure_jump;
4284 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4285 c, p1[5]);
4286 }
4287
4288 else if ((re_opcode_t) p1[3] == charset_not)
4289 {
4290 int idx;
4291 /* We win if the charset_not inside the loop
4292 lists every character listed in the charset after. */
4293 for (idx = 0; idx < p2[1]; idx++)
4294 if (! (p2[2 + idx] == 0
4295 || (idx < p1[4]
4296 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4297 break;
4298
4299 if (idx == p2[1])
4300 {
4301 p[-3] = (unsigned char) pop_failure_jump;
4302 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4303 }
4304 }
4305 else if ((re_opcode_t) p1[3] == charset)
4306 {
4307 int idx;
4308 /* We win if the charset inside the loop
4309 has no overlap with the one after the loop. */
4310 for (idx = 0; idx < p2[1] && idx < p1[4]; idx++)
4311 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4312 break;
4313
4314 if (idx == p2[1] || idx == p1[4])
4315 {
4316 p[-3] = (unsigned char) pop_failure_jump;
4317 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4318 }
4319 }
4320 }
4321 }
4322 p -= 2; /* Point at relative address again. */
4323 if ((re_opcode_t) p[-1] != pop_failure_jump)
4324 {
4325 p[-1] = (unsigned char) jump;
4326 DEBUG_PRINT1 (" Match => jump.\n");
4327 goto unconditional_jump;
4328 }
4329 /* Note fall through. */
4330
4331
4332 /* The end of a simple repeat has a pop_failure_jump back to
4333 its matching on_failure_jump, where the latter will push a
4334 failure point. The pop_failure_jump takes off failure
4335 points put on by this pop_failure_jump's matching
4336 on_failure_jump; we got through the pattern to here from the
4337 matching on_failure_jump, so didn't fail. */
4338 case pop_failure_jump:
4339 {
4340 /* We need to pass separate storage for the lowest and
4341 highest registers, even though we don't care about the
4342 actual values. Otherwise, we will restore only one
4343 register from the stack, since lowest will == highest in
4344 `pop_failure_point'. */
4345 unsigned dummy_low_reg, dummy_high_reg;
4346 unsigned char *pdummy;
4347 const char *sdummy;
4348
4349 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4350 POP_FAILURE_POINT (sdummy, pdummy,
4351 dummy_low_reg, dummy_high_reg,
4352 reg_dummy, reg_dummy, reg_info_dummy);
4353 }
4354 /* Note fall through. */
4355
4356
4357 /* Unconditionally jump (without popping any failure points). */
4358 case jump:
4359 unconditional_jump:
4360 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4361 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4362 p += mcnt; /* Do the jump. */
4363 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4364 break;
4365
4366
4367 /* We need this opcode so we can detect where alternatives end
4368 in `group_match_null_string_p' et al. */
4369 case jump_past_alt:
4370 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4371 goto unconditional_jump;
4372
4373
4374 /* Normally, the on_failure_jump pushes a failure point, which
4375 then gets popped at pop_failure_jump. We will end up at
4376 pop_failure_jump, also, and with a pattern of, say, `a+', we
4377 are skipping over the on_failure_jump, so we have to push
4378 something meaningless for pop_failure_jump to pop. */
4379 case dummy_failure_jump:
4380 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4381 /* It doesn't matter what we push for the string here. What
4382 the code at `fail' tests is the value for the pattern. */
4383 PUSH_FAILURE_POINT (0, 0, -2);
4384 goto unconditional_jump;
4385
4386
4387 /* At the end of an alternative, we need to push a dummy failure
4388 point in case we are followed by a `pop_failure_jump', because
4389 we don't want the failure point for the alternative to be
4390 popped. For example, matching `(a|ab)*' against `aab'
4391 requires that we match the `ab' alternative. */
4392 case push_dummy_failure:
4393 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4394 /* See comments just above at `dummy_failure_jump' about the
4395 two zeroes. */
4396 PUSH_FAILURE_POINT (0, 0, -2);
4397 break;
4398
4399 /* Have to succeed matching what follows at least n times.
4400 After that, handle like `on_failure_jump'. */
4401 case succeed_n:
4402 EXTRACT_NUMBER (mcnt, p + 2);
4403 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4404
4405 assert (mcnt >= 0);
4406 /* Originally, this is how many times we HAVE to succeed. */
4407 if (mcnt > 0)
4408 {
4409 mcnt--;
4410 p += 2;
4411 STORE_NUMBER_AND_INCR (p, mcnt);
4412 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4413 }
4414 else if (mcnt == 0)
4415 {
4416 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4417 p[2] = (unsigned char) no_op;
4418 p[3] = (unsigned char) no_op;
4419 goto on_failure;
4420 }
4421 break;
4422
4423 case jump_n:
4424 EXTRACT_NUMBER (mcnt, p + 2);
4425 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4426
4427 /* Originally, this is how many times we CAN jump. */
4428 if (mcnt)
4429 {
4430 mcnt--;
4431 STORE_NUMBER (p + 2, mcnt);
4432 goto unconditional_jump;
4433 }
4434 /* If don't have to jump any more, skip over the rest of command. */
4435 else
4436 p += 4;
4437 break;
4438
4439 case set_number_at:
4440 {
4441 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4442
4443 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4444 p1 = p + mcnt;
4445 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4446 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4447 STORE_NUMBER (p1, mcnt);
4448 break;
4449 }
4450
4451 case wordbound:
4452 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4453 if (AT_WORD_BOUNDARY (d))
4454 break;
4455 goto fail;
4456
4457 case notwordbound:
4458 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4459 if (AT_WORD_BOUNDARY (d))
4460 goto fail;
4461 break;
4462
4463 case wordbeg:
4464 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4465 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4466 break;
4467 goto fail;
4468
4469 case wordend:
4470 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4471 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4472 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4473 break;
4474 goto fail;
4475
4476 #ifdef emacs
4477 case before_dot:
4478 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4479 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4480 goto fail;
4481 break;
4482
4483 case at_dot:
4484 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4485 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4486 goto fail;
4487 break;
4488
4489 case after_dot:
4490 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4491 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4492 goto fail;
4493 break;
4494 #if 0 /* not emacs19 */
4495 case at_dot:
4496 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4497 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4498 goto fail;
4499 break;
4500 #endif /* not emacs19 */
4501
4502 case syntaxspec:
4503 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4504 mcnt = *p++;
4505 goto matchsyntax;
4506
4507 case wordchar:
4508 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4509 mcnt = (int) Sword;
4510 matchsyntax:
4511 PREFETCH ();
4512 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4513 d++;
4514 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4515 goto fail;
4516 SET_REGS_MATCHED ();
4517 break;
4518
4519 case notsyntaxspec:
4520 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4521 mcnt = *p++;
4522 goto matchnotsyntax;
4523
4524 case notwordchar:
4525 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4526 mcnt = (int) Sword;
4527 matchnotsyntax:
4528 PREFETCH ();
4529 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4530 d++;
4531 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4532 goto fail;
4533 SET_REGS_MATCHED ();
4534 break;
4535
4536 #else /* not emacs */
4537 case wordchar:
4538 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4539 PREFETCH ();
4540 if (!WORDCHAR_P (d))
4541 goto fail;
4542 SET_REGS_MATCHED ();
4543 d++;
4544 break;
4545
4546 case notwordchar:
4547 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4548 PREFETCH ();
4549 if (WORDCHAR_P (d))
4550 goto fail;
4551 SET_REGS_MATCHED ();
4552 d++;
4553 break;
4554 #endif /* not emacs */
4555
4556 default:
4557 abort ();
4558 }
4559 continue; /* Successfully executed one pattern command; keep going. */
4560
4561
4562 /* We goto here if a matching operation fails. */
4563 fail:
4564 if (!FAIL_STACK_EMPTY ())
4565 { /* A restart point is known. Restore to that state. */
4566 DEBUG_PRINT1 ("\nFAIL:\n");
4567 POP_FAILURE_POINT (d, p,
4568 lowest_active_reg, highest_active_reg,
4569 regstart, regend, reg_info);
4570
4571 /* If this failure point is a dummy, try the next one. */
4572 if (!p)
4573 goto fail;
4574
4575 /* If we failed to the end of the pattern, don't examine *p. */
4576 assert (p <= pend);
4577 if (p < pend)
4578 {
4579 boolean is_a_jump_n = false;
4580
4581 /* If failed to a backwards jump that's part of a repetition
4582 loop, need to pop this failure point and use the next one. */
4583 switch ((re_opcode_t) *p)
4584 {
4585 case jump_n:
4586 is_a_jump_n = true;
4587 case maybe_pop_jump:
4588 case pop_failure_jump:
4589 case jump:
4590 p1 = p + 1;
4591 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4592 p1 += mcnt;
4593
4594 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4595 || (!is_a_jump_n
4596 && (re_opcode_t) *p1 == on_failure_jump))
4597 goto fail;
4598 break;
4599 default:
4600 /* do nothing */ ;
4601 }
4602 }
4603
4604 if (d >= string1 && d <= end1)
4605 dend = end_match_1;
4606 }
4607 else
4608 break; /* Matching at this starting point really fails. */
4609 } /* for (;;) */
4610
4611 if (best_regs_set)
4612 goto restore_best_regs;
4613
4614 FREE_VARIABLES ();
4615
4616 return -1; /* Failure to match. */
4617 } /* re_match_2 */
4618 \f
4619 /* Subroutine definitions for re_match_2. */
4620
4621
4622 /* We are passed P pointing to a register number after a start_memory.
4623
4624 Return true if the pattern up to the corresponding stop_memory can
4625 match the empty string, and false otherwise.
4626
4627 If we find the matching stop_memory, sets P to point to one past its number.
4628 Otherwise, sets P to an undefined byte less than or equal to END.
4629
4630 We don't handle duplicates properly (yet). */
4631
4632 static boolean
4633 group_match_null_string_p (p, end, reg_info)
4634 unsigned char **p, *end;
4635 register_info_type *reg_info;
4636 {
4637 int mcnt;
4638 /* Point to after the args to the start_memory. */
4639 unsigned char *p1 = *p + 2;
4640
4641 while (p1 < end)
4642 {
4643 /* Skip over opcodes that can match nothing, and return true or
4644 false, as appropriate, when we get to one that can't, or to the
4645 matching stop_memory. */
4646
4647 switch ((re_opcode_t) *p1)
4648 {
4649 /* Could be either a loop or a series of alternatives. */
4650 case on_failure_jump:
4651 p1++;
4652 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4653
4654 /* If the next operation is not a jump backwards in the
4655 pattern. */
4656
4657 if (mcnt >= 0)
4658 {
4659 /* Go through the on_failure_jumps of the alternatives,
4660 seeing if any of the alternatives cannot match nothing.
4661 The last alternative starts with only a jump,
4662 whereas the rest start with on_failure_jump and end
4663 with a jump, e.g., here is the pattern for `a|b|c':
4664
4665 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4666 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4667 /exactn/1/c
4668
4669 So, we have to first go through the first (n-1)
4670 alternatives and then deal with the last one separately. */
4671
4672
4673 /* Deal with the first (n-1) alternatives, which start
4674 with an on_failure_jump (see above) that jumps to right
4675 past a jump_past_alt. */
4676
4677 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4678 {
4679 /* `mcnt' holds how many bytes long the alternative
4680 is, including the ending `jump_past_alt' and
4681 its number. */
4682
4683 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4684 reg_info))
4685 return false;
4686
4687 /* Move to right after this alternative, including the
4688 jump_past_alt. */
4689 p1 += mcnt;
4690
4691 /* Break if it's the beginning of an n-th alternative
4692 that doesn't begin with an on_failure_jump. */
4693 if ((re_opcode_t) *p1 != on_failure_jump)
4694 break;
4695
4696 /* Still have to check that it's not an n-th
4697 alternative that starts with an on_failure_jump. */
4698 p1++;
4699 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4700 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4701 {
4702 /* Get to the beginning of the n-th alternative. */
4703 p1 -= 3;
4704 break;
4705 }
4706 }
4707
4708 /* Deal with the last alternative: go back and get number
4709 of the `jump_past_alt' just before it. `mcnt' contains
4710 the length of the alternative. */
4711 EXTRACT_NUMBER (mcnt, p1 - 2);
4712
4713 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4714 return false;
4715
4716 p1 += mcnt; /* Get past the n-th alternative. */
4717 } /* if mcnt > 0 */
4718 break;
4719
4720
4721 case stop_memory:
4722 assert (p1[1] == **p);
4723 *p = p1 + 2;
4724 return true;
4725
4726
4727 default:
4728 if (!common_op_match_null_string_p (&p1, end, reg_info))
4729 return false;
4730 }
4731 } /* while p1 < end */
4732
4733 return false;
4734 } /* group_match_null_string_p */
4735
4736
4737 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4738 It expects P to be the first byte of a single alternative and END one
4739 byte past the last. The alternative can contain groups. */
4740
4741 static boolean
4742 alt_match_null_string_p (p, end, reg_info)
4743 unsigned char *p, *end;
4744 register_info_type *reg_info;
4745 {
4746 int mcnt;
4747 unsigned char *p1 = p;
4748
4749 while (p1 < end)
4750 {
4751 /* Skip over opcodes that can match nothing, and break when we get
4752 to one that can't. */
4753
4754 switch ((re_opcode_t) *p1)
4755 {
4756 /* It's a loop. */
4757 case on_failure_jump:
4758 p1++;
4759 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4760 p1 += mcnt;
4761 break;
4762
4763 default:
4764 if (!common_op_match_null_string_p (&p1, end, reg_info))
4765 return false;
4766 }
4767 } /* while p1 < end */
4768
4769 return true;
4770 } /* alt_match_null_string_p */
4771
4772
4773 /* Deals with the ops common to group_match_null_string_p and
4774 alt_match_null_string_p.
4775
4776 Sets P to one after the op and its arguments, if any. */
4777
4778 static boolean
4779 common_op_match_null_string_p (p, end, reg_info)
4780 unsigned char **p, *end;
4781 register_info_type *reg_info;
4782 {
4783 int mcnt;
4784 boolean ret;
4785 int reg_no;
4786 unsigned char *p1 = *p;
4787
4788 switch ((re_opcode_t) *p1++)
4789 {
4790 case no_op:
4791 case begline:
4792 case endline:
4793 case begbuf:
4794 case endbuf:
4795 case wordbeg:
4796 case wordend:
4797 case wordbound:
4798 case notwordbound:
4799 #ifdef emacs
4800 case before_dot:
4801 case at_dot:
4802 case after_dot:
4803 #endif
4804 break;
4805
4806 case start_memory:
4807 reg_no = *p1;
4808 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4809 ret = group_match_null_string_p (&p1, end, reg_info);
4810
4811 /* Have to set this here in case we're checking a group which
4812 contains a group and a back reference to it. */
4813
4814 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4815 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4816
4817 if (!ret)
4818 return false;
4819 break;
4820
4821 /* If this is an optimized succeed_n for zero times, make the jump. */
4822 case jump:
4823 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4824 if (mcnt >= 0)
4825 p1 += mcnt;
4826 else
4827 return false;
4828 break;
4829
4830 case succeed_n:
4831 /* Get to the number of times to succeed. */
4832 p1 += 2;
4833 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4834
4835 if (mcnt == 0)
4836 {
4837 p1 -= 4;
4838 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4839 p1 += mcnt;
4840 }
4841 else
4842 return false;
4843 break;
4844
4845 case duplicate:
4846 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4847 return false;
4848 break;
4849
4850 case set_number_at:
4851 p1 += 4;
4852
4853 default:
4854 /* All other opcodes mean we cannot match the empty string. */
4855 return false;
4856 }
4857
4858 *p = p1;
4859 return true;
4860 } /* common_op_match_null_string_p */
4861
4862
4863 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4864 bytes; nonzero otherwise. */
4865
4866 static int
4867 bcmp_translate (s1, s2, len, translate)
4868 unsigned char *s1, *s2;
4869 register int len;
4870 char *translate;
4871 {
4872 register unsigned char *p1 = s1, *p2 = s2;
4873 while (len)
4874 {
4875 if (translate[*p1++] != translate[*p2++]) return 1;
4876 len--;
4877 }
4878 return 0;
4879 }
4880 \f
4881 /* Entry points for GNU code. */
4882
4883 /* re_compile_pattern is the GNU regular expression compiler: it
4884 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4885 Returns 0 if the pattern was valid, otherwise an error string.
4886
4887 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4888 are set in BUFP on entry.
4889
4890 We call regex_compile to do the actual compilation. */
4891
4892 const char *
4893 re_compile_pattern (pattern, length, bufp)
4894 const char *pattern;
4895 int length;
4896 struct re_pattern_buffer *bufp;
4897 {
4898 reg_errcode_t ret;
4899
4900 /* GNU code is written to assume at least RE_NREGS registers will be set
4901 (and at least one extra will be -1). */
4902 bufp->regs_allocated = REGS_UNALLOCATED;
4903
4904 /* And GNU code determines whether or not to get register information
4905 by passing null for the REGS argument to re_match, etc., not by
4906 setting no_sub. */
4907 bufp->no_sub = 0;
4908
4909 /* Match anchors at newline. */
4910 bufp->newline_anchor = 1;
4911
4912 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4913
4914 return re_error_msg[(int) ret];
4915 }
4916 \f
4917 /* Entry points compatible with 4.2 BSD regex library. We don't define
4918 them if this is an Emacs or POSIX compilation. */
4919
4920 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4921
4922 /* BSD has one and only one pattern buffer. */
4923 static struct re_pattern_buffer re_comp_buf;
4924
4925 char *
4926 re_comp (s)
4927 const char *s;
4928 {
4929 reg_errcode_t ret;
4930
4931 if (!s)
4932 {
4933 if (!re_comp_buf.buffer)
4934 return "No previous regular expression";
4935 return 0;
4936 }
4937
4938 if (!re_comp_buf.buffer)
4939 {
4940 re_comp_buf.buffer = (unsigned char *) malloc (200);
4941 if (re_comp_buf.buffer == NULL)
4942 return "Memory exhausted";
4943 re_comp_buf.allocated = 200;
4944
4945 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4946 if (re_comp_buf.fastmap == NULL)
4947 return "Memory exhausted";
4948 }
4949
4950 /* Since `re_exec' always passes NULL for the `regs' argument, we
4951 don't need to initialize the pattern buffer fields which affect it. */
4952
4953 /* Match anchors at newlines. */
4954 re_comp_buf.newline_anchor = 1;
4955
4956 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4957
4958 /* Yes, we're discarding `const' here. */
4959 return (char *) re_error_msg[(int) ret];
4960 }
4961
4962
4963 int
4964 re_exec (s)
4965 const char *s;
4966 {
4967 const int len = strlen (s);
4968 return
4969 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4970 }
4971 #endif /* not emacs and not _POSIX_SOURCE */
4972 \f
4973 /* POSIX.2 functions. Don't define these for Emacs. */
4974
4975 #ifndef emacs
4976
4977 /* regcomp takes a regular expression as a string and compiles it.
4978
4979 PREG is a regex_t *. We do not expect any fields to be initialized,
4980 since POSIX says we shouldn't. Thus, we set
4981
4982 `buffer' to the compiled pattern;
4983 `used' to the length of the compiled pattern;
4984 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4985 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4986 RE_SYNTAX_POSIX_BASIC;
4987 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4988 `fastmap' and `fastmap_accurate' to zero;
4989 `re_nsub' to the number of subexpressions in PATTERN.
4990
4991 PATTERN is the address of the pattern string.
4992
4993 CFLAGS is a series of bits which affect compilation.
4994
4995 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4996 use POSIX basic syntax.
4997
4998 If REG_NEWLINE is set, then . and [^...] don't match newline.
4999 Also, regexec will try a match beginning after every newline.
5000
5001 If REG_ICASE is set, then we considers upper- and lowercase
5002 versions of letters to be equivalent when matching.
5003
5004 If REG_NOSUB is set, then when PREG is passed to regexec, that
5005 routine will report only success or failure, and nothing about the
5006 registers.
5007
5008 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5009 the return codes and their meanings.) */
5010
5011 int
5012 regcomp (preg, pattern, cflags)
5013 regex_t *preg;
5014 const char *pattern;
5015 int cflags;
5016 {
5017 reg_errcode_t ret;
5018 unsigned syntax
5019 = (cflags & REG_EXTENDED) ?
5020 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5021
5022 /* regex_compile will allocate the space for the compiled pattern. */
5023 preg->buffer = 0;
5024 preg->allocated = 0;
5025 preg->used = 0;
5026
5027 /* Don't bother to use a fastmap when searching. This simplifies the
5028 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5029 characters after newlines into the fastmap. This way, we just try
5030 every character. */
5031 preg->fastmap = 0;
5032
5033 if (cflags & REG_ICASE)
5034 {
5035 unsigned i;
5036
5037 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5038 if (preg->translate == NULL)
5039 return (int) REG_ESPACE;
5040
5041 /* Map uppercase characters to corresponding lowercase ones. */
5042 for (i = 0; i < CHAR_SET_SIZE; i++)
5043 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5044 }
5045 else
5046 preg->translate = NULL;
5047
5048 /* If REG_NEWLINE is set, newlines are treated differently. */
5049 if (cflags & REG_NEWLINE)
5050 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5051 syntax &= ~RE_DOT_NEWLINE;
5052 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5053 /* It also changes the matching behavior. */
5054 preg->newline_anchor = 1;
5055 }
5056 else
5057 preg->newline_anchor = 0;
5058
5059 preg->no_sub = !!(cflags & REG_NOSUB);
5060
5061 /* POSIX says a null character in the pattern terminates it, so we
5062 can use strlen here in compiling the pattern. */
5063 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5064
5065 /* POSIX doesn't distinguish between an unmatched open-group and an
5066 unmatched close-group: both are REG_EPAREN. */
5067 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5068
5069 return (int) ret;
5070 }
5071
5072
5073 /* regexec searches for a given pattern, specified by PREG, in the
5074 string STRING.
5075
5076 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5077 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5078 least NMATCH elements, and we set them to the offsets of the
5079 corresponding matched substrings.
5080
5081 EFLAGS specifies `execution flags' which affect matching: if
5082 REG_NOTBOL is set, then ^ does not match at the beginning of the
5083 string; if REG_NOTEOL is set, then $ does not match at the end.
5084
5085 We return 0 if we find a match and REG_NOMATCH if not. */
5086
5087 int
5088 regexec (preg, string, nmatch, pmatch, eflags)
5089 const regex_t *preg;
5090 const char *string;
5091 size_t nmatch;
5092 regmatch_t pmatch[];
5093 int eflags;
5094 {
5095 int ret;
5096 struct re_registers regs;
5097 regex_t private_preg;
5098 int len = strlen (string);
5099 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5100
5101 private_preg = *preg;
5102
5103 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5104 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5105
5106 /* The user has told us exactly how many registers to return
5107 information about, via `nmatch'. We have to pass that on to the
5108 matching routines. */
5109 private_preg.regs_allocated = REGS_FIXED;
5110
5111 if (want_reg_info)
5112 {
5113 regs.num_regs = nmatch;
5114 regs.start = TALLOC (nmatch, regoff_t);
5115 regs.end = TALLOC (nmatch, regoff_t);
5116 if (regs.start == NULL || regs.end == NULL)
5117 return (int) REG_NOMATCH;
5118 }
5119
5120 /* Perform the searching operation. */
5121 ret = re_search (&private_preg, string, len,
5122 /* start: */ 0, /* range: */ len,
5123 want_reg_info ? &regs : (struct re_registers *) 0);
5124
5125 /* Copy the register information to the POSIX structure. */
5126 if (want_reg_info)
5127 {
5128 if (ret >= 0)
5129 {
5130 unsigned r;
5131
5132 for (r = 0; r < nmatch; r++)
5133 {
5134 pmatch[r].rm_so = regs.start[r];
5135 pmatch[r].rm_eo = regs.end[r];
5136 }
5137 }
5138
5139 /* If we needed the temporary register info, free the space now. */
5140 free (regs.start);
5141 free (regs.end);
5142 }
5143
5144 /* We want zero return to mean success, unlike `re_search'. */
5145 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5146 }
5147
5148
5149 /* Returns a message corresponding to an error code, ERRCODE, returned
5150 from either regcomp or regexec. We don't use PREG here. */
5151
5152 size_t
5153 regerror (errcode, preg, errbuf, errbuf_size)
5154 int errcode;
5155 const regex_t *preg;
5156 char *errbuf;
5157 size_t errbuf_size;
5158 {
5159 const char *msg;
5160 size_t msg_size;
5161
5162 if (errcode < 0
5163 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5164 /* Only error codes returned by the rest of the code should be passed
5165 to this routine. If we are given anything else, or if other regex
5166 code generates an invalid error code, then the program has a bug.
5167 Dump core so we can fix it. */
5168 abort ();
5169
5170 msg = re_error_msg[errcode];
5171
5172 /* POSIX doesn't require that we do anything in this case, but why
5173 not be nice. */
5174 if (! msg)
5175 msg = "Success";
5176
5177 msg_size = strlen (msg) + 1; /* Includes the null. */
5178
5179 if (errbuf_size != 0)
5180 {
5181 if (msg_size > errbuf_size)
5182 {
5183 strncpy (errbuf, msg, errbuf_size - 1);
5184 errbuf[errbuf_size - 1] = 0;
5185 }
5186 else
5187 strcpy (errbuf, msg);
5188 }
5189
5190 return msg_size;
5191 }
5192
5193
5194 /* Free dynamically allocated space used by PREG. */
5195
5196 void
5197 regfree (preg)
5198 regex_t *preg;
5199 {
5200 if (preg->buffer != NULL)
5201 free (preg->buffer);
5202 preg->buffer = NULL;
5203
5204 preg->allocated = 0;
5205 preg->used = 0;
5206
5207 if (preg->fastmap != NULL)
5208 free (preg->fastmap);
5209 preg->fastmap = NULL;
5210 preg->fastmap_accurate = 0;
5211
5212 if (preg->translate != NULL)
5213 free (preg->translate);
5214 preg->translate = NULL;
5215 }
5216
5217 #endif /* not emacs */
5218 \f
5219 /*
5220 Local variables:
5221 make-backup-files: t
5222 version-control: t
5223 trim-versions-without-asking: nil
5224 End:
5225 */