]> code.delx.au - gnu-emacs/blob - src/keymap.c
*** empty log message ***
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #undef NULL
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33
34 #define min(a, b) ((a) < (b) ? (a) : (b))
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* Keymap mapping ASCII function key sequences onto their preferred forms.
79 Initialized by the terminal-specific lisp files. See DEFVAR for more
80 documentation. */
81 Lisp_Object Vfunction_key_map;
82
83 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
84 Lisp_Object Vkey_translation_map;
85
86 /* A list of all commands given new bindings since a certain time
87 when nil was stored here.
88 This is used to speed up recomputation of menu key equivalents
89 when Emacs starts up. t means don't record anything here. */
90 Lisp_Object Vdefine_key_rebound_commands;
91
92 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
93
94 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
95 in a string key sequence is equivalent to prefixing with this
96 character. */
97 extern Lisp_Object meta_prefix_char;
98
99 extern Lisp_Object Voverriding_local_map;
100
101 static Lisp_Object define_as_prefix ();
102 static Lisp_Object describe_buffer_bindings ();
103 static void describe_command (), describe_translation ();
104 static void describe_map ();
105 \f
106 /* Keymap object support - constructors and predicates. */
107
108 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
109 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
110 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
111 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
112 mouse events, and any other things that appear in the input stream.\n\
113 All entries in it are initially nil, meaning \"command undefined\".\n\n\
114 The optional arg STRING supplies a menu name for the keymap\n\
115 in case you use it as a menu with `x-popup-menu'.")
116 (string)
117 Lisp_Object string;
118 {
119 Lisp_Object tail;
120 if (!NILP (string))
121 tail = Fcons (string, Qnil);
122 else
123 tail = Qnil;
124 return Fcons (Qkeymap,
125 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
126 }
127
128 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
129 "Construct and return a new sparse-keymap list.\n\
130 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
131 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
132 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
133 Initially the alist is nil.\n\n\
134 The optional arg STRING supplies a menu name for the keymap\n\
135 in case you use it as a menu with `x-popup-menu'.")
136 (string)
137 Lisp_Object string;
138 {
139 if (!NILP (string))
140 return Fcons (Qkeymap, Fcons (string, Qnil));
141 return Fcons (Qkeymap, Qnil);
142 }
143
144 /* This function is used for installing the standard key bindings
145 at initialization time.
146
147 For example:
148
149 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
150
151 void
152 initial_define_key (keymap, key, defname)
153 Lisp_Object keymap;
154 int key;
155 char *defname;
156 {
157 store_in_keymap (keymap, make_number (key), intern (defname));
158 }
159
160 void
161 initial_define_lispy_key (keymap, keyname, defname)
162 Lisp_Object keymap;
163 char *keyname;
164 char *defname;
165 {
166 store_in_keymap (keymap, intern (keyname), intern (defname));
167 }
168
169 /* Define character fromchar in map frommap as an alias for character
170 tochar in map tomap. Subsequent redefinitions of the latter WILL
171 affect the former. */
172
173 #if 0
174 void
175 synkey (frommap, fromchar, tomap, tochar)
176 struct Lisp_Vector *frommap, *tomap;
177 int fromchar, tochar;
178 {
179 Lisp_Object v, c;
180 XSETVECTOR (v, tomap);
181 XSETFASTINT (c, tochar);
182 frommap->contents[fromchar] = Fcons (v, c);
183 }
184 #endif /* 0 */
185
186 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
187 "Return t if OBJECT is a keymap.\n\
188 \n\
189 A keymap is a list (keymap . ALIST),\n\
190 or a symbol whose function definition is itself a keymap.\n\
191 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
192 a vector of densely packed bindings for small character codes\n\
193 is also allowed as an element.")
194 (object)
195 Lisp_Object object;
196 {
197 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
198 }
199
200 /* Check that OBJECT is a keymap (after dereferencing through any
201 symbols). If it is, return it.
202
203 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
204 is an autoload form, do the autoload and try again.
205 If AUTOLOAD is nonzero, callers must assume GC is possible.
206
207 ERROR controls how we respond if OBJECT isn't a keymap.
208 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
209
210 Note that most of the time, we don't want to pursue autoloads.
211 Functions like Faccessible_keymaps which scan entire keymap trees
212 shouldn't load every autoloaded keymap. I'm not sure about this,
213 but it seems to me that only read_key_sequence, Flookup_key, and
214 Fdefine_key should cause keymaps to be autoloaded. */
215
216 Lisp_Object
217 get_keymap_1 (object, error, autoload)
218 Lisp_Object object;
219 int error, autoload;
220 {
221 Lisp_Object tem;
222
223 autoload_retry:
224 if (NILP (object))
225 goto end;
226 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
227 return object;
228 else
229 {
230 tem = indirect_function (object);
231 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
232 return tem;
233 }
234
235 /* Should we do an autoload? Autoload forms for keymaps have
236 Qkeymap as their fifth element. */
237 if (autoload
238 && SYMBOLP (object)
239 && CONSP (tem)
240 && EQ (XCAR (tem), Qautoload))
241 {
242 Lisp_Object tail;
243
244 tail = Fnth (make_number (4), tem);
245 if (EQ (tail, Qkeymap))
246 {
247 struct gcpro gcpro1, gcpro2;
248
249 GCPRO2 (tem, object);
250 do_autoload (tem, object);
251 UNGCPRO;
252
253 goto autoload_retry;
254 }
255 }
256
257 end:
258 if (error)
259 wrong_type_argument (Qkeymapp, object);
260 else
261 return Qnil;
262 }
263
264
265 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
266 If OBJECT doesn't denote a keymap at all, signal an error. */
267 Lisp_Object
268 get_keymap (object)
269 Lisp_Object object;
270 {
271 return get_keymap_1 (object, 1, 0);
272 }
273 \f
274 /* Return the parent map of the keymap MAP, or nil if it has none.
275 We assume that MAP is a valid keymap. */
276
277 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
278 "Return the parent keymap of KEYMAP.")
279 (keymap)
280 Lisp_Object keymap;
281 {
282 Lisp_Object list;
283
284 keymap = get_keymap_1 (keymap, 1, 1);
285
286 /* Skip past the initial element `keymap'. */
287 list = XCDR (keymap);
288 for (; CONSP (list); list = XCDR (list))
289 {
290 /* See if there is another `keymap'. */
291 if (EQ (Qkeymap, XCAR (list)))
292 return list;
293 }
294
295 return Qnil;
296 }
297
298 /* Set the parent keymap of MAP to PARENT. */
299
300 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
301 "Modify KEYMAP to set its parent map to PARENT.\n\
302 PARENT should be nil or another keymap.")
303 (keymap, parent)
304 Lisp_Object keymap, parent;
305 {
306 Lisp_Object list, prev;
307 int i;
308
309 keymap = get_keymap_1 (keymap, 1, 1);
310 if (!NILP (parent))
311 parent = get_keymap_1 (parent, 1, 1);
312
313 /* Skip past the initial element `keymap'. */
314 prev = keymap;
315 while (1)
316 {
317 list = XCDR (prev);
318 /* If there is a parent keymap here, replace it.
319 If we came to the end, add the parent in PREV. */
320 if (! CONSP (list) || EQ (Qkeymap, XCAR (list)))
321 {
322 /* If we already have the right parent, return now
323 so that we avoid the loops below. */
324 if (EQ (XCDR (prev), parent))
325 return parent;
326
327 XCDR (prev) = parent;
328 break;
329 }
330 prev = list;
331 }
332
333 /* Scan through for submaps, and set their parents too. */
334
335 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
336 {
337 /* Stop the scan when we come to the parent. */
338 if (EQ (XCAR (list), Qkeymap))
339 break;
340
341 /* If this element holds a prefix map, deal with it. */
342 if (CONSP (XCAR (list))
343 && CONSP (XCDR (XCAR (list))))
344 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
345 XCDR (XCAR (list)));
346
347 if (VECTORP (XCAR (list)))
348 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
349 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
350 fix_submap_inheritance (keymap, make_number (i),
351 XVECTOR (XCAR (list))->contents[i]);
352
353 if (CHAR_TABLE_P (XCAR (list)))
354 {
355 Lisp_Object indices[3];
356
357 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
358 keymap, 0, indices);
359 }
360 }
361
362 return parent;
363 }
364
365 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
366 if EVENT is also a prefix in MAP's parent,
367 make sure that SUBMAP inherits that definition as its own parent. */
368
369 void
370 fix_submap_inheritance (map, event, submap)
371 Lisp_Object map, event, submap;
372 {
373 Lisp_Object map_parent, parent_entry;
374
375 /* SUBMAP is a cons that we found as a key binding.
376 Discard the other things found in a menu key binding. */
377
378 if (CONSP (submap))
379 {
380 /* May be an old format menu item */
381 if (STRINGP (XCAR (submap)))
382 {
383 submap = XCDR (submap);
384 /* Also remove a menu help string, if any,
385 following the menu item name. */
386 if (CONSP (submap) && STRINGP (XCAR (submap)))
387 submap = XCDR (submap);
388 /* Also remove the sublist that caches key equivalences, if any. */
389 if (CONSP (submap)
390 && CONSP (XCAR (submap)))
391 {
392 Lisp_Object carcar;
393 carcar = XCAR (XCAR (submap));
394 if (NILP (carcar) || VECTORP (carcar))
395 submap = XCDR (submap);
396 }
397 }
398
399 /* Or a new format menu item */
400 else if (EQ (XCAR (submap), Qmenu_item)
401 && CONSP (XCDR (submap)))
402 {
403 submap = XCDR (XCDR (submap));
404 if (CONSP (submap))
405 submap = XCAR (submap);
406 }
407 }
408
409 /* If it isn't a keymap now, there's no work to do. */
410 if (! CONSP (submap)
411 || ! EQ (XCAR (submap), Qkeymap))
412 return;
413
414 map_parent = Fkeymap_parent (map);
415 if (! NILP (map_parent))
416 parent_entry = access_keymap (map_parent, event, 0, 0);
417 else
418 parent_entry = Qnil;
419
420 /* If MAP's parent has something other than a keymap,
421 our own submap shadows it completely, so use nil as SUBMAP's parent. */
422 if (! (CONSP (parent_entry) && EQ (XCAR (parent_entry), Qkeymap)))
423 parent_entry = Qnil;
424
425 if (! EQ (parent_entry, submap))
426 {
427 Lisp_Object submap_parent;
428 submap_parent = submap;
429 while (1)
430 {
431 Lisp_Object tem;
432 tem = Fkeymap_parent (submap_parent);
433 if (EQ (tem, parent_entry))
434 return;
435 if (CONSP (tem)
436 && EQ (XCAR (tem), Qkeymap))
437 submap_parent = tem;
438 else
439 break;
440 }
441 Fset_keymap_parent (submap_parent, parent_entry);
442 }
443 }
444 \f
445 /* Look up IDX in MAP. IDX may be any sort of event.
446 Note that this does only one level of lookup; IDX must be a single
447 event, not a sequence.
448
449 If T_OK is non-zero, bindings for Qt are treated as default
450 bindings; any key left unmentioned by other tables and bindings is
451 given the binding of Qt.
452
453 If T_OK is zero, bindings for Qt are not treated specially.
454
455 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
456
457 Lisp_Object
458 access_keymap (map, idx, t_ok, noinherit)
459 Lisp_Object map;
460 Lisp_Object idx;
461 int t_ok;
462 int noinherit;
463 {
464 int noprefix = 0;
465 Lisp_Object val;
466
467 /* If idx is a list (some sort of mouse click, perhaps?),
468 the index we want to use is the car of the list, which
469 ought to be a symbol. */
470 idx = EVENT_HEAD (idx);
471
472 /* If idx is a symbol, it might have modifiers, which need to
473 be put in the canonical order. */
474 if (SYMBOLP (idx))
475 idx = reorder_modifiers (idx);
476 else if (INTEGERP (idx))
477 /* Clobber the high bits that can be present on a machine
478 with more than 24 bits of integer. */
479 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
480
481 {
482 Lisp_Object tail;
483 Lisp_Object t_binding;
484
485 t_binding = Qnil;
486 for (tail = map; CONSP (tail); tail = XCDR (tail))
487 {
488 Lisp_Object binding;
489
490 binding = XCAR (tail);
491 if (SYMBOLP (binding))
492 {
493 /* If NOINHERIT, stop finding prefix definitions
494 after we pass a second occurrence of the `keymap' symbol. */
495 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
496 noprefix = 1;
497 }
498 else if (CONSP (binding))
499 {
500 if (EQ (XCAR (binding), idx))
501 {
502 val = XCDR (binding);
503 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
504 return Qnil;
505 if (CONSP (val))
506 fix_submap_inheritance (map, idx, val);
507 return val;
508 }
509 if (t_ok && EQ (XCAR (binding), Qt))
510 t_binding = XCDR (binding);
511 }
512 else if (VECTORP (binding))
513 {
514 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
515 {
516 val = XVECTOR (binding)->contents[XFASTINT (idx)];
517 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
518 return Qnil;
519 if (CONSP (val))
520 fix_submap_inheritance (map, idx, val);
521 return val;
522 }
523 }
524 else if (CHAR_TABLE_P (binding))
525 {
526 /* Character codes with modifiers
527 are not included in a char-table.
528 All character codes without modifiers are included. */
529 if (NATNUMP (idx)
530 && ! (XFASTINT (idx)
531 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
532 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
533 {
534 val = Faref (binding, idx);
535 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
536 return Qnil;
537 if (CONSP (val))
538 fix_submap_inheritance (map, idx, val);
539 return val;
540 }
541 }
542
543 QUIT;
544 }
545
546 return t_binding;
547 }
548 }
549
550 /* Given OBJECT which was found in a slot in a keymap,
551 trace indirect definitions to get the actual definition of that slot.
552 An indirect definition is a list of the form
553 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
554 and INDEX is the object to look up in KEYMAP to yield the definition.
555
556 Also if OBJECT has a menu string as the first element,
557 remove that. Also remove a menu help string as second element.
558
559 If AUTOLOAD is nonzero, load autoloadable keymaps
560 that are referred to with indirection. */
561
562 Lisp_Object
563 get_keyelt (object, autoload)
564 register Lisp_Object object;
565 int autoload;
566 {
567 while (1)
568 {
569 if (!(CONSP (object)))
570 /* This is really the value. */
571 return object;
572
573 /* If the keymap contents looks like (keymap ...) or (lambda ...)
574 then use itself. */
575 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
576 return object;
577
578 /* If the keymap contents looks like (menu-item name . DEFN)
579 or (menu-item name DEFN ...) then use DEFN.
580 This is a new format menu item.
581 */
582 else if (EQ (XCAR (object), Qmenu_item))
583 {
584 if (CONSP (XCDR (object)))
585 {
586 object = XCDR (XCDR (object));
587 if (CONSP (object))
588 object = XCAR (object);
589 }
590 else
591 /* Invalid keymap */
592 return object;
593 }
594
595 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
596 Keymap alist elements like (CHAR MENUSTRING . DEFN)
597 will be used by HierarKey menus. */
598 else if (STRINGP (XCAR (object)))
599 {
600 object = XCDR (object);
601 /* Also remove a menu help string, if any,
602 following the menu item name. */
603 if (CONSP (object) && STRINGP (XCAR (object)))
604 object = XCDR (object);
605 /* Also remove the sublist that caches key equivalences, if any. */
606 if (CONSP (object) && CONSP (XCAR (object)))
607 {
608 Lisp_Object carcar;
609 carcar = XCAR (XCAR (object));
610 if (NILP (carcar) || VECTORP (carcar))
611 object = XCDR (object);
612 }
613 }
614
615 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
616 else
617 {
618 register Lisp_Object map;
619 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
620 if (NILP (map))
621 /* Invalid keymap */
622 return object;
623 else
624 {
625 Lisp_Object key;
626 key = Fcdr (object);
627 if (INTEGERP (key) && (XINT (key) & meta_modifier))
628 {
629 object = access_keymap (map, meta_prefix_char, 0, 0);
630 map = get_keymap_1 (object, 0, autoload);
631 object = access_keymap (map, make_number (XINT (key)
632 & ~meta_modifier),
633 0, 0);
634 }
635 else
636 object = access_keymap (map, key, 0, 0);
637 }
638 }
639 }
640 }
641
642 Lisp_Object
643 store_in_keymap (keymap, idx, def)
644 Lisp_Object keymap;
645 register Lisp_Object idx;
646 register Lisp_Object def;
647 {
648 /* If we are preparing to dump, and DEF is a menu element
649 with a menu item indicator, copy it to ensure it is not pure. */
650 if (CONSP (def) && PURE_P (def)
651 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
652 def = Fcons (XCAR (def), XCDR (def));
653
654 if (!CONSP (keymap) || ! EQ (XCAR (keymap), Qkeymap))
655 error ("attempt to define a key in a non-keymap");
656
657 /* If idx is a list (some sort of mouse click, perhaps?),
658 the index we want to use is the car of the list, which
659 ought to be a symbol. */
660 idx = EVENT_HEAD (idx);
661
662 /* If idx is a symbol, it might have modifiers, which need to
663 be put in the canonical order. */
664 if (SYMBOLP (idx))
665 idx = reorder_modifiers (idx);
666 else if (INTEGERP (idx))
667 /* Clobber the high bits that can be present on a machine
668 with more than 24 bits of integer. */
669 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
670
671 /* Scan the keymap for a binding of idx. */
672 {
673 Lisp_Object tail;
674
675 /* The cons after which we should insert new bindings. If the
676 keymap has a table element, we record its position here, so new
677 bindings will go after it; this way, the table will stay
678 towards the front of the alist and character lookups in dense
679 keymaps will remain fast. Otherwise, this just points at the
680 front of the keymap. */
681 Lisp_Object insertion_point;
682
683 insertion_point = keymap;
684 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
685 {
686 Lisp_Object elt;
687
688 elt = XCAR (tail);
689 if (VECTORP (elt))
690 {
691 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
692 {
693 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
694 return def;
695 }
696 insertion_point = tail;
697 }
698 else if (CHAR_TABLE_P (elt))
699 {
700 /* Character codes with modifiers
701 are not included in a char-table.
702 All character codes without modifiers are included. */
703 if (NATNUMP (idx)
704 && ! (XFASTINT (idx)
705 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
706 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
707 {
708 Faset (elt, idx, def);
709 return def;
710 }
711 insertion_point = tail;
712 }
713 else if (CONSP (elt))
714 {
715 if (EQ (idx, XCAR (elt)))
716 {
717 XCDR (elt) = def;
718 return def;
719 }
720 }
721 else if (SYMBOLP (elt))
722 {
723 /* If we find a 'keymap' symbol in the spine of KEYMAP,
724 then we must have found the start of a second keymap
725 being used as the tail of KEYMAP, and a binding for IDX
726 should be inserted before it. */
727 if (EQ (elt, Qkeymap))
728 goto keymap_end;
729 }
730
731 QUIT;
732 }
733
734 keymap_end:
735 /* We have scanned the entire keymap, and not found a binding for
736 IDX. Let's add one. */
737 XCDR (insertion_point)
738 = Fcons (Fcons (idx, def), XCDR (insertion_point));
739 }
740
741 return def;
742 }
743
744 void
745 copy_keymap_1 (chartable, idx, elt)
746 Lisp_Object chartable, idx, elt;
747 {
748 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
749 Faset (chartable, idx, Fcopy_keymap (elt));
750 }
751
752 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
753 "Return a copy of the keymap KEYMAP.\n\
754 The copy starts out with the same definitions of KEYMAP,\n\
755 but changing either the copy or KEYMAP does not affect the other.\n\
756 Any key definitions that are subkeymaps are recursively copied.\n\
757 However, a key definition which is a symbol whose definition is a keymap\n\
758 is not copied.")
759 (keymap)
760 Lisp_Object keymap;
761 {
762 register Lisp_Object copy, tail;
763
764 copy = Fcopy_alist (get_keymap (keymap));
765
766 for (tail = copy; CONSP (tail); tail = XCDR (tail))
767 {
768 Lisp_Object elt;
769
770 elt = XCAR (tail);
771 if (CHAR_TABLE_P (elt))
772 {
773 Lisp_Object indices[3];
774
775 elt = Fcopy_sequence (elt);
776 XCAR (tail) = elt;
777
778 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
779 }
780 else if (VECTORP (elt))
781 {
782 int i;
783
784 elt = Fcopy_sequence (elt);
785 XCAR (tail) = elt;
786
787 for (i = 0; i < XVECTOR (elt)->size; i++)
788 if (!SYMBOLP (XVECTOR (elt)->contents[i])
789 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
790 XVECTOR (elt)->contents[i]
791 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
792 }
793 else if (CONSP (elt) && CONSP (XCDR (elt)))
794 {
795 Lisp_Object tem;
796 tem = XCDR (elt);
797
798 /* Is this a new format menu item. */
799 if (EQ (XCAR (tem),Qmenu_item))
800 {
801 /* Copy cell with menu-item marker. */
802 XCDR (elt)
803 = Fcons (XCAR (tem), XCDR (tem));
804 elt = XCDR (elt);
805 tem = XCDR (elt);
806 if (CONSP (tem))
807 {
808 /* Copy cell with menu-item name. */
809 XCDR (elt)
810 = Fcons (XCAR (tem), XCDR (tem));
811 elt = XCDR (elt);
812 tem = XCDR (elt);
813 };
814 if (CONSP (tem))
815 {
816 /* Copy cell with binding and if the binding is a keymap,
817 copy that. */
818 XCDR (elt)
819 = Fcons (XCAR (tem), XCDR (tem));
820 elt = XCDR (elt);
821 tem = XCAR (elt);
822 if (!(SYMBOLP (tem) || NILP (Fkeymapp (tem))))
823 XCAR (elt) = Fcopy_keymap (tem);
824 tem = XCDR (elt);
825 if (CONSP (tem) && CONSP (XCAR (tem)))
826 /* Delete cache for key equivalences. */
827 XCDR (elt) = XCDR (tem);
828 }
829 }
830 else
831 {
832 /* It may be an old fomat menu item.
833 Skip the optional menu string.
834 */
835 if (STRINGP (XCAR (tem)))
836 {
837 /* Copy the cell, since copy-alist didn't go this deep. */
838 XCDR (elt)
839 = Fcons (XCAR (tem), XCDR (tem));
840 elt = XCDR (elt);
841 tem = XCDR (elt);
842 /* Also skip the optional menu help string. */
843 if (CONSP (tem) && STRINGP (XCAR (tem)))
844 {
845 XCDR (elt)
846 = Fcons (XCAR (tem), XCDR (tem));
847 elt = XCDR (elt);
848 tem = XCDR (elt);
849 }
850 /* There may also be a list that caches key equivalences.
851 Just delete it for the new keymap. */
852 if (CONSP (tem)
853 && CONSP (XCAR (tem))
854 && (NILP (XCAR (XCAR (tem)))
855 || VECTORP (XCAR (XCAR (tem)))))
856 XCDR (elt) = XCDR (tem);
857 }
858 if (CONSP (elt)
859 && ! SYMBOLP (XCDR (elt))
860 && ! NILP (Fkeymapp (XCDR (elt))))
861 XCDR (elt) = Fcopy_keymap (XCDR (elt));
862 }
863
864 }
865 }
866
867 return copy;
868 }
869 \f
870 /* Simple Keymap mutators and accessors. */
871
872 /* GC is possible in this function if it autoloads a keymap. */
873
874 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
875 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
876 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
877 meaning a sequence of keystrokes and events.\n\
878 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
879 can be included if you use a vector.\n\
880 DEF is anything that can be a key's definition:\n\
881 nil (means key is undefined in this keymap),\n\
882 a command (a Lisp function suitable for interactive calling)\n\
883 a string (treated as a keyboard macro),\n\
884 a keymap (to define a prefix key),\n\
885 a symbol. When the key is looked up, the symbol will stand for its\n\
886 function definition, which should at that time be one of the above,\n\
887 or another symbol whose function definition is used, etc.\n\
888 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
889 (DEFN should be a valid definition in its own right),\n\
890 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
891 \n\
892 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
893 the front of KEYMAP.")
894 (keymap, key, def)
895 Lisp_Object keymap;
896 Lisp_Object key;
897 Lisp_Object def;
898 {
899 register int idx;
900 register Lisp_Object c;
901 register Lisp_Object cmd;
902 int metized = 0;
903 int meta_bit;
904 int length;
905 struct gcpro gcpro1, gcpro2, gcpro3;
906
907 keymap = get_keymap_1 (keymap, 1, 1);
908
909 if (!VECTORP (key) && !STRINGP (key))
910 key = wrong_type_argument (Qarrayp, key);
911
912 length = XFASTINT (Flength (key));
913 if (length == 0)
914 return Qnil;
915
916 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
917 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
918
919 GCPRO3 (keymap, key, def);
920
921 if (VECTORP (key))
922 meta_bit = meta_modifier;
923 else
924 meta_bit = 0x80;
925
926 idx = 0;
927 while (1)
928 {
929 c = Faref (key, make_number (idx));
930
931 if (CONSP (c) && lucid_event_type_list_p (c))
932 c = Fevent_convert_list (c);
933
934 if (INTEGERP (c)
935 && (XINT (c) & meta_bit)
936 && !metized)
937 {
938 c = meta_prefix_char;
939 metized = 1;
940 }
941 else
942 {
943 if (INTEGERP (c))
944 XSETINT (c, XINT (c) & ~meta_bit);
945
946 metized = 0;
947 idx++;
948 }
949
950 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
951 error ("Key sequence contains invalid events");
952
953 if (idx == length)
954 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
955
956 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
957
958 /* If this key is undefined, make it a prefix. */
959 if (NILP (cmd))
960 cmd = define_as_prefix (keymap, c);
961
962 keymap = get_keymap_1 (cmd, 0, 1);
963 if (NILP (keymap))
964 /* We must use Fkey_description rather than just passing key to
965 error; key might be a vector, not a string. */
966 error ("Key sequence %s uses invalid prefix characters",
967 XSTRING (Fkey_description (key))->data);
968 }
969 }
970
971 /* Value is number if KEY is too long; NIL if valid but has no definition. */
972 /* GC is possible in this function if it autoloads a keymap. */
973
974 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
975 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
976 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
977 \n\
978 A number as value means KEY is \"too long\";\n\
979 that is, characters or symbols in it except for the last one\n\
980 fail to be a valid sequence of prefix characters in KEYMAP.\n\
981 The number is how many characters at the front of KEY\n\
982 it takes to reach a non-prefix command.\n\
983 \n\
984 Normally, `lookup-key' ignores bindings for t, which act as default\n\
985 bindings, used when nothing else in the keymap applies; this makes it\n\
986 usable as a general function for probing keymaps. However, if the\n\
987 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
988 recognize the default bindings, just as `read-key-sequence' does.")
989 (keymap, key, accept_default)
990 register Lisp_Object keymap;
991 Lisp_Object key;
992 Lisp_Object accept_default;
993 {
994 register int idx;
995 register Lisp_Object cmd;
996 register Lisp_Object c;
997 int metized = 0;
998 int length;
999 int t_ok = ! NILP (accept_default);
1000 int meta_bit;
1001 struct gcpro gcpro1;
1002
1003 keymap = get_keymap_1 (keymap, 1, 1);
1004
1005 if (!VECTORP (key) && !STRINGP (key))
1006 key = wrong_type_argument (Qarrayp, key);
1007
1008 length = XFASTINT (Flength (key));
1009 if (length == 0)
1010 return keymap;
1011
1012 if (VECTORP (key))
1013 meta_bit = meta_modifier;
1014 else
1015 meta_bit = 0x80;
1016
1017 GCPRO1 (key);
1018
1019 idx = 0;
1020 while (1)
1021 {
1022 c = Faref (key, make_number (idx));
1023
1024 if (CONSP (c) && lucid_event_type_list_p (c))
1025 c = Fevent_convert_list (c);
1026
1027 if (INTEGERP (c)
1028 && (XINT (c) & meta_bit)
1029 && !metized)
1030 {
1031 c = meta_prefix_char;
1032 metized = 1;
1033 }
1034 else
1035 {
1036 if (INTEGERP (c))
1037 XSETINT (c, XINT (c) & ~meta_bit);
1038
1039 metized = 0;
1040 idx++;
1041 }
1042
1043 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
1044 if (idx == length)
1045 RETURN_UNGCPRO (cmd);
1046
1047 keymap = get_keymap_1 (cmd, 0, 1);
1048 if (NILP (keymap))
1049 RETURN_UNGCPRO (make_number (idx));
1050
1051 QUIT;
1052 }
1053 }
1054
1055 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1056 Assume that currently it does not define C at all.
1057 Return the keymap. */
1058
1059 static Lisp_Object
1060 define_as_prefix (keymap, c)
1061 Lisp_Object keymap, c;
1062 {
1063 Lisp_Object inherit, cmd;
1064
1065 cmd = Fmake_sparse_keymap (Qnil);
1066 /* If this key is defined as a prefix in an inherited keymap,
1067 make it a prefix in this map, and make its definition
1068 inherit the other prefix definition. */
1069 inherit = access_keymap (keymap, c, 0, 0);
1070 #if 0
1071 /* This code is needed to do the right thing in the following case:
1072 keymap A inherits from B,
1073 you define KEY as a prefix in A,
1074 then later you define KEY as a prefix in B.
1075 We want the old prefix definition in A to inherit from that in B.
1076 It is hard to do that retroactively, so this code
1077 creates the prefix in B right away.
1078
1079 But it turns out that this code causes problems immediately
1080 when the prefix in A is defined: it causes B to define KEY
1081 as a prefix with no subcommands.
1082
1083 So I took out this code. */
1084 if (NILP (inherit))
1085 {
1086 /* If there's an inherited keymap
1087 and it doesn't define this key,
1088 make it define this key. */
1089 Lisp_Object tail;
1090
1091 for (tail = Fcdr (keymap); CONSP (tail); tail = XCDR (tail))
1092 if (EQ (XCAR (tail), Qkeymap))
1093 break;
1094
1095 if (!NILP (tail))
1096 inherit = define_as_prefix (tail, c);
1097 }
1098 #endif
1099
1100 cmd = nconc2 (cmd, inherit);
1101 store_in_keymap (keymap, c, cmd);
1102
1103 return cmd;
1104 }
1105
1106 /* Append a key to the end of a key sequence. We always make a vector. */
1107
1108 Lisp_Object
1109 append_key (key_sequence, key)
1110 Lisp_Object key_sequence, key;
1111 {
1112 Lisp_Object args[2];
1113
1114 args[0] = key_sequence;
1115
1116 args[1] = Fcons (key, Qnil);
1117 return Fvconcat (2, args);
1118 }
1119
1120 \f
1121 /* Global, local, and minor mode keymap stuff. */
1122
1123 /* We can't put these variables inside current_minor_maps, since under
1124 some systems, static gets macro-defined to be the empty string.
1125 Ickypoo. */
1126 static Lisp_Object *cmm_modes, *cmm_maps;
1127 static int cmm_size;
1128
1129 /* Error handler used in current_minor_maps. */
1130 static Lisp_Object
1131 current_minor_maps_error ()
1132 {
1133 return Qnil;
1134 }
1135
1136 /* Store a pointer to an array of the keymaps of the currently active
1137 minor modes in *buf, and return the number of maps it contains.
1138
1139 This function always returns a pointer to the same buffer, and may
1140 free or reallocate it, so if you want to keep it for a long time or
1141 hand it out to lisp code, copy it. This procedure will be called
1142 for every key sequence read, so the nice lispy approach (return a
1143 new assoclist, list, what have you) for each invocation would
1144 result in a lot of consing over time.
1145
1146 If we used xrealloc/xmalloc and ran out of memory, they would throw
1147 back to the command loop, which would try to read a key sequence,
1148 which would call this function again, resulting in an infinite
1149 loop. Instead, we'll use realloc/malloc and silently truncate the
1150 list, let the key sequence be read, and hope some other piece of
1151 code signals the error. */
1152 int
1153 current_minor_maps (modeptr, mapptr)
1154 Lisp_Object **modeptr, **mapptr;
1155 {
1156 int i = 0;
1157 int list_number = 0;
1158 Lisp_Object alist, assoc, var, val;
1159 Lisp_Object lists[2];
1160
1161 lists[0] = Vminor_mode_overriding_map_alist;
1162 lists[1] = Vminor_mode_map_alist;
1163
1164 for (list_number = 0; list_number < 2; list_number++)
1165 for (alist = lists[list_number];
1166 CONSP (alist);
1167 alist = XCDR (alist))
1168 if ((assoc = XCAR (alist), CONSP (assoc))
1169 && (var = XCAR (assoc), SYMBOLP (var))
1170 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1171 && ! NILP (val))
1172 {
1173 Lisp_Object temp;
1174
1175 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1176 and also an entry in Vminor_mode_map_alist,
1177 ignore the latter. */
1178 if (list_number == 1)
1179 {
1180 val = assq_no_quit (var, lists[0]);
1181 if (!NILP (val))
1182 break;
1183 }
1184
1185 if (i >= cmm_size)
1186 {
1187 Lisp_Object *newmodes, *newmaps;
1188
1189 if (cmm_maps)
1190 {
1191 BLOCK_INPUT;
1192 cmm_size *= 2;
1193 newmodes
1194 = (Lisp_Object *) realloc (cmm_modes,
1195 cmm_size * sizeof (Lisp_Object));
1196 newmaps
1197 = (Lisp_Object *) realloc (cmm_maps,
1198 cmm_size * sizeof (Lisp_Object));
1199 UNBLOCK_INPUT;
1200 }
1201 else
1202 {
1203 BLOCK_INPUT;
1204 cmm_size = 30;
1205 newmodes
1206 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1207 newmaps
1208 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1209 UNBLOCK_INPUT;
1210 }
1211
1212 if (newmaps && newmodes)
1213 {
1214 cmm_modes = newmodes;
1215 cmm_maps = newmaps;
1216 }
1217 else
1218 break;
1219 }
1220
1221 /* Get the keymap definition--or nil if it is not defined. */
1222 temp = internal_condition_case_1 (Findirect_function,
1223 XCDR (assoc),
1224 Qerror, current_minor_maps_error);
1225 if (!NILP (temp))
1226 {
1227 cmm_modes[i] = var;
1228 cmm_maps [i] = temp;
1229 i++;
1230 }
1231 }
1232
1233 if (modeptr) *modeptr = cmm_modes;
1234 if (mapptr) *mapptr = cmm_maps;
1235 return i;
1236 }
1237
1238 /* GC is possible in this function if it autoloads a keymap. */
1239
1240 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1241 "Return the binding for command KEY in current keymaps.\n\
1242 KEY is a string or vector, a sequence of keystrokes.\n\
1243 The binding is probably a symbol with a function definition.\n\
1244 \n\
1245 Normally, `key-binding' ignores bindings for t, which act as default\n\
1246 bindings, used when nothing else in the keymap applies; this makes it\n\
1247 usable as a general function for probing keymaps. However, if the\n\
1248 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1249 recognize the default bindings, just as `read-key-sequence' does.")
1250 (key, accept_default)
1251 Lisp_Object key, accept_default;
1252 {
1253 Lisp_Object *maps, value;
1254 int nmaps, i;
1255 struct gcpro gcpro1;
1256
1257 GCPRO1 (key);
1258
1259 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1260 {
1261 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1262 key, accept_default);
1263 if (! NILP (value) && !INTEGERP (value))
1264 RETURN_UNGCPRO (value);
1265 }
1266 else if (!NILP (Voverriding_local_map))
1267 {
1268 value = Flookup_key (Voverriding_local_map, key, accept_default);
1269 if (! NILP (value) && !INTEGERP (value))
1270 RETURN_UNGCPRO (value);
1271 }
1272 else
1273 {
1274 Lisp_Object local;
1275
1276 nmaps = current_minor_maps (0, &maps);
1277 /* Note that all these maps are GCPRO'd
1278 in the places where we found them. */
1279
1280 for (i = 0; i < nmaps; i++)
1281 if (! NILP (maps[i]))
1282 {
1283 value = Flookup_key (maps[i], key, accept_default);
1284 if (! NILP (value) && !INTEGERP (value))
1285 RETURN_UNGCPRO (value);
1286 }
1287
1288 local = get_local_map (PT, current_buffer);
1289
1290 if (! NILP (local))
1291 {
1292 value = Flookup_key (local, key, accept_default);
1293 if (! NILP (value) && !INTEGERP (value))
1294 RETURN_UNGCPRO (value);
1295 }
1296 }
1297
1298 value = Flookup_key (current_global_map, key, accept_default);
1299 UNGCPRO;
1300 if (! NILP (value) && !INTEGERP (value))
1301 return value;
1302
1303 return Qnil;
1304 }
1305
1306 /* GC is possible in this function if it autoloads a keymap. */
1307
1308 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1309 "Return the binding for command KEYS in current local keymap only.\n\
1310 KEYS is a string, a sequence of keystrokes.\n\
1311 The binding is probably a symbol with a function definition.\n\
1312 \n\
1313 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1314 bindings; see the description of `lookup-key' for more details about this.")
1315 (keys, accept_default)
1316 Lisp_Object keys, accept_default;
1317 {
1318 register Lisp_Object map;
1319 map = current_buffer->keymap;
1320 if (NILP (map))
1321 return Qnil;
1322 return Flookup_key (map, keys, accept_default);
1323 }
1324
1325 /* GC is possible in this function if it autoloads a keymap. */
1326
1327 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1328 "Return the binding for command KEYS in current global keymap only.\n\
1329 KEYS is a string, a sequence of keystrokes.\n\
1330 The binding is probably a symbol with a function definition.\n\
1331 This function's return values are the same as those of lookup-key\n\
1332 \(which see).\n\
1333 \n\
1334 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1335 bindings; see the description of `lookup-key' for more details about this.")
1336 (keys, accept_default)
1337 Lisp_Object keys, accept_default;
1338 {
1339 return Flookup_key (current_global_map, keys, accept_default);
1340 }
1341
1342 /* GC is possible in this function if it autoloads a keymap. */
1343
1344 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1345 "Find the visible minor mode bindings of KEY.\n\
1346 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1347 the symbol which names the minor mode binding KEY, and BINDING is\n\
1348 KEY's definition in that mode. In particular, if KEY has no\n\
1349 minor-mode bindings, return nil. If the first binding is a\n\
1350 non-prefix, all subsequent bindings will be omitted, since they would\n\
1351 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1352 that come after prefix bindings.\n\
1353 \n\
1354 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1355 bindings; see the description of `lookup-key' for more details about this.")
1356 (key, accept_default)
1357 Lisp_Object key, accept_default;
1358 {
1359 Lisp_Object *modes, *maps;
1360 int nmaps;
1361 Lisp_Object binding;
1362 int i, j;
1363 struct gcpro gcpro1, gcpro2;
1364
1365 nmaps = current_minor_maps (&modes, &maps);
1366 /* Note that all these maps are GCPRO'd
1367 in the places where we found them. */
1368
1369 binding = Qnil;
1370 GCPRO2 (key, binding);
1371
1372 for (i = j = 0; i < nmaps; i++)
1373 if (! NILP (maps[i])
1374 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1375 && !INTEGERP (binding))
1376 {
1377 if (! NILP (get_keymap (binding)))
1378 maps[j++] = Fcons (modes[i], binding);
1379 else if (j == 0)
1380 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1381 }
1382
1383 UNGCPRO;
1384 return Flist (j, maps);
1385 }
1386
1387 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1388 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1389 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1390 If a second optional argument MAPVAR is given, the map is stored as\n\
1391 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1392 as a function.\n\
1393 The third optional argument NAME, if given, supplies a menu name\n\
1394 string for the map. This is required to use the keymap as a menu.")
1395 (command, mapvar, name)
1396 Lisp_Object command, mapvar, name;
1397 {
1398 Lisp_Object map;
1399 map = Fmake_sparse_keymap (name);
1400 Ffset (command, map);
1401 if (!NILP (mapvar))
1402 Fset (mapvar, map);
1403 else
1404 Fset (command, map);
1405 return command;
1406 }
1407
1408 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1409 "Select KEYMAP as the global keymap.")
1410 (keymap)
1411 Lisp_Object keymap;
1412 {
1413 keymap = get_keymap (keymap);
1414 current_global_map = keymap;
1415
1416 return Qnil;
1417 }
1418
1419 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1420 "Select KEYMAP as the local keymap.\n\
1421 If KEYMAP is nil, that means no local keymap.")
1422 (keymap)
1423 Lisp_Object keymap;
1424 {
1425 if (!NILP (keymap))
1426 keymap = get_keymap (keymap);
1427
1428 current_buffer->keymap = keymap;
1429
1430 return Qnil;
1431 }
1432
1433 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1434 "Return current buffer's local keymap, or nil if it has none.")
1435 ()
1436 {
1437 return current_buffer->keymap;
1438 }
1439
1440 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1441 "Return the current global keymap.")
1442 ()
1443 {
1444 return current_global_map;
1445 }
1446
1447 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1448 "Return a list of keymaps for the minor modes of the current buffer.")
1449 ()
1450 {
1451 Lisp_Object *maps;
1452 int nmaps = current_minor_maps (0, &maps);
1453
1454 return Flist (nmaps, maps);
1455 }
1456 \f
1457 /* Help functions for describing and documenting keymaps. */
1458
1459 static void accessible_keymaps_char_table ();
1460
1461 /* This function cannot GC. */
1462
1463 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1464 1, 2, 0,
1465 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1466 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1467 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1468 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1469 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1470 then the value includes only maps for prefixes that start with PREFIX.")
1471 (keymap, prefix)
1472 Lisp_Object keymap, prefix;
1473 {
1474 Lisp_Object maps, good_maps, tail;
1475 int prefixlen = 0;
1476
1477 /* no need for gcpro because we don't autoload any keymaps. */
1478
1479 if (!NILP (prefix))
1480 prefixlen = XINT (Flength (prefix));
1481
1482 if (!NILP (prefix))
1483 {
1484 /* If a prefix was specified, start with the keymap (if any) for
1485 that prefix, so we don't waste time considering other prefixes. */
1486 Lisp_Object tem;
1487 tem = Flookup_key (keymap, prefix, Qt);
1488 /* Flookup_key may give us nil, or a number,
1489 if the prefix is not defined in this particular map.
1490 It might even give us a list that isn't a keymap. */
1491 tem = get_keymap_1 (tem, 0, 0);
1492 if (!NILP (tem))
1493 {
1494 /* Convert PREFIX to a vector now, so that later on
1495 we don't have to deal with the possibility of a string. */
1496 if (STRINGP (prefix))
1497 {
1498 int i, i_byte, c;
1499 Lisp_Object copy;
1500
1501 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1502 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1503 {
1504 int i_before = i;
1505 if (STRING_MULTIBYTE (prefix))
1506 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1507 else
1508 {
1509 c = XSTRING (prefix)->data[i++];
1510 if (c & 0200)
1511 c ^= 0200 | meta_modifier;
1512 }
1513 XVECTOR (copy)->contents[i_before] = make_number (c);
1514 }
1515 prefix = copy;
1516 }
1517 maps = Fcons (Fcons (prefix, tem), Qnil);
1518 }
1519 else
1520 return Qnil;
1521 }
1522 else
1523 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1524 get_keymap (keymap)),
1525 Qnil);
1526
1527 /* For each map in the list maps,
1528 look at any other maps it points to,
1529 and stick them at the end if they are not already in the list.
1530
1531 This is a breadth-first traversal, where tail is the queue of
1532 nodes, and maps accumulates a list of all nodes visited. */
1533
1534 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1535 {
1536 register Lisp_Object thisseq, thismap;
1537 Lisp_Object last;
1538 /* Does the current sequence end in the meta-prefix-char? */
1539 int is_metized;
1540
1541 thisseq = Fcar (Fcar (tail));
1542 thismap = Fcdr (Fcar (tail));
1543 last = make_number (XINT (Flength (thisseq)) - 1);
1544 is_metized = (XINT (last) >= 0
1545 /* Don't metize the last char of PREFIX. */
1546 && XINT (last) >= prefixlen
1547 && EQ (Faref (thisseq, last), meta_prefix_char));
1548
1549 for (; CONSP (thismap); thismap = XCDR (thismap))
1550 {
1551 Lisp_Object elt;
1552
1553 elt = XCAR (thismap);
1554
1555 QUIT;
1556
1557 if (CHAR_TABLE_P (elt))
1558 {
1559 Lisp_Object indices[3];
1560
1561 map_char_table (accessible_keymaps_char_table, Qnil,
1562 elt, Fcons (maps, Fcons (tail, thisseq)),
1563 0, indices);
1564 }
1565 else if (VECTORP (elt))
1566 {
1567 register int i;
1568
1569 /* Vector keymap. Scan all the elements. */
1570 for (i = 0; i < XVECTOR (elt)->size; i++)
1571 {
1572 register Lisp_Object tem;
1573 register Lisp_Object cmd;
1574
1575 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1576 if (NILP (cmd)) continue;
1577 tem = Fkeymapp (cmd);
1578 if (!NILP (tem))
1579 {
1580 cmd = get_keymap (cmd);
1581 /* Ignore keymaps that are already added to maps. */
1582 tem = Frassq (cmd, maps);
1583 if (NILP (tem))
1584 {
1585 /* If the last key in thisseq is meta-prefix-char,
1586 turn it into a meta-ized keystroke. We know
1587 that the event we're about to append is an
1588 ascii keystroke since we're processing a
1589 keymap table. */
1590 if (is_metized)
1591 {
1592 int meta_bit = meta_modifier;
1593 tem = Fcopy_sequence (thisseq);
1594
1595 Faset (tem, last, make_number (i | meta_bit));
1596
1597 /* This new sequence is the same length as
1598 thisseq, so stick it in the list right
1599 after this one. */
1600 XCDR (tail)
1601 = Fcons (Fcons (tem, cmd), XCDR (tail));
1602 }
1603 else
1604 {
1605 tem = append_key (thisseq, make_number (i));
1606 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1607 }
1608 }
1609 }
1610 }
1611 }
1612 else if (CONSP (elt))
1613 {
1614 register Lisp_Object cmd, tem;
1615
1616 cmd = get_keyelt (XCDR (elt), 0);
1617 /* Ignore definitions that aren't keymaps themselves. */
1618 tem = Fkeymapp (cmd);
1619 if (!NILP (tem))
1620 {
1621 /* Ignore keymaps that have been seen already. */
1622 cmd = get_keymap (cmd);
1623 tem = Frassq (cmd, maps);
1624 if (NILP (tem))
1625 {
1626 /* Let elt be the event defined by this map entry. */
1627 elt = XCAR (elt);
1628
1629 /* If the last key in thisseq is meta-prefix-char, and
1630 this entry is a binding for an ascii keystroke,
1631 turn it into a meta-ized keystroke. */
1632 if (is_metized && INTEGERP (elt))
1633 {
1634 Lisp_Object element;
1635
1636 element = thisseq;
1637 tem = Fvconcat (1, &element);
1638 XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
1639 XINT (elt) | meta_modifier);
1640
1641 /* This new sequence is the same length as
1642 thisseq, so stick it in the list right
1643 after this one. */
1644 XCDR (tail)
1645 = Fcons (Fcons (tem, cmd), XCDR (tail));
1646 }
1647 else
1648 nconc2 (tail,
1649 Fcons (Fcons (append_key (thisseq, elt), cmd),
1650 Qnil));
1651 }
1652 }
1653 }
1654 }
1655 }
1656
1657 if (NILP (prefix))
1658 return maps;
1659
1660 /* Now find just the maps whose access prefixes start with PREFIX. */
1661
1662 good_maps = Qnil;
1663 for (; CONSP (maps); maps = XCDR (maps))
1664 {
1665 Lisp_Object elt, thisseq;
1666 elt = XCAR (maps);
1667 thisseq = XCAR (elt);
1668 /* The access prefix must be at least as long as PREFIX,
1669 and the first elements must match those of PREFIX. */
1670 if (XINT (Flength (thisseq)) >= prefixlen)
1671 {
1672 int i;
1673 for (i = 0; i < prefixlen; i++)
1674 {
1675 Lisp_Object i1;
1676 XSETFASTINT (i1, i);
1677 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1678 break;
1679 }
1680 if (i == prefixlen)
1681 good_maps = Fcons (elt, good_maps);
1682 }
1683 }
1684
1685 return Fnreverse (good_maps);
1686 }
1687
1688 static void
1689 accessible_keymaps_char_table (args, index, cmd)
1690 Lisp_Object args, index, cmd;
1691 {
1692 Lisp_Object tem;
1693 Lisp_Object maps, tail, thisseq;
1694
1695 if (NILP (cmd))
1696 return;
1697
1698 maps = XCAR (args);
1699 tail = XCAR (XCDR (args));
1700 thisseq = XCDR (XCDR (args));
1701
1702 tem = Fkeymapp (cmd);
1703 if (!NILP (tem))
1704 {
1705 cmd = get_keymap (cmd);
1706 /* Ignore keymaps that are already added to maps. */
1707 tem = Frassq (cmd, maps);
1708 if (NILP (tem))
1709 {
1710 tem = append_key (thisseq, index);
1711 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1712 }
1713 }
1714 }
1715 \f
1716 Lisp_Object Qsingle_key_description, Qkey_description;
1717
1718 /* This function cannot GC. */
1719
1720 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1721 "Return a pretty description of key-sequence KEYS.\n\
1722 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1723 spaces are put between sequence elements, etc.")
1724 (keys)
1725 Lisp_Object keys;
1726 {
1727 int len;
1728 int i, i_byte;
1729 Lisp_Object sep;
1730 Lisp_Object *args;
1731
1732 if (STRINGP (keys))
1733 {
1734 Lisp_Object vector;
1735 vector = Fmake_vector (Flength (keys), Qnil);
1736 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1737 {
1738 int c;
1739 int i_before = i;
1740
1741 if (STRING_MULTIBYTE (keys))
1742 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1743 else
1744 {
1745 c = XSTRING (keys)->data[i++];
1746 if (c & 0200)
1747 c ^= 0200 | meta_modifier;
1748 }
1749
1750 XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
1751 }
1752 keys = vector;
1753 }
1754
1755 if (VECTORP (keys))
1756 {
1757 /* In effect, this computes
1758 (mapconcat 'single-key-description keys " ")
1759 but we shouldn't use mapconcat because it can do GC. */
1760
1761 len = XVECTOR (keys)->size;
1762 sep = build_string (" ");
1763 /* This has one extra element at the end that we don't pass to Fconcat. */
1764 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1765
1766 for (i = 0; i < len; i++)
1767 {
1768 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
1769 args[i * 2 + 1] = sep;
1770 }
1771 }
1772 else if (CONSP (keys))
1773 {
1774 /* In effect, this computes
1775 (mapconcat 'single-key-description keys " ")
1776 but we shouldn't use mapconcat because it can do GC. */
1777
1778 len = XFASTINT (Flength (keys));
1779 sep = build_string (" ");
1780 /* This has one extra element at the end that we don't pass to Fconcat. */
1781 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1782
1783 for (i = 0; i < len; i++)
1784 {
1785 args[i * 2] = Fsingle_key_description (XCAR (keys));
1786 args[i * 2 + 1] = sep;
1787 keys = XCDR (keys);
1788 }
1789 }
1790 else
1791 keys = wrong_type_argument (Qarrayp, keys);
1792
1793 return Fconcat (len * 2 - 1, args);
1794 }
1795
1796 char *
1797 push_key_description (c, p)
1798 register unsigned int c;
1799 register char *p;
1800 {
1801 /* Clear all the meaningless bits above the meta bit. */
1802 c &= meta_modifier | ~ - meta_modifier;
1803
1804 if (c & alt_modifier)
1805 {
1806 *p++ = 'A';
1807 *p++ = '-';
1808 c -= alt_modifier;
1809 }
1810 if (c & ctrl_modifier)
1811 {
1812 *p++ = 'C';
1813 *p++ = '-';
1814 c -= ctrl_modifier;
1815 }
1816 if (c & hyper_modifier)
1817 {
1818 *p++ = 'H';
1819 *p++ = '-';
1820 c -= hyper_modifier;
1821 }
1822 if (c & meta_modifier)
1823 {
1824 *p++ = 'M';
1825 *p++ = '-';
1826 c -= meta_modifier;
1827 }
1828 if (c & shift_modifier)
1829 {
1830 *p++ = 'S';
1831 *p++ = '-';
1832 c -= shift_modifier;
1833 }
1834 if (c & super_modifier)
1835 {
1836 *p++ = 's';
1837 *p++ = '-';
1838 c -= super_modifier;
1839 }
1840 if (c < 040)
1841 {
1842 if (c == 033)
1843 {
1844 *p++ = 'E';
1845 *p++ = 'S';
1846 *p++ = 'C';
1847 }
1848 else if (c == '\t')
1849 {
1850 *p++ = 'T';
1851 *p++ = 'A';
1852 *p++ = 'B';
1853 }
1854 else if (c == Ctl ('M'))
1855 {
1856 *p++ = 'R';
1857 *p++ = 'E';
1858 *p++ = 'T';
1859 }
1860 else
1861 {
1862 *p++ = 'C';
1863 *p++ = '-';
1864 if (c > 0 && c <= Ctl ('Z'))
1865 *p++ = c + 0140;
1866 else
1867 *p++ = c + 0100;
1868 }
1869 }
1870 else if (c == 0177)
1871 {
1872 *p++ = 'D';
1873 *p++ = 'E';
1874 *p++ = 'L';
1875 }
1876 else if (c == ' ')
1877 {
1878 *p++ = 'S';
1879 *p++ = 'P';
1880 *p++ = 'C';
1881 }
1882 else if (c < 128
1883 || (NILP (current_buffer->enable_multibyte_characters)
1884 && SINGLE_BYTE_CHAR_P (c)))
1885 *p++ = c;
1886 else
1887 {
1888 if (! NILP (current_buffer->enable_multibyte_characters))
1889 c = unibyte_char_to_multibyte (c);
1890
1891 if (NILP (current_buffer->enable_multibyte_characters)
1892 || SINGLE_BYTE_CHAR_P (c)
1893 || ! char_valid_p (c, 0))
1894 {
1895 int bit_offset;
1896 *p++ = '\\';
1897 /* The biggest character code uses 19 bits. */
1898 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1899 {
1900 if (c >= (1 << bit_offset))
1901 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1902 }
1903 }
1904 else
1905 {
1906 p += CHAR_STRING (c, p);
1907 }
1908 }
1909
1910 return p;
1911 }
1912
1913 /* This function cannot GC. */
1914
1915 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1916 "Return a pretty description of command character KEY.\n\
1917 Control characters turn into C-whatever, etc.")
1918 (key)
1919 Lisp_Object key;
1920 {
1921 if (CONSP (key) && lucid_event_type_list_p (key))
1922 key = Fevent_convert_list (key);
1923
1924 key = EVENT_HEAD (key);
1925
1926 if (INTEGERP (key)) /* Normal character */
1927 {
1928 unsigned int charset, c1, c2;
1929 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1930
1931 if (SINGLE_BYTE_CHAR_P (without_bits))
1932 charset = 0;
1933 else
1934 SPLIT_NON_ASCII_CHAR (without_bits, charset, c1, c2);
1935
1936 if (charset
1937 && CHARSET_DEFINED_P (charset)
1938 && ((c1 >= 0 && c1 < 32)
1939 || (c2 >= 0 && c2 < 32)))
1940 {
1941 /* Handle a generic character. */
1942 Lisp_Object name;
1943 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1944 CHECK_STRING (name, 0);
1945 return concat2 (build_string ("Character set "), name);
1946 }
1947 else
1948 {
1949 char tem[KEY_DESCRIPTION_SIZE];
1950
1951 *push_key_description (XUINT (key), tem) = 0;
1952 return build_string (tem);
1953 }
1954 }
1955 else if (SYMBOLP (key)) /* Function key or event-symbol */
1956 return Fsymbol_name (key);
1957 else if (STRINGP (key)) /* Buffer names in the menubar. */
1958 return Fcopy_sequence (key);
1959 else
1960 error ("KEY must be an integer, cons, symbol, or string");
1961 }
1962
1963 char *
1964 push_text_char_description (c, p)
1965 register unsigned int c;
1966 register char *p;
1967 {
1968 if (c >= 0200)
1969 {
1970 *p++ = 'M';
1971 *p++ = '-';
1972 c -= 0200;
1973 }
1974 if (c < 040)
1975 {
1976 *p++ = '^';
1977 *p++ = c + 64; /* 'A' - 1 */
1978 }
1979 else if (c == 0177)
1980 {
1981 *p++ = '^';
1982 *p++ = '?';
1983 }
1984 else
1985 *p++ = c;
1986 return p;
1987 }
1988
1989 /* This function cannot GC. */
1990
1991 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1992 "Return a pretty description of file-character CHARACTER.\n\
1993 Control characters turn into \"^char\", etc.")
1994 (character)
1995 Lisp_Object character;
1996 {
1997 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
1998 unsigned char str[6];
1999 int c;
2000
2001 CHECK_NUMBER (character, 0);
2002
2003 c = XINT (character);
2004 if (!SINGLE_BYTE_CHAR_P (c))
2005 {
2006 int len = CHAR_STRING (c, str);
2007
2008 return make_multibyte_string (str, 1, len);
2009 }
2010
2011 *push_text_char_description (c & 0377, str) = 0;
2012
2013 return build_string (str);
2014 }
2015
2016 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2017 a meta bit. */
2018 static int
2019 ascii_sequence_p (seq)
2020 Lisp_Object seq;
2021 {
2022 int i;
2023 int len = XINT (Flength (seq));
2024
2025 for (i = 0; i < len; i++)
2026 {
2027 Lisp_Object ii, elt;
2028
2029 XSETFASTINT (ii, i);
2030 elt = Faref (seq, ii);
2031
2032 if (!INTEGERP (elt)
2033 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2034 return 0;
2035 }
2036
2037 return 1;
2038 }
2039
2040 \f
2041 /* where-is - finding a command in a set of keymaps. */
2042
2043 static Lisp_Object where_is_internal_1 ();
2044 static void where_is_internal_2 ();
2045
2046 /* This function can GC if Flookup_key autoloads any keymaps. */
2047
2048 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2049 "Return list of keys that invoke DEFINITION.\n\
2050 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2051 If KEYMAP is nil, search all the currently active keymaps.\n\
2052 \n\
2053 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2054 rather than a list of all possible key sequences.\n\
2055 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2056 no matter what it is.\n\
2057 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2058 and entirely reject menu bindings.\n\
2059 \n\
2060 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2061 to other keymaps or slots. This makes it possible to search for an\n\
2062 indirect definition itself.")
2063 (definition, keymap, firstonly, noindirect)
2064 Lisp_Object definition, keymap;
2065 Lisp_Object firstonly, noindirect;
2066 {
2067 Lisp_Object maps;
2068 Lisp_Object found, sequences;
2069 Lisp_Object keymap1;
2070 int keymap_specified = !NILP (keymap);
2071 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2072 /* 1 means ignore all menu bindings entirely. */
2073 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2074
2075 /* Find keymaps accessible from `keymap' or the current
2076 context. But don't muck with the value of `keymap',
2077 because `where_is_internal_1' uses it to check for
2078 shadowed bindings. */
2079 keymap1 = keymap;
2080 if (! keymap_specified)
2081 keymap1 = get_local_map (PT, current_buffer);
2082
2083 if (!NILP (keymap1))
2084 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2085 Faccessible_keymaps (get_keymap (current_global_map),
2086 Qnil));
2087 else
2088 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
2089
2090 /* Put the minor mode keymaps on the front. */
2091 if (! keymap_specified)
2092 {
2093 Lisp_Object minors;
2094 minors = Fnreverse (Fcurrent_minor_mode_maps ());
2095 while (!NILP (minors))
2096 {
2097 maps = nconc2 (Faccessible_keymaps (get_keymap (XCAR (minors)),
2098 Qnil),
2099 maps);
2100 minors = XCDR (minors);
2101 }
2102 }
2103
2104 GCPRO5 (definition, keymap, maps, found, sequences);
2105 found = Qnil;
2106 sequences = Qnil;
2107
2108 for (; !NILP (maps); maps = Fcdr (maps))
2109 {
2110 /* Key sequence to reach map, and the map that it reaches */
2111 register Lisp_Object this, map;
2112
2113 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2114 [M-CHAR] sequences, check if last character of the sequence
2115 is the meta-prefix char. */
2116 Lisp_Object last;
2117 int last_is_meta;
2118
2119 this = Fcar (Fcar (maps));
2120 map = Fcdr (Fcar (maps));
2121 last = make_number (XINT (Flength (this)) - 1);
2122 last_is_meta = (XINT (last) >= 0
2123 && EQ (Faref (this, last), meta_prefix_char));
2124
2125 QUIT;
2126
2127 while (CONSP (map))
2128 {
2129 /* Because the code we want to run on each binding is rather
2130 large, we don't want to have two separate loop bodies for
2131 sparse keymap bindings and tables; we want to iterate one
2132 loop body over both keymap and vector bindings.
2133
2134 For this reason, if Fcar (map) is a vector, we don't
2135 advance map to the next element until i indicates that we
2136 have finished off the vector. */
2137 Lisp_Object elt, key, binding;
2138 elt = XCAR (map);
2139 map = XCDR (map);
2140
2141 sequences = Qnil;
2142
2143 QUIT;
2144
2145 /* Set key and binding to the current key and binding, and
2146 advance map and i to the next binding. */
2147 if (VECTORP (elt))
2148 {
2149 Lisp_Object sequence;
2150 int i;
2151 /* In a vector, look at each element. */
2152 for (i = 0; i < XVECTOR (elt)->size; i++)
2153 {
2154 binding = XVECTOR (elt)->contents[i];
2155 XSETFASTINT (key, i);
2156 sequence = where_is_internal_1 (binding, key, definition,
2157 noindirect, keymap, this,
2158 last, nomenus, last_is_meta);
2159 if (!NILP (sequence))
2160 sequences = Fcons (sequence, sequences);
2161 }
2162 }
2163 else if (CHAR_TABLE_P (elt))
2164 {
2165 Lisp_Object indices[3];
2166 Lisp_Object args;
2167
2168 args = Fcons (Fcons (Fcons (definition, noindirect),
2169 Fcons (keymap, Qnil)),
2170 Fcons (Fcons (this, last),
2171 Fcons (make_number (nomenus),
2172 make_number (last_is_meta))));
2173
2174 map_char_table (where_is_internal_2, Qnil, elt, args,
2175 0, indices);
2176 sequences = XCDR (XCDR (XCAR (args)));
2177 }
2178 else if (CONSP (elt))
2179 {
2180 Lisp_Object sequence;
2181
2182 key = XCAR (elt);
2183 binding = XCDR (elt);
2184
2185 sequence = where_is_internal_1 (binding, key, definition,
2186 noindirect, keymap, this,
2187 last, nomenus, last_is_meta);
2188 if (!NILP (sequence))
2189 sequences = Fcons (sequence, sequences);
2190 }
2191
2192
2193 for (; ! NILP (sequences); sequences = XCDR (sequences))
2194 {
2195 Lisp_Object sequence;
2196
2197 sequence = XCAR (sequences);
2198
2199 /* It is a true unshadowed match. Record it, unless it's already
2200 been seen (as could happen when inheriting keymaps). */
2201 if (NILP (Fmember (sequence, found)))
2202 found = Fcons (sequence, found);
2203
2204 /* If firstonly is Qnon_ascii, then we can return the first
2205 binding we find. If firstonly is not Qnon_ascii but not
2206 nil, then we should return the first ascii-only binding
2207 we find. */
2208 if (EQ (firstonly, Qnon_ascii))
2209 RETURN_UNGCPRO (sequence);
2210 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2211 RETURN_UNGCPRO (sequence);
2212 }
2213 }
2214 }
2215
2216 UNGCPRO;
2217
2218 found = Fnreverse (found);
2219
2220 /* firstonly may have been t, but we may have gone all the way through
2221 the keymaps without finding an all-ASCII key sequence. So just
2222 return the best we could find. */
2223 if (! NILP (firstonly))
2224 return Fcar (found);
2225
2226 return found;
2227 }
2228
2229 /* This is the function that Fwhere_is_internal calls using map_char_table.
2230 ARGS has the form
2231 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2232 .
2233 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2234 Since map_char_table doesn't really use the return value from this function,
2235 we the result append to RESULT, the slot in ARGS. */
2236
2237 static void
2238 where_is_internal_2 (args, key, binding)
2239 Lisp_Object args, key, binding;
2240 {
2241 Lisp_Object definition, noindirect, keymap, this, last;
2242 Lisp_Object result, sequence;
2243 int nomenus, last_is_meta;
2244
2245 result = XCDR (XCDR (XCAR (args)));
2246 definition = XCAR (XCAR (XCAR (args)));
2247 noindirect = XCDR (XCAR (XCAR (args)));
2248 keymap = XCAR (XCDR (XCAR (args)));
2249 this = XCAR (XCAR (XCDR (args)));
2250 last = XCDR (XCAR (XCDR (args)));
2251 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2252 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2253
2254 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2255 this, last, nomenus, last_is_meta);
2256
2257 if (!NILP (sequence))
2258 XCDR (XCDR (XCAR (args)))
2259 = Fcons (sequence, result);
2260 }
2261
2262 static Lisp_Object
2263 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2264 nomenus, last_is_meta)
2265 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2266 int nomenus, last_is_meta;
2267 {
2268 Lisp_Object sequence;
2269 int keymap_specified = !NILP (keymap);
2270
2271 /* Search through indirections unless that's not wanted. */
2272 if (NILP (noindirect))
2273 {
2274 if (nomenus)
2275 {
2276 while (1)
2277 {
2278 Lisp_Object map, tem;
2279 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2280 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2281 tem = Fkeymapp (map);
2282 if (!NILP (tem))
2283 definition = access_keymap (map, Fcdr (definition), 0, 0);
2284 else
2285 break;
2286 }
2287 /* If the contents are (menu-item ...) or (STRING ...), reject. */
2288 if (CONSP (definition)
2289 && (EQ (XCAR (definition),Qmenu_item)
2290 || STRINGP (XCAR (definition))))
2291 return Qnil;
2292 }
2293 else
2294 binding = get_keyelt (binding, 0);
2295 }
2296
2297 /* End this iteration if this element does not match
2298 the target. */
2299
2300 if (CONSP (definition))
2301 {
2302 Lisp_Object tem;
2303 tem = Fequal (binding, definition);
2304 if (NILP (tem))
2305 return Qnil;
2306 }
2307 else
2308 if (!EQ (binding, definition))
2309 return Qnil;
2310
2311 /* We have found a match.
2312 Construct the key sequence where we found it. */
2313 if (INTEGERP (key) && last_is_meta)
2314 {
2315 sequence = Fcopy_sequence (this);
2316 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2317 }
2318 else
2319 sequence = append_key (this, key);
2320
2321 /* Verify that this key binding is not shadowed by another
2322 binding for the same key, before we say it exists.
2323
2324 Mechanism: look for local definition of this key and if
2325 it is defined and does not match what we found then
2326 ignore this key.
2327
2328 Either nil or number as value from Flookup_key
2329 means undefined. */
2330 if (keymap_specified)
2331 {
2332 binding = Flookup_key (keymap, sequence, Qnil);
2333 if (!NILP (binding) && !INTEGERP (binding))
2334 {
2335 if (CONSP (definition))
2336 {
2337 Lisp_Object tem;
2338 tem = Fequal (binding, definition);
2339 if (NILP (tem))
2340 return Qnil;
2341 }
2342 else
2343 if (!EQ (binding, definition))
2344 return Qnil;
2345 }
2346 }
2347 else
2348 {
2349 binding = Fkey_binding (sequence, Qnil);
2350 if (!EQ (binding, definition))
2351 return Qnil;
2352 }
2353
2354 return sequence;
2355 }
2356 \f
2357 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2358
2359 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2360 "Show a list of all defined keys, and their definitions.\n\
2361 We put that list in a buffer, and display the buffer.\n\
2362 \n\
2363 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2364 \(Ordinarily these are omitted from the output.)\n\
2365 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2366 then we display only bindings that start with that prefix.")
2367 (menus, prefix)
2368 Lisp_Object menus, prefix;
2369 {
2370 register Lisp_Object thisbuf;
2371 XSETBUFFER (thisbuf, current_buffer);
2372 internal_with_output_to_temp_buffer ("*Help*",
2373 describe_buffer_bindings,
2374 list3 (thisbuf, prefix, menus));
2375 return Qnil;
2376 }
2377
2378 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2379
2380 static Lisp_Object
2381 describe_buffer_bindings (arg)
2382 Lisp_Object arg;
2383 {
2384 Lisp_Object descbuf, prefix, shadow;
2385 int nomenu;
2386 register Lisp_Object start1;
2387 struct gcpro gcpro1;
2388
2389 char *alternate_heading
2390 = "\
2391 Keyboard translations:\n\n\
2392 You type Translation\n\
2393 -------- -----------\n";
2394
2395 descbuf = XCAR (arg);
2396 arg = XCDR (arg);
2397 prefix = XCAR (arg);
2398 arg = XCDR (arg);
2399 nomenu = NILP (XCAR (arg));
2400
2401 shadow = Qnil;
2402 GCPRO1 (shadow);
2403
2404 Fset_buffer (Vstandard_output);
2405
2406 /* Report on alternates for keys. */
2407 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2408 {
2409 int c;
2410 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2411 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2412
2413 for (c = 0; c < translate_len; c++)
2414 if (translate[c] != c)
2415 {
2416 char buf[KEY_DESCRIPTION_SIZE];
2417 char *bufend;
2418
2419 if (alternate_heading)
2420 {
2421 insert_string (alternate_heading);
2422 alternate_heading = 0;
2423 }
2424
2425 bufend = push_key_description (translate[c], buf);
2426 insert (buf, bufend - buf);
2427 Findent_to (make_number (16), make_number (1));
2428 bufend = push_key_description (c, buf);
2429 insert (buf, bufend - buf);
2430
2431 insert ("\n", 1);
2432 }
2433
2434 insert ("\n", 1);
2435 }
2436
2437 if (!NILP (Vkey_translation_map))
2438 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2439 "Key translations", nomenu, 1, 0);
2440
2441 {
2442 int i, nmaps;
2443 Lisp_Object *modes, *maps;
2444
2445 /* Temporarily switch to descbuf, so that we can get that buffer's
2446 minor modes correctly. */
2447 Fset_buffer (descbuf);
2448
2449 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2450 || !NILP (Voverriding_local_map))
2451 nmaps = 0;
2452 else
2453 nmaps = current_minor_maps (&modes, &maps);
2454 Fset_buffer (Vstandard_output);
2455
2456 /* Print the minor mode maps. */
2457 for (i = 0; i < nmaps; i++)
2458 {
2459 /* The title for a minor mode keymap
2460 is constructed at run time.
2461 We let describe_map_tree do the actual insertion
2462 because it takes care of other features when doing so. */
2463 char *title, *p;
2464
2465 if (!SYMBOLP (modes[i]))
2466 abort();
2467
2468 p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
2469 *p++ = '`';
2470 bcopy (XSYMBOL (modes[i])->name->data, p,
2471 XSYMBOL (modes[i])->name->size);
2472 p += XSYMBOL (modes[i])->name->size;
2473 *p++ = '\'';
2474 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2475 p += sizeof (" Minor Mode Bindings") - 1;
2476 *p = 0;
2477
2478 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2479 shadow = Fcons (maps[i], shadow);
2480 }
2481 }
2482
2483 /* Print the (major mode) local map. */
2484 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2485 start1 = current_kboard->Voverriding_terminal_local_map;
2486 else if (!NILP (Voverriding_local_map))
2487 start1 = Voverriding_local_map;
2488 else
2489 start1 = XBUFFER (descbuf)->keymap;
2490
2491 if (!NILP (start1))
2492 {
2493 describe_map_tree (start1, 1, shadow, prefix,
2494 "Major Mode Bindings", nomenu, 0, 0);
2495 shadow = Fcons (start1, shadow);
2496 }
2497
2498 describe_map_tree (current_global_map, 1, shadow, prefix,
2499 "Global Bindings", nomenu, 0, 1);
2500
2501 /* Print the function-key-map translations under this prefix. */
2502 if (!NILP (Vfunction_key_map))
2503 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2504 "Function key map translations", nomenu, 1, 0);
2505
2506 call0 (intern ("help-mode"));
2507 Fset_buffer (descbuf);
2508 UNGCPRO;
2509 return Qnil;
2510 }
2511
2512 /* Insert a description of the key bindings in STARTMAP,
2513 followed by those of all maps reachable through STARTMAP.
2514 If PARTIAL is nonzero, omit certain "uninteresting" commands
2515 (such as `undefined').
2516 If SHADOW is non-nil, it is a list of maps;
2517 don't mention keys which would be shadowed by any of them.
2518 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2519 TITLE, if not 0, is a string to insert at the beginning.
2520 TITLE should not end with a colon or a newline; we supply that.
2521 If NOMENU is not 0, then omit menu-bar commands.
2522
2523 If TRANSL is nonzero, the definitions are actually key translations
2524 so print strings and vectors differently.
2525
2526 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2527 to look through. */
2528
2529 void
2530 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2531 always_title)
2532 Lisp_Object startmap, shadow, prefix;
2533 int partial;
2534 char *title;
2535 int nomenu;
2536 int transl;
2537 int always_title;
2538 {
2539 Lisp_Object maps, orig_maps, seen, sub_shadows;
2540 struct gcpro gcpro1, gcpro2, gcpro3;
2541 int something = 0;
2542 char *key_heading
2543 = "\
2544 key binding\n\
2545 --- -------\n";
2546
2547 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2548 seen = Qnil;
2549 sub_shadows = Qnil;
2550 GCPRO3 (maps, seen, sub_shadows);
2551
2552 if (nomenu)
2553 {
2554 Lisp_Object list;
2555
2556 /* Delete from MAPS each element that is for the menu bar. */
2557 for (list = maps; !NILP (list); list = XCDR (list))
2558 {
2559 Lisp_Object elt, prefix, tem;
2560
2561 elt = Fcar (list);
2562 prefix = Fcar (elt);
2563 if (XVECTOR (prefix)->size >= 1)
2564 {
2565 tem = Faref (prefix, make_number (0));
2566 if (EQ (tem, Qmenu_bar))
2567 maps = Fdelq (elt, maps);
2568 }
2569 }
2570 }
2571
2572 if (!NILP (maps) || always_title)
2573 {
2574 if (title)
2575 {
2576 insert_string (title);
2577 if (!NILP (prefix))
2578 {
2579 insert_string (" Starting With ");
2580 insert1 (Fkey_description (prefix));
2581 }
2582 insert_string (":\n");
2583 }
2584 insert_string (key_heading);
2585 something = 1;
2586 }
2587
2588 for (; !NILP (maps); maps = Fcdr (maps))
2589 {
2590 register Lisp_Object elt, prefix, tail;
2591
2592 elt = Fcar (maps);
2593 prefix = Fcar (elt);
2594
2595 sub_shadows = Qnil;
2596
2597 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2598 {
2599 Lisp_Object shmap;
2600
2601 shmap = XCAR (tail);
2602
2603 /* If the sequence by which we reach this keymap is zero-length,
2604 then the shadow map for this keymap is just SHADOW. */
2605 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2606 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2607 ;
2608 /* If the sequence by which we reach this keymap actually has
2609 some elements, then the sequence's definition in SHADOW is
2610 what we should use. */
2611 else
2612 {
2613 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2614 if (INTEGERP (shmap))
2615 shmap = Qnil;
2616 }
2617
2618 /* If shmap is not nil and not a keymap,
2619 it completely shadows this map, so don't
2620 describe this map at all. */
2621 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2622 goto skip;
2623
2624 if (!NILP (shmap))
2625 sub_shadows = Fcons (shmap, sub_shadows);
2626 }
2627
2628 /* Maps we have already listed in this loop shadow this map. */
2629 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2630 {
2631 Lisp_Object tem;
2632 tem = Fequal (Fcar (XCAR (tail)), prefix);
2633 if (! NILP (tem))
2634 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2635 }
2636
2637 describe_map (Fcdr (elt), prefix,
2638 transl ? describe_translation : describe_command,
2639 partial, sub_shadows, &seen, nomenu);
2640
2641 skip: ;
2642 }
2643
2644 if (something)
2645 insert_string ("\n");
2646
2647 UNGCPRO;
2648 }
2649
2650 static int previous_description_column;
2651
2652 static void
2653 describe_command (definition)
2654 Lisp_Object definition;
2655 {
2656 register Lisp_Object tem1;
2657 int column = current_column ();
2658 int description_column;
2659
2660 /* If column 16 is no good, go to col 32;
2661 but don't push beyond that--go to next line instead. */
2662 if (column > 30)
2663 {
2664 insert_char ('\n');
2665 description_column = 32;
2666 }
2667 else if (column > 14 || (column > 10 && previous_description_column == 32))
2668 description_column = 32;
2669 else
2670 description_column = 16;
2671
2672 Findent_to (make_number (description_column), make_number (1));
2673 previous_description_column = description_column;
2674
2675 if (SYMBOLP (definition))
2676 {
2677 XSETSTRING (tem1, XSYMBOL (definition)->name);
2678 insert1 (tem1);
2679 insert_string ("\n");
2680 }
2681 else if (STRINGP (definition) || VECTORP (definition))
2682 insert_string ("Keyboard Macro\n");
2683 else
2684 {
2685 tem1 = Fkeymapp (definition);
2686 if (!NILP (tem1))
2687 insert_string ("Prefix Command\n");
2688 else
2689 insert_string ("??\n");
2690 }
2691 }
2692
2693 static void
2694 describe_translation (definition)
2695 Lisp_Object definition;
2696 {
2697 register Lisp_Object tem1;
2698
2699 Findent_to (make_number (16), make_number (1));
2700
2701 if (SYMBOLP (definition))
2702 {
2703 XSETSTRING (tem1, XSYMBOL (definition)->name);
2704 insert1 (tem1);
2705 insert_string ("\n");
2706 }
2707 else if (STRINGP (definition) || VECTORP (definition))
2708 {
2709 insert1 (Fkey_description (definition));
2710 insert_string ("\n");
2711 }
2712 else
2713 {
2714 tem1 = Fkeymapp (definition);
2715 if (!NILP (tem1))
2716 insert_string ("Prefix Command\n");
2717 else
2718 insert_string ("??\n");
2719 }
2720 }
2721
2722 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2723 Returns the first non-nil binding found in any of those maps. */
2724
2725 static Lisp_Object
2726 shadow_lookup (shadow, key, flag)
2727 Lisp_Object shadow, key, flag;
2728 {
2729 Lisp_Object tail, value;
2730
2731 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2732 {
2733 value = Flookup_key (XCAR (tail), key, flag);
2734 if (!NILP (value))
2735 return value;
2736 }
2737 return Qnil;
2738 }
2739
2740 /* Describe the contents of map MAP, assuming that this map itself is
2741 reached by the sequence of prefix keys KEYS (a string or vector).
2742 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2743
2744 static void
2745 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2746 register Lisp_Object map;
2747 Lisp_Object keys;
2748 void (*elt_describer) P_ ((Lisp_Object));
2749 int partial;
2750 Lisp_Object shadow;
2751 Lisp_Object *seen;
2752 int nomenu;
2753 {
2754 Lisp_Object elt_prefix;
2755 Lisp_Object tail, definition, event;
2756 Lisp_Object tem;
2757 Lisp_Object suppress;
2758 Lisp_Object kludge;
2759 int first = 1;
2760 struct gcpro gcpro1, gcpro2, gcpro3;
2761
2762 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2763 {
2764 /* Call Fkey_description first, to avoid GC bug for the other string. */
2765 tem = Fkey_description (keys);
2766 elt_prefix = concat2 (tem, build_string (" "));
2767 }
2768 else
2769 elt_prefix = Qnil;
2770
2771 if (partial)
2772 suppress = intern ("suppress-keymap");
2773
2774 /* This vector gets used to present single keys to Flookup_key. Since
2775 that is done once per keymap element, we don't want to cons up a
2776 fresh vector every time. */
2777 kludge = Fmake_vector (make_number (1), Qnil);
2778 definition = Qnil;
2779
2780 GCPRO3 (elt_prefix, definition, kludge);
2781
2782 for (tail = map; CONSP (tail); tail = XCDR (tail))
2783 {
2784 QUIT;
2785
2786 if (VECTORP (XCAR (tail))
2787 || CHAR_TABLE_P (XCAR (tail)))
2788 describe_vector (XCAR (tail),
2789 elt_prefix, elt_describer, partial, shadow, map,
2790 (int *)0, 0);
2791 else if (CONSP (XCAR (tail)))
2792 {
2793 event = XCAR (XCAR (tail));
2794
2795 /* Ignore bindings whose "keys" are not really valid events.
2796 (We get these in the frames and buffers menu.) */
2797 if (! (SYMBOLP (event) || INTEGERP (event)))
2798 continue;
2799
2800 if (nomenu && EQ (event, Qmenu_bar))
2801 continue;
2802
2803 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2804
2805 /* Don't show undefined commands or suppressed commands. */
2806 if (NILP (definition)) continue;
2807 if (SYMBOLP (definition) && partial)
2808 {
2809 tem = Fget (definition, suppress);
2810 if (!NILP (tem))
2811 continue;
2812 }
2813
2814 /* Don't show a command that isn't really visible
2815 because a local definition of the same key shadows it. */
2816
2817 XVECTOR (kludge)->contents[0] = event;
2818 if (!NILP (shadow))
2819 {
2820 tem = shadow_lookup (shadow, kludge, Qt);
2821 if (!NILP (tem)) continue;
2822 }
2823
2824 tem = Flookup_key (map, kludge, Qt);
2825 if (! EQ (tem, definition)) continue;
2826
2827 if (first)
2828 {
2829 previous_description_column = 0;
2830 insert ("\n", 1);
2831 first = 0;
2832 }
2833
2834 if (!NILP (elt_prefix))
2835 insert1 (elt_prefix);
2836
2837 /* THIS gets the string to describe the character EVENT. */
2838 insert1 (Fsingle_key_description (event));
2839
2840 /* Print a description of the definition of this character.
2841 elt_describer will take care of spacing out far enough
2842 for alignment purposes. */
2843 (*elt_describer) (definition);
2844 }
2845 else if (EQ (XCAR (tail), Qkeymap))
2846 {
2847 /* The same keymap might be in the structure twice, if we're
2848 using an inherited keymap. So skip anything we've already
2849 encountered. */
2850 tem = Fassq (tail, *seen);
2851 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2852 break;
2853 *seen = Fcons (Fcons (tail, keys), *seen);
2854 }
2855 }
2856
2857 UNGCPRO;
2858 }
2859
2860 static void
2861 describe_vector_princ (elt)
2862 Lisp_Object elt;
2863 {
2864 Findent_to (make_number (16), make_number (1));
2865 Fprinc (elt, Qnil);
2866 Fterpri (Qnil);
2867 }
2868
2869 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2870 "Insert a description of contents of VECTOR.\n\
2871 This is text showing the elements of vector matched against indices.")
2872 (vector)
2873 Lisp_Object vector;
2874 {
2875 int count = specpdl_ptr - specpdl;
2876
2877 specbind (Qstandard_output, Fcurrent_buffer ());
2878 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2879 describe_vector (vector, Qnil, describe_vector_princ, 0,
2880 Qnil, Qnil, (int *)0, 0);
2881
2882 return unbind_to (count, Qnil);
2883 }
2884
2885 /* Insert in the current buffer a description of the contents of VECTOR.
2886 We call ELT_DESCRIBER to insert the description of one value found
2887 in VECTOR.
2888
2889 ELT_PREFIX describes what "comes before" the keys or indices defined
2890 by this vector. This is a human-readable string whose size
2891 is not necessarily related to the situation.
2892
2893 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2894 leads to this keymap.
2895
2896 If the vector is a chartable, ELT_PREFIX is the vector
2897 of bytes that lead to the character set or portion of a character
2898 set described by this chartable.
2899
2900 If PARTIAL is nonzero, it means do not mention suppressed commands
2901 (that assumes the vector is in a keymap).
2902
2903 SHADOW is a list of keymaps that shadow this map.
2904 If it is non-nil, then we look up the key in those maps
2905 and we don't mention it now if it is defined by any of them.
2906
2907 ENTIRE_MAP is the keymap in which this vector appears.
2908 If the definition in effect in the whole map does not match
2909 the one in this vector, we ignore this one.
2910
2911 When describing a sub-char-table, INDICES is a list of
2912 indices at higher levels in this char-table,
2913 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2914
2915 void
2916 describe_vector (vector, elt_prefix, elt_describer,
2917 partial, shadow, entire_map,
2918 indices, char_table_depth)
2919 register Lisp_Object vector;
2920 Lisp_Object elt_prefix;
2921 void (*elt_describer) P_ ((Lisp_Object));
2922 int partial;
2923 Lisp_Object shadow;
2924 Lisp_Object entire_map;
2925 int *indices;
2926 int char_table_depth;
2927 {
2928 Lisp_Object definition;
2929 Lisp_Object tem2;
2930 register int i;
2931 Lisp_Object suppress;
2932 Lisp_Object kludge;
2933 int first = 1;
2934 struct gcpro gcpro1, gcpro2, gcpro3;
2935 /* Range of elements to be handled. */
2936 int from, to;
2937 /* A flag to tell if a leaf in this level of char-table is not a
2938 generic character (i.e. a complete multibyte character). */
2939 int complete_char;
2940 int character;
2941 int starting_i;
2942
2943 if (indices == 0)
2944 indices = (int *) alloca (3 * sizeof (int));
2945
2946 definition = Qnil;
2947
2948 /* This vector gets used to present single keys to Flookup_key. Since
2949 that is done once per vector element, we don't want to cons up a
2950 fresh vector every time. */
2951 kludge = Fmake_vector (make_number (1), Qnil);
2952 GCPRO3 (elt_prefix, definition, kludge);
2953
2954 if (partial)
2955 suppress = intern ("suppress-keymap");
2956
2957 if (CHAR_TABLE_P (vector))
2958 {
2959 if (char_table_depth == 0)
2960 {
2961 /* VECTOR is a top level char-table. */
2962 complete_char = 1;
2963 from = 0;
2964 to = CHAR_TABLE_ORDINARY_SLOTS;
2965 }
2966 else
2967 {
2968 /* VECTOR is a sub char-table. */
2969 if (char_table_depth >= 3)
2970 /* A char-table is never that deep. */
2971 error ("Too deep char table");
2972
2973 complete_char
2974 = (CHARSET_VALID_P (indices[0])
2975 && ((CHARSET_DIMENSION (indices[0]) == 1
2976 && char_table_depth == 1)
2977 || char_table_depth == 2));
2978
2979 /* Meaningful elements are from 32th to 127th. */
2980 from = 32;
2981 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2982 }
2983 }
2984 else
2985 {
2986 /* This does the right thing for ordinary vectors. */
2987
2988 complete_char = 1;
2989 from = 0;
2990 to = XVECTOR (vector)->size;
2991 }
2992
2993 for (i = from; i < to; i++)
2994 {
2995 QUIT;
2996
2997 if (CHAR_TABLE_P (vector))
2998 {
2999 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3000 complete_char = 0;
3001
3002 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3003 && !CHARSET_DEFINED_P (i - 128))
3004 continue;
3005
3006 definition
3007 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3008 }
3009 else
3010 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
3011
3012 if (NILP (definition)) continue;
3013
3014 /* Don't mention suppressed commands. */
3015 if (SYMBOLP (definition) && partial)
3016 {
3017 Lisp_Object tem;
3018
3019 tem = Fget (definition, suppress);
3020
3021 if (!NILP (tem)) continue;
3022 }
3023
3024 /* Set CHARACTER to the character this entry describes, if any.
3025 Also update *INDICES. */
3026 if (CHAR_TABLE_P (vector))
3027 {
3028 indices[char_table_depth] = i;
3029
3030 if (char_table_depth == 0)
3031 {
3032 character = i;
3033 indices[0] = i - 128;
3034 }
3035 else if (complete_char)
3036 {
3037 character
3038 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3039 }
3040 else
3041 character = 0;
3042 }
3043 else
3044 character = i;
3045
3046 /* If this binding is shadowed by some other map, ignore it. */
3047 if (!NILP (shadow) && complete_char)
3048 {
3049 Lisp_Object tem;
3050
3051 XVECTOR (kludge)->contents[0] = make_number (character);
3052 tem = shadow_lookup (shadow, kludge, Qt);
3053
3054 if (!NILP (tem)) continue;
3055 }
3056
3057 /* Ignore this definition if it is shadowed by an earlier
3058 one in the same keymap. */
3059 if (!NILP (entire_map) && complete_char)
3060 {
3061 Lisp_Object tem;
3062
3063 XVECTOR (kludge)->contents[0] = make_number (character);
3064 tem = Flookup_key (entire_map, kludge, Qt);
3065
3066 if (! EQ (tem, definition))
3067 continue;
3068 }
3069
3070 if (first)
3071 {
3072 if (char_table_depth == 0)
3073 insert ("\n", 1);
3074 first = 0;
3075 }
3076
3077 /* For a sub char-table, show the depth by indentation.
3078 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3079 if (char_table_depth > 0)
3080 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3081
3082 /* Output the prefix that applies to every entry in this map. */
3083 if (!NILP (elt_prefix))
3084 insert1 (elt_prefix);
3085
3086 /* Insert or describe the character this slot is for,
3087 or a description of what it is for. */
3088 if (SUB_CHAR_TABLE_P (vector))
3089 {
3090 if (complete_char)
3091 insert_char (character);
3092 else
3093 {
3094 /* We need an octal representation for this block of
3095 characters. */
3096 char work[16];
3097 sprintf (work, "(row %d)", i);
3098 insert (work, strlen (work));
3099 }
3100 }
3101 else if (CHAR_TABLE_P (vector))
3102 {
3103 if (complete_char)
3104 insert1 (Fsingle_key_description (make_number (character)));
3105 else
3106 {
3107 /* Print the information for this character set. */
3108 insert_string ("<");
3109 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3110 if (STRINGP (tem2))
3111 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3112 STRING_BYTES (XSTRING (tem2)), 0);
3113 else
3114 insert ("?", 1);
3115 insert (">", 1);
3116 }
3117 }
3118 else
3119 {
3120 insert1 (Fsingle_key_description (make_number (character)));
3121 }
3122
3123 /* If we find a sub char-table within a char-table,
3124 scan it recursively; it defines the details for
3125 a character set or a portion of a character set. */
3126 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3127 {
3128 insert ("\n", 1);
3129 describe_vector (definition, elt_prefix, elt_describer,
3130 partial, shadow, entire_map,
3131 indices, char_table_depth + 1);
3132 continue;
3133 }
3134
3135 starting_i = i;
3136
3137 /* Find all consecutive characters or rows that have the same
3138 definition. But, for elements of a top level char table, if
3139 they are for charsets, we had better describe one by one even
3140 if they have the same definition. */
3141 if (CHAR_TABLE_P (vector))
3142 {
3143 int limit = to;
3144
3145 if (char_table_depth == 0)
3146 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3147
3148 while (i + 1 < limit
3149 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3150 !NILP (tem2))
3151 && !NILP (Fequal (tem2, definition)))
3152 i++;
3153 }
3154 else
3155 while (i + 1 < to
3156 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
3157 !NILP (tem2))
3158 && !NILP (Fequal (tem2, definition)))
3159 i++;
3160
3161
3162 /* If we have a range of more than one character,
3163 print where the range reaches to. */
3164
3165 if (i != starting_i)
3166 {
3167 insert (" .. ", 4);
3168
3169 if (!NILP (elt_prefix))
3170 insert1 (elt_prefix);
3171
3172 if (CHAR_TABLE_P (vector))
3173 {
3174 if (char_table_depth == 0)
3175 {
3176 insert1 (Fsingle_key_description (make_number (i)));
3177 }
3178 else if (complete_char)
3179 {
3180 indices[char_table_depth] = i;
3181 character
3182 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3183 insert_char (character);
3184 }
3185 else
3186 {
3187 /* We need an octal representation for this block of
3188 characters. */
3189 char work[16];
3190 sprintf (work, "(row %d)", i);
3191 insert (work, strlen (work));
3192 }
3193 }
3194 else
3195 {
3196 insert1 (Fsingle_key_description (make_number (i)));
3197 }
3198 }
3199
3200 /* Print a description of the definition of this character.
3201 elt_describer will take care of spacing out far enough
3202 for alignment purposes. */
3203 (*elt_describer) (definition);
3204 }
3205
3206 /* For (sub) char-table, print `defalt' slot at last. */
3207 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3208 {
3209 insert (" ", char_table_depth * 2);
3210 insert_string ("<<default>>");
3211 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3212 }
3213
3214 UNGCPRO;
3215 }
3216 \f
3217 /* Apropos - finding all symbols whose names match a regexp. */
3218 Lisp_Object apropos_predicate;
3219 Lisp_Object apropos_accumulate;
3220
3221 static void
3222 apropos_accum (symbol, string)
3223 Lisp_Object symbol, string;
3224 {
3225 register Lisp_Object tem;
3226
3227 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3228 if (!NILP (tem) && !NILP (apropos_predicate))
3229 tem = call1 (apropos_predicate, symbol);
3230 if (!NILP (tem))
3231 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3232 }
3233
3234 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3235 "Show all symbols whose names contain match for REGEXP.\n\
3236 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3237 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3238 Return list of symbols found.")
3239 (regexp, predicate)
3240 Lisp_Object regexp, predicate;
3241 {
3242 struct gcpro gcpro1, gcpro2;
3243 CHECK_STRING (regexp, 0);
3244 apropos_predicate = predicate;
3245 GCPRO2 (apropos_predicate, apropos_accumulate);
3246 apropos_accumulate = Qnil;
3247 map_obarray (Vobarray, apropos_accum, regexp);
3248 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3249 UNGCPRO;
3250 return apropos_accumulate;
3251 }
3252 \f
3253 void
3254 syms_of_keymap ()
3255 {
3256 Qkeymap = intern ("keymap");
3257 staticpro (&Qkeymap);
3258
3259 /* Now we are ready to set up this property, so we can
3260 create char tables. */
3261 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3262
3263 /* Initialize the keymaps standardly used.
3264 Each one is the value of a Lisp variable, and is also
3265 pointed to by a C variable */
3266
3267 global_map = Fmake_keymap (Qnil);
3268 Fset (intern ("global-map"), global_map);
3269
3270 current_global_map = global_map;
3271 staticpro (&global_map);
3272 staticpro (&current_global_map);
3273
3274 meta_map = Fmake_keymap (Qnil);
3275 Fset (intern ("esc-map"), meta_map);
3276 Ffset (intern ("ESC-prefix"), meta_map);
3277
3278 control_x_map = Fmake_keymap (Qnil);
3279 Fset (intern ("ctl-x-map"), control_x_map);
3280 Ffset (intern ("Control-X-prefix"), control_x_map);
3281
3282 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3283 "List of commands given new key bindings recently.\n\
3284 This is used for internal purposes during Emacs startup;\n\
3285 don't alter it yourself.");
3286 Vdefine_key_rebound_commands = Qt;
3287
3288 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3289 "Default keymap to use when reading from the minibuffer.");
3290 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3291
3292 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3293 "Local keymap for the minibuffer when spaces are not allowed.");
3294 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3295
3296 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3297 "Local keymap for minibuffer input with completion.");
3298 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3299
3300 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3301 "Local keymap for minibuffer input with completion, for exact match.");
3302 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3303
3304 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3305 "Alist of keymaps to use for minor modes.\n\
3306 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3307 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3308 If two active keymaps bind the same key, the keymap appearing earlier\n\
3309 in the list takes precedence.");
3310 Vminor_mode_map_alist = Qnil;
3311
3312 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3313 "Alist of keymaps to use for minor modes, in current major mode.\n\
3314 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3315 used the same way (and before `minor-mode-map-alist'); however,\n\
3316 it is provided for major modes to bind locally.");
3317 Vminor_mode_overriding_map_alist = Qnil;
3318
3319 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3320 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3321 This allows Emacs to recognize function keys sent from ASCII\n\
3322 terminals at any point in a key sequence.\n\
3323 \n\
3324 The `read-key-sequence' function replaces any subsequence bound by\n\
3325 `function-key-map' with its binding. More precisely, when the active\n\
3326 keymaps have no binding for the current key sequence but\n\
3327 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3328 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3329 continues with the new sequence.\n\
3330 \n\
3331 The events that come from bindings in `function-key-map' are not\n\
3332 themselves looked up in `function-key-map'.\n\
3333 \n\
3334 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3335 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3336 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3337 key, typing `ESC O P x' would return [f1 x].");
3338 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3339
3340 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3341 "Keymap of key translations that can override keymaps.\n\
3342 This keymap works like `function-key-map', but comes after that,\n\
3343 and applies even for keys that have ordinary bindings.");
3344 Vkey_translation_map = Qnil;
3345
3346 Qsingle_key_description = intern ("single-key-description");
3347 staticpro (&Qsingle_key_description);
3348
3349 Qkey_description = intern ("key-description");
3350 staticpro (&Qkey_description);
3351
3352 Qkeymapp = intern ("keymapp");
3353 staticpro (&Qkeymapp);
3354
3355 Qnon_ascii = intern ("non-ascii");
3356 staticpro (&Qnon_ascii);
3357
3358 Qmenu_item = intern ("menu-item");
3359 staticpro (&Qmenu_item);
3360
3361 defsubr (&Skeymapp);
3362 defsubr (&Skeymap_parent);
3363 defsubr (&Sset_keymap_parent);
3364 defsubr (&Smake_keymap);
3365 defsubr (&Smake_sparse_keymap);
3366 defsubr (&Scopy_keymap);
3367 defsubr (&Skey_binding);
3368 defsubr (&Slocal_key_binding);
3369 defsubr (&Sglobal_key_binding);
3370 defsubr (&Sminor_mode_key_binding);
3371 defsubr (&Sdefine_key);
3372 defsubr (&Slookup_key);
3373 defsubr (&Sdefine_prefix_command);
3374 defsubr (&Suse_global_map);
3375 defsubr (&Suse_local_map);
3376 defsubr (&Scurrent_local_map);
3377 defsubr (&Scurrent_global_map);
3378 defsubr (&Scurrent_minor_mode_maps);
3379 defsubr (&Saccessible_keymaps);
3380 defsubr (&Skey_description);
3381 defsubr (&Sdescribe_vector);
3382 defsubr (&Ssingle_key_description);
3383 defsubr (&Stext_char_description);
3384 defsubr (&Swhere_is_internal);
3385 defsubr (&Sdescribe_bindings_internal);
3386 defsubr (&Sapropos_internal);
3387 }
3388
3389 void
3390 keys_of_keymap ()
3391 {
3392 initial_define_key (global_map, 033, "ESC-prefix");
3393 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3394 }