]> code.delx.au - gnu-emacs/blob - src/lisp.h
Port Qnil==0 XUNTAG to clang
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: all the defsubr as well
237 as the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #define lisp_h_XSYMBOL(a) \
360 (eassert (SYMBOLP (a)), \
361 (struct Lisp_Symbol *) XUNTAGBASE (a, Lisp_Symbol, lispsym))
362 #ifndef GC_CHECK_CONS_LIST
363 # define lisp_h_check_cons_list() ((void) 0)
364 #endif
365 #if USE_LSB_TAG
366 # define lisp_h_make_number(n) \
367 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
368 # define lisp_h_XFASTINT(a) XINT (a)
369 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
370 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
371 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
372 # define lisp_h_XUNTAGBASE(a, type, base) \
373 ((void *) ((char *) (base) - (type) + (intptr_t) XLI (a)))
374 #endif
375
376 /* When compiling via gcc -O0, define the key operations as macros, as
377 Emacs is too slow otherwise. To disable this optimization, compile
378 with -DINLINING=false. */
379 #if (defined __NO_INLINE__ \
380 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
381 && ! (defined INLINING && ! INLINING))
382 # define XLI(o) lisp_h_XLI (o)
383 # define XIL(i) lisp_h_XIL (i)
384 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
385 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
386 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
387 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
388 # define CONSP(x) lisp_h_CONSP (x)
389 # define EQ(x, y) lisp_h_EQ (x, y)
390 # define FLOATP(x) lisp_h_FLOATP (x)
391 # define INTEGERP(x) lisp_h_INTEGERP (x)
392 # define MARKERP(x) lisp_h_MARKERP (x)
393 # define MISCP(x) lisp_h_MISCP (x)
394 # define NILP(x) lisp_h_NILP (x)
395 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
396 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
397 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
398 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
399 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
400 # define XCAR(c) lisp_h_XCAR (c)
401 # define XCDR(c) lisp_h_XCDR (c)
402 # define XCONS(a) lisp_h_XCONS (a)
403 # define XHASH(a) lisp_h_XHASH (a)
404 # define XPNTR(a) lisp_h_XPNTR (a)
405 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
406 # ifndef GC_CHECK_CONS_LIST
407 # define check_cons_list() lisp_h_check_cons_list ()
408 # endif
409 # if USE_LSB_TAG
410 # define make_number(n) lisp_h_make_number (n)
411 # define XFASTINT(a) lisp_h_XFASTINT (a)
412 # define XINT(a) lisp_h_XINT (a)
413 # define XTYPE(a) lisp_h_XTYPE (a)
414 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
415 # define XUNTAGBASE(a, type, base) lisp_h_XUNTAGBASE (a, type, base)
416 # endif
417 #endif
418
419 /* Define NAME as a lisp.h inline function that returns TYPE and has
420 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
421 ARGS should be parenthesized. Implement the function by calling
422 lisp_h_NAME ARGS. */
423 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
424 INLINE type (name) argdecls { return lisp_h_##name args; }
425
426 /* like LISP_MACRO_DEFUN, except NAME returns void. */
427 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
428 INLINE void (name) argdecls { lisp_h_##name args; }
429
430
431 /* Define the fundamental Lisp data structures. */
432
433 /* This is the set of Lisp data types. If you want to define a new
434 data type, read the comments after Lisp_Fwd_Type definition
435 below. */
436
437 /* Lisp integers use 2 tags, to give them one extra bit, thus
438 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
439 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
440 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
441
442 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
443 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
444 vociferously about them. */
445 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
446 || (defined __SUNPRO_C && __STDC__))
447 #define ENUM_BF(TYPE) unsigned int
448 #else
449 #define ENUM_BF(TYPE) enum TYPE
450 #endif
451
452
453 enum Lisp_Type
454 {
455 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
456 Lisp_Symbol = 0,
457
458 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
459 whose first member indicates the subtype. */
460 Lisp_Misc = 1,
461
462 /* Integer. XINT (obj) is the integer value. */
463 Lisp_Int0 = 2,
464 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
465
466 /* String. XSTRING (object) points to a struct Lisp_String.
467 The length of the string, and its contents, are stored therein. */
468 Lisp_String = 4,
469
470 /* Vector of Lisp objects, or something resembling it.
471 XVECTOR (object) points to a struct Lisp_Vector, which contains
472 the size and contents. The size field also contains the type
473 information, if it's not a real vector object. */
474 Lisp_Vectorlike = 5,
475
476 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
477 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
478
479 Lisp_Float = 7
480 };
481
482 /* This is the set of data types that share a common structure.
483 The first member of the structure is a type code from this set.
484 The enum values are arbitrary, but we'll use large numbers to make it
485 more likely that we'll spot the error if a random word in memory is
486 mistakenly interpreted as a Lisp_Misc. */
487 enum Lisp_Misc_Type
488 {
489 Lisp_Misc_Free = 0x5eab,
490 Lisp_Misc_Marker,
491 Lisp_Misc_Overlay,
492 Lisp_Misc_Save_Value,
493 /* Currently floats are not a misc type,
494 but let's define this in case we want to change that. */
495 Lisp_Misc_Float,
496 /* This is not a type code. It is for range checking. */
497 Lisp_Misc_Limit
498 };
499
500 /* These are the types of forwarding objects used in the value slot
501 of symbols for special built-in variables whose value is stored in
502 C variables. */
503 enum Lisp_Fwd_Type
504 {
505 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
506 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
507 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
508 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
509 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
510 };
511
512 /* If you want to define a new Lisp data type, here are some
513 instructions. See the thread at
514 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
515 for more info.
516
517 First, there are already a couple of Lisp types that can be used if
518 your new type does not need to be exposed to Lisp programs nor
519 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
520 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
521 is suitable for temporarily stashing away pointers and integers in
522 a Lisp object. The latter is useful for vector-like Lisp objects
523 that need to be used as part of other objects, but which are never
524 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
525 an example).
526
527 These two types don't look pretty when printed, so they are
528 unsuitable for Lisp objects that can be exposed to users.
529
530 To define a new data type, add one more Lisp_Misc subtype or one
531 more pseudovector subtype. Pseudovectors are more suitable for
532 objects with several slots that need to support fast random access,
533 while Lisp_Misc types are for everything else. A pseudovector object
534 provides one or more slots for Lisp objects, followed by struct
535 members that are accessible only from C. A Lisp_Misc object is a
536 wrapper for a C struct that can contain anything you like.
537
538 Explicit freeing is discouraged for Lisp objects in general. But if
539 you really need to exploit this, use Lisp_Misc (check free_misc in
540 alloc.c to see why). There is no way to free a vectorlike object.
541
542 To add a new pseudovector type, extend the pvec_type enumeration;
543 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
544
545 For a Lisp_Misc, you will also need to add your entry to union
546 Lisp_Misc (but make sure the first word has the same structure as
547 the others, starting with a 16-bit member of the Lisp_Misc_Type
548 enumeration and a 1-bit GC markbit) and make sure the overall size
549 of the union is not increased by your addition.
550
551 For a new pseudovector, it's highly desirable to limit the size
552 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
553 Otherwise you will need to change sweep_vectors (also in alloc.c).
554
555 Then you will need to add switch branches in print.c (in
556 print_object, to print your object, and possibly also in
557 print_preprocess) and to alloc.c, to mark your object (in
558 mark_object) and to free it (in gc_sweep). The latter is also the
559 right place to call any code specific to your data type that needs
560 to run when the object is recycled -- e.g., free any additional
561 resources allocated for it that are not Lisp objects. You can even
562 make a pointer to the function that frees the resources a slot in
563 your object -- this way, the same object could be used to represent
564 several disparate C structures. */
565
566 #ifdef CHECK_LISP_OBJECT_TYPE
567
568 typedef struct { EMACS_INT i; } Lisp_Object;
569
570 #define LISP_INITIALLY(i) {i}
571
572 #undef CHECK_LISP_OBJECT_TYPE
573 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
574 #else /* CHECK_LISP_OBJECT_TYPE */
575
576 /* If a struct type is not wanted, define Lisp_Object as just a number. */
577
578 typedef EMACS_INT Lisp_Object;
579 #define LISP_INITIALLY(i) (i)
580 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
581 #endif /* CHECK_LISP_OBJECT_TYPE */
582
583 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
584 \f
585 /* Forward declarations. */
586
587 /* Defined in this file. */
588 union Lisp_Fwd;
589 INLINE bool BOOL_VECTOR_P (Lisp_Object);
590 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
591 INLINE bool BUFFERP (Lisp_Object);
592 INLINE bool CHAR_TABLE_P (Lisp_Object);
593 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
594 INLINE bool (CONSP) (Lisp_Object);
595 INLINE bool (FLOATP) (Lisp_Object);
596 INLINE bool functionp (Lisp_Object);
597 INLINE bool (INTEGERP) (Lisp_Object);
598 INLINE bool (MARKERP) (Lisp_Object);
599 INLINE bool (MISCP) (Lisp_Object);
600 INLINE bool (NILP) (Lisp_Object);
601 INLINE bool OVERLAYP (Lisp_Object);
602 INLINE bool PROCESSP (Lisp_Object);
603 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
604 INLINE bool SAVE_VALUEP (Lisp_Object);
605 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
606 Lisp_Object);
607 INLINE bool STRINGP (Lisp_Object);
608 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
609 INLINE bool SUBRP (Lisp_Object);
610 INLINE bool (SYMBOLP) (Lisp_Object);
611 INLINE bool (VECTORLIKEP) (Lisp_Object);
612 INLINE bool WINDOWP (Lisp_Object);
613 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
614 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
615 INLINE void *(XUNTAGBASE) (Lisp_Object, int, void *);
616
617 /* Defined in chartab.c. */
618 extern Lisp_Object char_table_ref (Lisp_Object, int);
619 extern void char_table_set (Lisp_Object, int, Lisp_Object);
620
621 /* Defined in data.c. */
622 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
623 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
624
625 /* Defined in emacs.c. */
626 extern bool might_dump;
627 /* True means Emacs has already been initialized.
628 Used during startup to detect startup of dumped Emacs. */
629 extern bool initialized;
630
631 /* Defined in floatfns.c. */
632 extern double extract_float (Lisp_Object);
633
634 \f
635 /* Interned state of a symbol. */
636
637 enum symbol_interned
638 {
639 SYMBOL_UNINTERNED = 0,
640 SYMBOL_INTERNED = 1,
641 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
642 };
643
644 enum symbol_redirect
645 {
646 SYMBOL_PLAINVAL = 4,
647 SYMBOL_VARALIAS = 1,
648 SYMBOL_LOCALIZED = 2,
649 SYMBOL_FORWARDED = 3
650 };
651
652 struct Lisp_Symbol
653 {
654 bool_bf gcmarkbit : 1;
655
656 /* Indicates where the value can be found:
657 0 : it's a plain var, the value is in the `value' field.
658 1 : it's a varalias, the value is really in the `alias' symbol.
659 2 : it's a localized var, the value is in the `blv' object.
660 3 : it's a forwarding variable, the value is in `forward'. */
661 ENUM_BF (symbol_redirect) redirect : 3;
662
663 /* Non-zero means symbol is constant, i.e. changing its value
664 should signal an error. If the value is 3, then the var
665 can be changed, but only by `defconst'. */
666 unsigned constant : 2;
667
668 /* Interned state of the symbol. This is an enumerator from
669 enum symbol_interned. */
670 unsigned interned : 2;
671
672 /* True means that this variable has been explicitly declared
673 special (with `defvar' etc), and shouldn't be lexically bound. */
674 bool_bf declared_special : 1;
675
676 /* True if pointed to from purespace and hence can't be GC'd. */
677 bool_bf pinned : 1;
678
679 /* The symbol's name, as a Lisp string. */
680 Lisp_Object name;
681
682 /* Value of the symbol or Qunbound if unbound. Which alternative of the
683 union is used depends on the `redirect' field above. */
684 union {
685 Lisp_Object value;
686 struct Lisp_Symbol *alias;
687 struct Lisp_Buffer_Local_Value *blv;
688 union Lisp_Fwd *fwd;
689 } val;
690
691 /* Function value of the symbol or Qnil if not fboundp. */
692 Lisp_Object function;
693
694 /* The symbol's property list. */
695 Lisp_Object plist;
696
697 /* Next symbol in obarray bucket, if the symbol is interned. */
698 struct Lisp_Symbol *next;
699 };
700
701 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
702 meaning as in the DEFUN macro, and is used to construct a prototype. */
703 /* We can use the same trick as in the DEFUN macro to generate the
704 appropriate prototype. */
705 #define EXFUN(fnname, maxargs) \
706 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
707
708 /* Note that the weird token-substitution semantics of ANSI C makes
709 this work for MANY and UNEVALLED. */
710 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
711 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
712 #define DEFUN_ARGS_0 (void)
713 #define DEFUN_ARGS_1 (Lisp_Object)
714 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object)
719 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object, Lisp_Object)
723 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
724 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
725
726 /* Yield an integer that contains TAG along with PTR. */
727 #define TAG_PTR(tag, ptr) \
728 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
729
730 /* Yield an integer that tags PTR as a symbol. */
731 #define TAG_SYMPTR(ptr) \
732 TAG_PTR (Lisp_Symbol, (char *) (ptr) - (char *) (USE_LSB_TAG ? lispsym : 0))
733
734 /* Declare extern constants for Lisp symbols. These can be helpful
735 when using a debugger like GDB, on older platforms where the debug
736 format does not represent C macros. Athough these symbols are
737 useless on modern platforms, they don't hurt performance all that much. */
738 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
739 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
740 #define DEFINE_LISP_SYMBOL_END(name) \
741 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMPTR (name)))
742
743 #include "globals.h"
744
745 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
746 At the machine level, these operations are no-ops. */
747 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
748 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
749
750 /* In the size word of a vector, this bit means the vector has been marked. */
751
752 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
753 # define ARRAY_MARK_FLAG PTRDIFF_MIN
754 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
755
756 /* In the size word of a struct Lisp_Vector, this bit means it's really
757 some other vector-like object. */
758 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
759 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
760 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
761
762 /* In a pseudovector, the size field actually contains a word with one
763 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
764 with PVEC_TYPE_MASK to indicate the actual type. */
765 enum pvec_type
766 {
767 PVEC_NORMAL_VECTOR,
768 PVEC_FREE,
769 PVEC_PROCESS,
770 PVEC_FRAME,
771 PVEC_WINDOW,
772 PVEC_BOOL_VECTOR,
773 PVEC_BUFFER,
774 PVEC_HASH_TABLE,
775 PVEC_TERMINAL,
776 PVEC_WINDOW_CONFIGURATION,
777 PVEC_SUBR,
778 PVEC_OTHER,
779 /* These should be last, check internal_equal to see why. */
780 PVEC_COMPILED,
781 PVEC_CHAR_TABLE,
782 PVEC_SUB_CHAR_TABLE,
783 PVEC_FONT /* Should be last because it's used for range checking. */
784 };
785
786 enum More_Lisp_Bits
787 {
788 /* For convenience, we also store the number of elements in these bits.
789 Note that this size is not necessarily the memory-footprint size, but
790 only the number of Lisp_Object fields (that need to be traced by GC).
791 The distinction is used, e.g., by Lisp_Process, which places extra
792 non-Lisp_Object fields at the end of the structure. */
793 PSEUDOVECTOR_SIZE_BITS = 12,
794 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
795
796 /* To calculate the memory footprint of the pseudovector, it's useful
797 to store the size of non-Lisp area in word_size units here. */
798 PSEUDOVECTOR_REST_BITS = 12,
799 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
800 << PSEUDOVECTOR_SIZE_BITS),
801
802 /* Used to extract pseudovector subtype information. */
803 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
804 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
805 };
806 \f
807 /* These functions extract various sorts of values from a Lisp_Object.
808 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
809 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
810 that cons. */
811
812 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
813 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
814 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
815 DEFINE_GDB_SYMBOL_END (VALMASK)
816
817 /* Largest and smallest representable fixnum values. These are the C
818 values. They are macros for use in static initializers. */
819 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
820 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
821
822 /* Extract the pointer hidden within A. */
823 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
824
825 #if USE_LSB_TAG
826
827 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
828 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
829 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
830 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
831 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
832 LISP_MACRO_DEFUN (XUNTAGBASE, void *, (Lisp_Object a, int type, void *base),
833 (a, type, base))
834
835 #else /* ! USE_LSB_TAG */
836
837 /* Although compiled only if ! USE_LSB_TAG, the following functions
838 also work when USE_LSB_TAG; this is to aid future maintenance when
839 the lisp_h_* macros are eventually removed. */
840
841 /* Make a Lisp integer representing the value of the low order
842 bits of N. */
843 INLINE Lisp_Object
844 make_number (EMACS_INT n)
845 {
846 EMACS_INT int0 = Lisp_Int0;
847 if (USE_LSB_TAG)
848 {
849 EMACS_UINT u = n;
850 n = u << INTTYPEBITS;
851 n += int0;
852 }
853 else
854 {
855 n &= INTMASK;
856 n += (int0 << VALBITS);
857 }
858 return XIL (n);
859 }
860
861 /* Extract A's value as a signed integer. */
862 INLINE EMACS_INT
863 XINT (Lisp_Object a)
864 {
865 EMACS_INT i = XLI (a);
866 if (! USE_LSB_TAG)
867 {
868 EMACS_UINT u = i;
869 i = u << INTTYPEBITS;
870 }
871 return i >> INTTYPEBITS;
872 }
873
874 /* Like XINT (A), but may be faster. A must be nonnegative.
875 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
876 integers have zero-bits in their tags. */
877 INLINE EMACS_INT
878 XFASTINT (Lisp_Object a)
879 {
880 EMACS_INT int0 = Lisp_Int0;
881 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
882 eassert (0 <= n);
883 return n;
884 }
885
886 /* Extract A's type. */
887 INLINE enum Lisp_Type
888 XTYPE (Lisp_Object a)
889 {
890 EMACS_UINT i = XLI (a);
891 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
892 }
893
894 /* Extract A's pointer value, assuming A's type is TYPE.
895 If USE_LSB_TAG, add BASE to A's pointer value while extracting. */
896 INLINE void *
897 XUNTAGBASE (Lisp_Object a, int type, void *base)
898 {
899 char *b = USE_LSB_TAG ? base : 0;
900 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
901 return b + i;
902 }
903
904 /* Extract A's pointer value, assuming A's type is TYPE. */
905 INLINE void *
906 XUNTAG (Lisp_Object a, int type)
907 {
908 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
909 return (void *) i;
910 }
911
912 #endif /* ! USE_LSB_TAG */
913
914 /* Extract A's value as an unsigned integer. */
915 INLINE EMACS_UINT
916 XUINT (Lisp_Object a)
917 {
918 EMACS_UINT i = XLI (a);
919 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
920 }
921
922 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
923 right now, but XUINT should only be applied to objects we know are
924 integers. */
925 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
926
927 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
928 INLINE Lisp_Object
929 make_natnum (EMACS_INT n)
930 {
931 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
932 EMACS_INT int0 = Lisp_Int0;
933 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
934 }
935
936 /* Return true if X and Y are the same object. */
937 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
938
939 /* Value is true if I doesn't fit into a Lisp fixnum. It is
940 written this way so that it also works if I is of unsigned
941 type or if I is a NaN. */
942
943 #define FIXNUM_OVERFLOW_P(i) \
944 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
945
946 INLINE ptrdiff_t
947 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
948 {
949 return num < lower ? lower : num <= upper ? num : upper;
950 }
951 \f
952
953 /* Extract a value or address from a Lisp_Object. */
954
955 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
956
957 INLINE struct Lisp_Vector *
958 XVECTOR (Lisp_Object a)
959 {
960 eassert (VECTORLIKEP (a));
961 return XUNTAG (a, Lisp_Vectorlike);
962 }
963
964 INLINE struct Lisp_String *
965 XSTRING (Lisp_Object a)
966 {
967 eassert (STRINGP (a));
968 return XUNTAG (a, Lisp_String);
969 }
970
971 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
972
973 /* XSYMBOL_INIT (Qfoo) is like XSYMBOL (Qfoo), except it is valid in
974 static initializers, and SYM must be a C-defined symbol. */
975 #define XSYMBOL_INIT(sym) a##sym
976
977 INLINE struct Lisp_Float *
978 XFLOAT (Lisp_Object a)
979 {
980 eassert (FLOATP (a));
981 return XUNTAG (a, Lisp_Float);
982 }
983
984 /* Pseudovector types. */
985
986 INLINE struct Lisp_Process *
987 XPROCESS (Lisp_Object a)
988 {
989 eassert (PROCESSP (a));
990 return XUNTAG (a, Lisp_Vectorlike);
991 }
992
993 INLINE struct window *
994 XWINDOW (Lisp_Object a)
995 {
996 eassert (WINDOWP (a));
997 return XUNTAG (a, Lisp_Vectorlike);
998 }
999
1000 INLINE struct terminal *
1001 XTERMINAL (Lisp_Object a)
1002 {
1003 return XUNTAG (a, Lisp_Vectorlike);
1004 }
1005
1006 INLINE struct Lisp_Subr *
1007 XSUBR (Lisp_Object a)
1008 {
1009 eassert (SUBRP (a));
1010 return XUNTAG (a, Lisp_Vectorlike);
1011 }
1012
1013 INLINE struct buffer *
1014 XBUFFER (Lisp_Object a)
1015 {
1016 eassert (BUFFERP (a));
1017 return XUNTAG (a, Lisp_Vectorlike);
1018 }
1019
1020 INLINE struct Lisp_Char_Table *
1021 XCHAR_TABLE (Lisp_Object a)
1022 {
1023 eassert (CHAR_TABLE_P (a));
1024 return XUNTAG (a, Lisp_Vectorlike);
1025 }
1026
1027 INLINE struct Lisp_Sub_Char_Table *
1028 XSUB_CHAR_TABLE (Lisp_Object a)
1029 {
1030 eassert (SUB_CHAR_TABLE_P (a));
1031 return XUNTAG (a, Lisp_Vectorlike);
1032 }
1033
1034 INLINE struct Lisp_Bool_Vector *
1035 XBOOL_VECTOR (Lisp_Object a)
1036 {
1037 eassert (BOOL_VECTOR_P (a));
1038 return XUNTAG (a, Lisp_Vectorlike);
1039 }
1040
1041 /* Construct a Lisp_Object from a value or address. */
1042
1043 INLINE Lisp_Object
1044 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1045 {
1046 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1047 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1048 return a;
1049 }
1050
1051 INLINE Lisp_Object
1052 make_lisp_symbol (struct Lisp_Symbol *sym)
1053 {
1054 Lisp_Object a = XIL (TAG_SYMPTR (sym));
1055 eassert (XTYPE (a) == Lisp_Symbol
1056 && XUNTAGBASE (a, Lisp_Symbol, lispsym) == sym);
1057 return a;
1058 }
1059
1060 INLINE Lisp_Object
1061 make_lisp_proc (struct Lisp_Process *p)
1062 {
1063 return make_lisp_ptr (p, Lisp_Vectorlike);
1064 }
1065
1066 #define XSETINT(a, b) ((a) = make_number (b))
1067 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1068 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1069 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1070 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1071 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1072 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1073 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1074
1075 /* Pseudovector types. */
1076
1077 #define XSETPVECTYPE(v, code) \
1078 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1079 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1080 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1081 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1082 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1083 | (lispsize)))
1084
1085 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1086 #define XSETPSEUDOVECTOR(a, b, code) \
1087 XSETTYPED_PSEUDOVECTOR (a, b, \
1088 (((struct vectorlike_header *) \
1089 XUNTAG (a, Lisp_Vectorlike)) \
1090 ->size), \
1091 code)
1092 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1093 (XSETVECTOR (a, b), \
1094 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1095 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1096
1097 #define XSETWINDOW_CONFIGURATION(a, b) \
1098 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1099 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1100 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1101 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1102 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1103 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1104 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1105 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1106 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1107 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1108
1109 /* Type checking. */
1110
1111 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1112 (int ok, Lisp_Object predicate, Lisp_Object x),
1113 (ok, predicate, x))
1114
1115 /* Deprecated and will be removed soon. */
1116
1117 #define INTERNAL_FIELD(field) field ## _
1118
1119 /* See the macros in intervals.h. */
1120
1121 typedef struct interval *INTERVAL;
1122
1123 struct GCALIGNED Lisp_Cons
1124 {
1125 /* Car of this cons cell. */
1126 Lisp_Object car;
1127
1128 union
1129 {
1130 /* Cdr of this cons cell. */
1131 Lisp_Object cdr;
1132
1133 /* Used to chain conses on a free list. */
1134 struct Lisp_Cons *chain;
1135 } u;
1136 };
1137
1138 /* Take the car or cdr of something known to be a cons cell. */
1139 /* The _addr functions shouldn't be used outside of the minimal set
1140 of code that has to know what a cons cell looks like. Other code not
1141 part of the basic lisp implementation should assume that the car and cdr
1142 fields are not accessible. (What if we want to switch to
1143 a copying collector someday? Cached cons cell field addresses may be
1144 invalidated at arbitrary points.) */
1145 INLINE Lisp_Object *
1146 xcar_addr (Lisp_Object c)
1147 {
1148 return &XCONS (c)->car;
1149 }
1150 INLINE Lisp_Object *
1151 xcdr_addr (Lisp_Object c)
1152 {
1153 return &XCONS (c)->u.cdr;
1154 }
1155
1156 /* Use these from normal code. */
1157 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1158 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1159
1160 /* Use these to set the fields of a cons cell.
1161
1162 Note that both arguments may refer to the same object, so 'n'
1163 should not be read after 'c' is first modified. */
1164 INLINE void
1165 XSETCAR (Lisp_Object c, Lisp_Object n)
1166 {
1167 *xcar_addr (c) = n;
1168 }
1169 INLINE void
1170 XSETCDR (Lisp_Object c, Lisp_Object n)
1171 {
1172 *xcdr_addr (c) = n;
1173 }
1174
1175 /* Take the car or cdr of something whose type is not known. */
1176 INLINE Lisp_Object
1177 CAR (Lisp_Object c)
1178 {
1179 return (CONSP (c) ? XCAR (c)
1180 : NILP (c) ? Qnil
1181 : wrong_type_argument (Qlistp, c));
1182 }
1183 INLINE Lisp_Object
1184 CDR (Lisp_Object c)
1185 {
1186 return (CONSP (c) ? XCDR (c)
1187 : NILP (c) ? Qnil
1188 : wrong_type_argument (Qlistp, c));
1189 }
1190
1191 /* Take the car or cdr of something whose type is not known. */
1192 INLINE Lisp_Object
1193 CAR_SAFE (Lisp_Object c)
1194 {
1195 return CONSP (c) ? XCAR (c) : Qnil;
1196 }
1197 INLINE Lisp_Object
1198 CDR_SAFE (Lisp_Object c)
1199 {
1200 return CONSP (c) ? XCDR (c) : Qnil;
1201 }
1202
1203 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1204
1205 struct GCALIGNED Lisp_String
1206 {
1207 ptrdiff_t size;
1208 ptrdiff_t size_byte;
1209 INTERVAL intervals; /* Text properties in this string. */
1210 unsigned char *data;
1211 };
1212
1213 /* True if STR is a multibyte string. */
1214 INLINE bool
1215 STRING_MULTIBYTE (Lisp_Object str)
1216 {
1217 return 0 <= XSTRING (str)->size_byte;
1218 }
1219
1220 /* An upper bound on the number of bytes in a Lisp string, not
1221 counting the terminating null. This a tight enough bound to
1222 prevent integer overflow errors that would otherwise occur during
1223 string size calculations. A string cannot contain more bytes than
1224 a fixnum can represent, nor can it be so long that C pointer
1225 arithmetic stops working on the string plus its terminating null.
1226 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1227 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1228 would expose alloc.c internal details that we'd rather keep
1229 private.
1230
1231 This is a macro for use in static initializers. The cast to
1232 ptrdiff_t ensures that the macro is signed. */
1233 #define STRING_BYTES_BOUND \
1234 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1235
1236 /* Mark STR as a unibyte string. */
1237 #define STRING_SET_UNIBYTE(STR) \
1238 do { \
1239 if (EQ (STR, empty_multibyte_string)) \
1240 (STR) = empty_unibyte_string; \
1241 else \
1242 XSTRING (STR)->size_byte = -1; \
1243 } while (false)
1244
1245 /* Mark STR as a multibyte string. Assure that STR contains only
1246 ASCII characters in advance. */
1247 #define STRING_SET_MULTIBYTE(STR) \
1248 do { \
1249 if (EQ (STR, empty_unibyte_string)) \
1250 (STR) = empty_multibyte_string; \
1251 else \
1252 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1253 } while (false)
1254
1255 /* Convenience functions for dealing with Lisp strings. */
1256
1257 INLINE unsigned char *
1258 SDATA (Lisp_Object string)
1259 {
1260 return XSTRING (string)->data;
1261 }
1262 INLINE char *
1263 SSDATA (Lisp_Object string)
1264 {
1265 /* Avoid "differ in sign" warnings. */
1266 return (char *) SDATA (string);
1267 }
1268 INLINE unsigned char
1269 SREF (Lisp_Object string, ptrdiff_t index)
1270 {
1271 return SDATA (string)[index];
1272 }
1273 INLINE void
1274 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1275 {
1276 SDATA (string)[index] = new;
1277 }
1278 INLINE ptrdiff_t
1279 SCHARS (Lisp_Object string)
1280 {
1281 return XSTRING (string)->size;
1282 }
1283
1284 #ifdef GC_CHECK_STRING_BYTES
1285 extern ptrdiff_t string_bytes (struct Lisp_String *);
1286 #endif
1287 INLINE ptrdiff_t
1288 STRING_BYTES (struct Lisp_String *s)
1289 {
1290 #ifdef GC_CHECK_STRING_BYTES
1291 return string_bytes (s);
1292 #else
1293 return s->size_byte < 0 ? s->size : s->size_byte;
1294 #endif
1295 }
1296
1297 INLINE ptrdiff_t
1298 SBYTES (Lisp_Object string)
1299 {
1300 return STRING_BYTES (XSTRING (string));
1301 }
1302 INLINE void
1303 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1304 {
1305 XSTRING (string)->size = newsize;
1306 }
1307
1308 /* Header of vector-like objects. This documents the layout constraints on
1309 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1310 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1311 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1312 because when two such pointers potentially alias, a compiler won't
1313 incorrectly reorder loads and stores to their size fields. See
1314 Bug#8546. */
1315 struct vectorlike_header
1316 {
1317 /* The only field contains various pieces of information:
1318 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1319 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1320 vector (0) or a pseudovector (1).
1321 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1322 of slots) of the vector.
1323 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1324 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1325 - b) number of Lisp_Objects slots at the beginning of the object
1326 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1327 traced by the GC;
1328 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1329 measured in word_size units. Rest fields may also include
1330 Lisp_Objects, but these objects usually needs some special treatment
1331 during GC.
1332 There are some exceptions. For PVEC_FREE, b) is always zero. For
1333 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1334 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1335 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1336 ptrdiff_t size;
1337 };
1338
1339 /* A regular vector is just a header plus an array of Lisp_Objects. */
1340
1341 struct Lisp_Vector
1342 {
1343 struct vectorlike_header header;
1344 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1345 };
1346
1347 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1348 enum
1349 {
1350 ALIGNOF_STRUCT_LISP_VECTOR
1351 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1352 };
1353
1354 /* A boolvector is a kind of vectorlike, with contents like a string. */
1355
1356 struct Lisp_Bool_Vector
1357 {
1358 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1359 just the subtype information. */
1360 struct vectorlike_header header;
1361 /* This is the size in bits. */
1362 EMACS_INT size;
1363 /* The actual bits, packed into bytes.
1364 Zeros fill out the last word if needed.
1365 The bits are in little-endian order in the bytes, and
1366 the bytes are in little-endian order in the words. */
1367 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1368 };
1369
1370 INLINE EMACS_INT
1371 bool_vector_size (Lisp_Object a)
1372 {
1373 EMACS_INT size = XBOOL_VECTOR (a)->size;
1374 eassume (0 <= size);
1375 return size;
1376 }
1377
1378 INLINE bits_word *
1379 bool_vector_data (Lisp_Object a)
1380 {
1381 return XBOOL_VECTOR (a)->data;
1382 }
1383
1384 INLINE unsigned char *
1385 bool_vector_uchar_data (Lisp_Object a)
1386 {
1387 return (unsigned char *) bool_vector_data (a);
1388 }
1389
1390 /* The number of data words and bytes in a bool vector with SIZE bits. */
1391
1392 INLINE EMACS_INT
1393 bool_vector_words (EMACS_INT size)
1394 {
1395 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1396 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1397 }
1398
1399 INLINE EMACS_INT
1400 bool_vector_bytes (EMACS_INT size)
1401 {
1402 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1403 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1404 }
1405
1406 /* True if A's Ith bit is set. */
1407
1408 INLINE bool
1409 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1410 {
1411 eassume (0 <= i && i < bool_vector_size (a));
1412 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1413 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1414 }
1415
1416 INLINE Lisp_Object
1417 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1418 {
1419 return bool_vector_bitref (a, i) ? Qt : Qnil;
1420 }
1421
1422 /* Set A's Ith bit to B. */
1423
1424 INLINE void
1425 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1426 {
1427 unsigned char *addr;
1428
1429 eassume (0 <= i && i < bool_vector_size (a));
1430 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1431
1432 if (b)
1433 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1434 else
1435 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1436 }
1437
1438 /* Some handy constants for calculating sizes
1439 and offsets, mostly of vectorlike objects. */
1440
1441 enum
1442 {
1443 header_size = offsetof (struct Lisp_Vector, contents),
1444 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1445 word_size = sizeof (Lisp_Object)
1446 };
1447
1448 /* Conveniences for dealing with Lisp arrays. */
1449
1450 INLINE Lisp_Object
1451 AREF (Lisp_Object array, ptrdiff_t idx)
1452 {
1453 return XVECTOR (array)->contents[idx];
1454 }
1455
1456 INLINE Lisp_Object *
1457 aref_addr (Lisp_Object array, ptrdiff_t idx)
1458 {
1459 return & XVECTOR (array)->contents[idx];
1460 }
1461
1462 INLINE ptrdiff_t
1463 ASIZE (Lisp_Object array)
1464 {
1465 return XVECTOR (array)->header.size;
1466 }
1467
1468 INLINE void
1469 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1470 {
1471 eassert (0 <= idx && idx < ASIZE (array));
1472 XVECTOR (array)->contents[idx] = val;
1473 }
1474
1475 INLINE void
1476 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1477 {
1478 /* Like ASET, but also can be used in the garbage collector:
1479 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1480 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1481 XVECTOR (array)->contents[idx] = val;
1482 }
1483
1484 /* If a struct is made to look like a vector, this macro returns the length
1485 of the shortest vector that would hold that struct. */
1486
1487 #define VECSIZE(type) \
1488 ((sizeof (type) - header_size + word_size - 1) / word_size)
1489
1490 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1491 at the end and we need to compute the number of Lisp_Object fields (the
1492 ones that the GC needs to trace). */
1493
1494 #define PSEUDOVECSIZE(type, nonlispfield) \
1495 ((offsetof (type, nonlispfield) - header_size) / word_size)
1496
1497 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1498 should be integer expressions. This is not the same as
1499 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1500 returns true. For efficiency, prefer plain unsigned comparison if A
1501 and B's sizes both fit (after integer promotion). */
1502 #define UNSIGNED_CMP(a, op, b) \
1503 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1504 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1505 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1506
1507 /* True iff C is an ASCII character. */
1508 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1509
1510 /* A char-table is a kind of vectorlike, with contents are like a
1511 vector but with a few other slots. For some purposes, it makes
1512 sense to handle a char-table with type struct Lisp_Vector. An
1513 element of a char table can be any Lisp objects, but if it is a sub
1514 char-table, we treat it a table that contains information of a
1515 specific range of characters. A sub char-table is like a vector but
1516 with two integer fields between the header and Lisp data, which means
1517 that it has to be marked with some precautions (see mark_char_table
1518 in alloc.c). A sub char-table appears only in an element of a char-table,
1519 and there's no way to access it directly from Emacs Lisp program. */
1520
1521 enum CHARTAB_SIZE_BITS
1522 {
1523 CHARTAB_SIZE_BITS_0 = 6,
1524 CHARTAB_SIZE_BITS_1 = 4,
1525 CHARTAB_SIZE_BITS_2 = 5,
1526 CHARTAB_SIZE_BITS_3 = 7
1527 };
1528
1529 extern const int chartab_size[4];
1530
1531 struct Lisp_Char_Table
1532 {
1533 /* HEADER.SIZE is the vector's size field, which also holds the
1534 pseudovector type information. It holds the size, too.
1535 The size counts the defalt, parent, purpose, ascii,
1536 contents, and extras slots. */
1537 struct vectorlike_header header;
1538
1539 /* This holds a default value,
1540 which is used whenever the value for a specific character is nil. */
1541 Lisp_Object defalt;
1542
1543 /* This points to another char table, which we inherit from when the
1544 value for a specific character is nil. The `defalt' slot takes
1545 precedence over this. */
1546 Lisp_Object parent;
1547
1548 /* This is a symbol which says what kind of use this char-table is
1549 meant for. */
1550 Lisp_Object purpose;
1551
1552 /* The bottom sub char-table for characters of the range 0..127. It
1553 is nil if none of ASCII character has a specific value. */
1554 Lisp_Object ascii;
1555
1556 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1557
1558 /* These hold additional data. It is a vector. */
1559 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1560 };
1561
1562 struct Lisp_Sub_Char_Table
1563 {
1564 /* HEADER.SIZE is the vector's size field, which also holds the
1565 pseudovector type information. It holds the size, too. */
1566 struct vectorlike_header header;
1567
1568 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1569 char-table of depth 1 contains 16 elements, and each element
1570 covers 4096 (128*32) characters. A sub char-table of depth 2
1571 contains 32 elements, and each element covers 128 characters. A
1572 sub char-table of depth 3 contains 128 elements, and each element
1573 is for one character. */
1574 int depth;
1575
1576 /* Minimum character covered by the sub char-table. */
1577 int min_char;
1578
1579 /* Use set_sub_char_table_contents to set this. */
1580 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1581 };
1582
1583 INLINE Lisp_Object
1584 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1585 {
1586 struct Lisp_Char_Table *tbl = NULL;
1587 Lisp_Object val;
1588 do
1589 {
1590 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1591 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1592 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1593 if (NILP (val))
1594 val = tbl->defalt;
1595 }
1596 while (NILP (val) && ! NILP (tbl->parent));
1597
1598 return val;
1599 }
1600
1601 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1602 characters. Do not check validity of CT. */
1603 INLINE Lisp_Object
1604 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1605 {
1606 return (ASCII_CHAR_P (idx)
1607 ? CHAR_TABLE_REF_ASCII (ct, idx)
1608 : char_table_ref (ct, idx));
1609 }
1610
1611 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1612 8-bit European characters. Do not check validity of CT. */
1613 INLINE void
1614 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1615 {
1616 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1617 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1618 else
1619 char_table_set (ct, idx, val);
1620 }
1621
1622 /* This structure describes a built-in function.
1623 It is generated by the DEFUN macro only.
1624 defsubr makes it into a Lisp object. */
1625
1626 struct Lisp_Subr
1627 {
1628 struct vectorlike_header header;
1629 union {
1630 Lisp_Object (*a0) (void);
1631 Lisp_Object (*a1) (Lisp_Object);
1632 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1633 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1634 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1635 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1636 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1637 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1638 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1639 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1640 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1641 } function;
1642 short min_args, max_args;
1643 const char *symbol_name;
1644 const char *intspec;
1645 const char *doc;
1646 };
1647
1648 enum char_table_specials
1649 {
1650 /* This is the number of slots that every char table must have. This
1651 counts the ordinary slots and the top, defalt, parent, and purpose
1652 slots. */
1653 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1654
1655 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1656 when the latter is treated as an ordinary Lisp_Vector. */
1657 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1658 };
1659
1660 /* Return the number of "extra" slots in the char table CT. */
1661
1662 INLINE int
1663 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1664 {
1665 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1666 - CHAR_TABLE_STANDARD_SLOTS);
1667 }
1668
1669 /* Make sure that sub char-table contents slot
1670 is aligned on a multiple of Lisp_Objects. */
1671 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1672 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1673
1674 /***********************************************************************
1675 Symbols
1676 ***********************************************************************/
1677
1678 /* Value is name of symbol. */
1679
1680 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1681
1682 INLINE struct Lisp_Symbol *
1683 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1684 {
1685 eassert (sym->redirect == SYMBOL_VARALIAS);
1686 return sym->val.alias;
1687 }
1688 INLINE struct Lisp_Buffer_Local_Value *
1689 SYMBOL_BLV (struct Lisp_Symbol *sym)
1690 {
1691 eassert (sym->redirect == SYMBOL_LOCALIZED);
1692 return sym->val.blv;
1693 }
1694 INLINE union Lisp_Fwd *
1695 SYMBOL_FWD (struct Lisp_Symbol *sym)
1696 {
1697 eassert (sym->redirect == SYMBOL_FORWARDED);
1698 return sym->val.fwd;
1699 }
1700
1701 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1702 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1703
1704 INLINE void
1705 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1706 {
1707 eassert (sym->redirect == SYMBOL_VARALIAS);
1708 sym->val.alias = v;
1709 }
1710 INLINE void
1711 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1712 {
1713 eassert (sym->redirect == SYMBOL_LOCALIZED);
1714 sym->val.blv = v;
1715 }
1716 INLINE void
1717 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1718 {
1719 eassert (sym->redirect == SYMBOL_FORWARDED);
1720 sym->val.fwd = v;
1721 }
1722
1723 INLINE Lisp_Object
1724 SYMBOL_NAME (Lisp_Object sym)
1725 {
1726 return XSYMBOL (sym)->name;
1727 }
1728
1729 /* Value is true if SYM is an interned symbol. */
1730
1731 INLINE bool
1732 SYMBOL_INTERNED_P (Lisp_Object sym)
1733 {
1734 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1735 }
1736
1737 /* Value is true if SYM is interned in initial_obarray. */
1738
1739 INLINE bool
1740 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1741 {
1742 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1743 }
1744
1745 /* Value is non-zero if symbol is considered a constant, i.e. its
1746 value cannot be changed (there is an exception for keyword symbols,
1747 whose value can be set to the keyword symbol itself). */
1748
1749 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1750
1751 /* Placeholder for make-docfile to process. The actual symbol
1752 definition is done by lread.c's defsym. */
1753 #define DEFSYM(sym, name) /* empty */
1754
1755 \f
1756 /***********************************************************************
1757 Hash Tables
1758 ***********************************************************************/
1759
1760 /* The structure of a Lisp hash table. */
1761
1762 struct hash_table_test
1763 {
1764 /* Name of the function used to compare keys. */
1765 Lisp_Object name;
1766
1767 /* User-supplied hash function, or nil. */
1768 Lisp_Object user_hash_function;
1769
1770 /* User-supplied key comparison function, or nil. */
1771 Lisp_Object user_cmp_function;
1772
1773 /* C function to compare two keys. */
1774 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1775
1776 /* C function to compute hash code. */
1777 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1778 };
1779
1780 struct Lisp_Hash_Table
1781 {
1782 /* This is for Lisp; the hash table code does not refer to it. */
1783 struct vectorlike_header header;
1784
1785 /* Nil if table is non-weak. Otherwise a symbol describing the
1786 weakness of the table. */
1787 Lisp_Object weak;
1788
1789 /* When the table is resized, and this is an integer, compute the
1790 new size by adding this to the old size. If a float, compute the
1791 new size by multiplying the old size with this factor. */
1792 Lisp_Object rehash_size;
1793
1794 /* Resize hash table when number of entries/ table size is >= this
1795 ratio, a float. */
1796 Lisp_Object rehash_threshold;
1797
1798 /* Vector of hash codes. If hash[I] is nil, this means that the
1799 I-th entry is unused. */
1800 Lisp_Object hash;
1801
1802 /* Vector used to chain entries. If entry I is free, next[I] is the
1803 entry number of the next free item. If entry I is non-free,
1804 next[I] is the index of the next entry in the collision chain. */
1805 Lisp_Object next;
1806
1807 /* Index of first free entry in free list. */
1808 Lisp_Object next_free;
1809
1810 /* Bucket vector. A non-nil entry is the index of the first item in
1811 a collision chain. This vector's size can be larger than the
1812 hash table size to reduce collisions. */
1813 Lisp_Object index;
1814
1815 /* Only the fields above are traced normally by the GC. The ones below
1816 `count' are special and are either ignored by the GC or traced in
1817 a special way (e.g. because of weakness). */
1818
1819 /* Number of key/value entries in the table. */
1820 ptrdiff_t count;
1821
1822 /* Vector of keys and values. The key of item I is found at index
1823 2 * I, the value is found at index 2 * I + 1.
1824 This is gc_marked specially if the table is weak. */
1825 Lisp_Object key_and_value;
1826
1827 /* The comparison and hash functions. */
1828 struct hash_table_test test;
1829
1830 /* Next weak hash table if this is a weak hash table. The head
1831 of the list is in weak_hash_tables. */
1832 struct Lisp_Hash_Table *next_weak;
1833 };
1834
1835
1836 INLINE struct Lisp_Hash_Table *
1837 XHASH_TABLE (Lisp_Object a)
1838 {
1839 return XUNTAG (a, Lisp_Vectorlike);
1840 }
1841
1842 #define XSET_HASH_TABLE(VAR, PTR) \
1843 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1844
1845 INLINE bool
1846 HASH_TABLE_P (Lisp_Object a)
1847 {
1848 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1849 }
1850
1851 /* Value is the key part of entry IDX in hash table H. */
1852 INLINE Lisp_Object
1853 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1854 {
1855 return AREF (h->key_and_value, 2 * idx);
1856 }
1857
1858 /* Value is the value part of entry IDX in hash table H. */
1859 INLINE Lisp_Object
1860 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1861 {
1862 return AREF (h->key_and_value, 2 * idx + 1);
1863 }
1864
1865 /* Value is the index of the next entry following the one at IDX
1866 in hash table H. */
1867 INLINE Lisp_Object
1868 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1869 {
1870 return AREF (h->next, idx);
1871 }
1872
1873 /* Value is the hash code computed for entry IDX in hash table H. */
1874 INLINE Lisp_Object
1875 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1876 {
1877 return AREF (h->hash, idx);
1878 }
1879
1880 /* Value is the index of the element in hash table H that is the
1881 start of the collision list at index IDX in the index vector of H. */
1882 INLINE Lisp_Object
1883 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1884 {
1885 return AREF (h->index, idx);
1886 }
1887
1888 /* Value is the size of hash table H. */
1889 INLINE ptrdiff_t
1890 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1891 {
1892 return ASIZE (h->next);
1893 }
1894
1895 /* Default size for hash tables if not specified. */
1896
1897 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1898
1899 /* Default threshold specifying when to resize a hash table. The
1900 value gives the ratio of current entries in the hash table and the
1901 size of the hash table. */
1902
1903 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1904
1905 /* Default factor by which to increase the size of a hash table. */
1906
1907 static double const DEFAULT_REHASH_SIZE = 1.5;
1908
1909 /* Combine two integers X and Y for hashing. The result might not fit
1910 into a Lisp integer. */
1911
1912 INLINE EMACS_UINT
1913 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1914 {
1915 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1916 }
1917
1918 /* Hash X, returning a value that fits into a fixnum. */
1919
1920 INLINE EMACS_UINT
1921 SXHASH_REDUCE (EMACS_UINT x)
1922 {
1923 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1924 }
1925
1926 /* These structures are used for various misc types. */
1927
1928 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1929 {
1930 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1931 bool_bf gcmarkbit : 1;
1932 unsigned spacer : 15;
1933 };
1934
1935 struct Lisp_Marker
1936 {
1937 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1938 bool_bf gcmarkbit : 1;
1939 unsigned spacer : 13;
1940 /* This flag is temporarily used in the functions
1941 decode/encode_coding_object to record that the marker position
1942 must be adjusted after the conversion. */
1943 bool_bf need_adjustment : 1;
1944 /* True means normal insertion at the marker's position
1945 leaves the marker after the inserted text. */
1946 bool_bf insertion_type : 1;
1947 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1948 Note: a chain of markers can contain markers pointing into different
1949 buffers (the chain is per buffer_text rather than per buffer, so it's
1950 shared between indirect buffers). */
1951 /* This is used for (other than NULL-checking):
1952 - Fmarker_buffer
1953 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1954 - unchain_marker: to find the list from which to unchain.
1955 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1956 */
1957 struct buffer *buffer;
1958
1959 /* The remaining fields are meaningless in a marker that
1960 does not point anywhere. */
1961
1962 /* For markers that point somewhere,
1963 this is used to chain of all the markers in a given buffer. */
1964 /* We could remove it and use an array in buffer_text instead.
1965 That would also allow to preserve it ordered. */
1966 struct Lisp_Marker *next;
1967 /* This is the char position where the marker points. */
1968 ptrdiff_t charpos;
1969 /* This is the byte position.
1970 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1971 used to implement the functionality of markers, but rather to (ab)use
1972 markers as a cache for char<->byte mappings). */
1973 ptrdiff_t bytepos;
1974 };
1975
1976 /* START and END are markers in the overlay's buffer, and
1977 PLIST is the overlay's property list. */
1978 struct Lisp_Overlay
1979 /* An overlay's real data content is:
1980 - plist
1981 - buffer (really there are two buffer pointers, one per marker,
1982 and both points to the same buffer)
1983 - insertion type of both ends (per-marker fields)
1984 - start & start byte (of start marker)
1985 - end & end byte (of end marker)
1986 - next (singly linked list of overlays)
1987 - next fields of start and end markers (singly linked list of markers).
1988 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1989 */
1990 {
1991 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1992 bool_bf gcmarkbit : 1;
1993 unsigned spacer : 15;
1994 struct Lisp_Overlay *next;
1995 Lisp_Object start;
1996 Lisp_Object end;
1997 Lisp_Object plist;
1998 };
1999
2000 /* Types of data which may be saved in a Lisp_Save_Value. */
2001
2002 enum
2003 {
2004 SAVE_UNUSED,
2005 SAVE_INTEGER,
2006 SAVE_FUNCPOINTER,
2007 SAVE_POINTER,
2008 SAVE_OBJECT
2009 };
2010
2011 /* Number of bits needed to store one of the above values. */
2012 enum { SAVE_SLOT_BITS = 3 };
2013
2014 /* Number of slots in a save value where save_type is nonzero. */
2015 enum { SAVE_VALUE_SLOTS = 4 };
2016
2017 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2018
2019 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2020
2021 enum Lisp_Save_Type
2022 {
2023 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2024 SAVE_TYPE_INT_INT_INT
2025 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2026 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2027 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2028 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2029 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2030 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2031 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2032 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2033 SAVE_TYPE_FUNCPTR_PTR_OBJ
2034 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2035
2036 /* This has an extra bit indicating it's raw memory. */
2037 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2038 };
2039
2040 /* Special object used to hold a different values for later use.
2041
2042 This is mostly used to package C integers and pointers to call
2043 record_unwind_protect when two or more values need to be saved.
2044 For example:
2045
2046 ...
2047 struct my_data *md = get_my_data ();
2048 ptrdiff_t mi = get_my_integer ();
2049 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2050 ...
2051
2052 Lisp_Object my_unwind (Lisp_Object arg)
2053 {
2054 struct my_data *md = XSAVE_POINTER (arg, 0);
2055 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2056 ...
2057 }
2058
2059 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2060 saved objects and raise eassert if type of the saved object doesn't match
2061 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2062 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2063 slot 0 is a pointer. */
2064
2065 typedef void (*voidfuncptr) (void);
2066
2067 struct Lisp_Save_Value
2068 {
2069 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2070 bool_bf gcmarkbit : 1;
2071 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2072
2073 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2074 V's data entries are determined by V->save_type. E.g., if
2075 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2076 V->data[1] is an integer, and V's other data entries are unused.
2077
2078 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2079 a memory area containing V->data[1].integer potential Lisp_Objects. */
2080 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2081 union {
2082 void *pointer;
2083 voidfuncptr funcpointer;
2084 ptrdiff_t integer;
2085 Lisp_Object object;
2086 } data[SAVE_VALUE_SLOTS];
2087 };
2088
2089 /* Return the type of V's Nth saved value. */
2090 INLINE int
2091 save_type (struct Lisp_Save_Value *v, int n)
2092 {
2093 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2094 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2095 }
2096
2097 /* Get and set the Nth saved pointer. */
2098
2099 INLINE void *
2100 XSAVE_POINTER (Lisp_Object obj, int n)
2101 {
2102 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2103 return XSAVE_VALUE (obj)->data[n].pointer;
2104 }
2105 INLINE void
2106 set_save_pointer (Lisp_Object obj, int n, void *val)
2107 {
2108 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2109 XSAVE_VALUE (obj)->data[n].pointer = val;
2110 }
2111 INLINE voidfuncptr
2112 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2113 {
2114 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2115 return XSAVE_VALUE (obj)->data[n].funcpointer;
2116 }
2117
2118 /* Likewise for the saved integer. */
2119
2120 INLINE ptrdiff_t
2121 XSAVE_INTEGER (Lisp_Object obj, int n)
2122 {
2123 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2124 return XSAVE_VALUE (obj)->data[n].integer;
2125 }
2126 INLINE void
2127 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2128 {
2129 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2130 XSAVE_VALUE (obj)->data[n].integer = val;
2131 }
2132
2133 /* Extract Nth saved object. */
2134
2135 INLINE Lisp_Object
2136 XSAVE_OBJECT (Lisp_Object obj, int n)
2137 {
2138 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2139 return XSAVE_VALUE (obj)->data[n].object;
2140 }
2141
2142 /* A miscellaneous object, when it's on the free list. */
2143 struct Lisp_Free
2144 {
2145 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2146 bool_bf gcmarkbit : 1;
2147 unsigned spacer : 15;
2148 union Lisp_Misc *chain;
2149 };
2150
2151 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2152 It uses one of these struct subtypes to get the type field. */
2153
2154 union Lisp_Misc
2155 {
2156 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2157 struct Lisp_Free u_free;
2158 struct Lisp_Marker u_marker;
2159 struct Lisp_Overlay u_overlay;
2160 struct Lisp_Save_Value u_save_value;
2161 };
2162
2163 INLINE union Lisp_Misc *
2164 XMISC (Lisp_Object a)
2165 {
2166 return XUNTAG (a, Lisp_Misc);
2167 }
2168
2169 INLINE struct Lisp_Misc_Any *
2170 XMISCANY (Lisp_Object a)
2171 {
2172 eassert (MISCP (a));
2173 return & XMISC (a)->u_any;
2174 }
2175
2176 INLINE enum Lisp_Misc_Type
2177 XMISCTYPE (Lisp_Object a)
2178 {
2179 return XMISCANY (a)->type;
2180 }
2181
2182 INLINE struct Lisp_Marker *
2183 XMARKER (Lisp_Object a)
2184 {
2185 eassert (MARKERP (a));
2186 return & XMISC (a)->u_marker;
2187 }
2188
2189 INLINE struct Lisp_Overlay *
2190 XOVERLAY (Lisp_Object a)
2191 {
2192 eassert (OVERLAYP (a));
2193 return & XMISC (a)->u_overlay;
2194 }
2195
2196 INLINE struct Lisp_Save_Value *
2197 XSAVE_VALUE (Lisp_Object a)
2198 {
2199 eassert (SAVE_VALUEP (a));
2200 return & XMISC (a)->u_save_value;
2201 }
2202 \f
2203 /* Forwarding pointer to an int variable.
2204 This is allowed only in the value cell of a symbol,
2205 and it means that the symbol's value really lives in the
2206 specified int variable. */
2207 struct Lisp_Intfwd
2208 {
2209 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2210 EMACS_INT *intvar;
2211 };
2212
2213 /* Boolean forwarding pointer to an int variable.
2214 This is like Lisp_Intfwd except that the ostensible
2215 "value" of the symbol is t if the bool variable is true,
2216 nil if it is false. */
2217 struct Lisp_Boolfwd
2218 {
2219 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2220 bool *boolvar;
2221 };
2222
2223 /* Forwarding pointer to a Lisp_Object variable.
2224 This is allowed only in the value cell of a symbol,
2225 and it means that the symbol's value really lives in the
2226 specified variable. */
2227 struct Lisp_Objfwd
2228 {
2229 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2230 Lisp_Object *objvar;
2231 };
2232
2233 /* Like Lisp_Objfwd except that value lives in a slot in the
2234 current buffer. Value is byte index of slot within buffer. */
2235 struct Lisp_Buffer_Objfwd
2236 {
2237 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2238 int offset;
2239 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2240 Lisp_Object predicate;
2241 };
2242
2243 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2244 the symbol has buffer-local or frame-local bindings. (Exception:
2245 some buffer-local variables are built-in, with their values stored
2246 in the buffer structure itself. They are handled differently,
2247 using struct Lisp_Buffer_Objfwd.)
2248
2249 The `realvalue' slot holds the variable's current value, or a
2250 forwarding pointer to where that value is kept. This value is the
2251 one that corresponds to the loaded binding. To read or set the
2252 variable, you must first make sure the right binding is loaded;
2253 then you can access the value in (or through) `realvalue'.
2254
2255 `buffer' and `frame' are the buffer and frame for which the loaded
2256 binding was found. If those have changed, to make sure the right
2257 binding is loaded it is necessary to find which binding goes with
2258 the current buffer and selected frame, then load it. To load it,
2259 first unload the previous binding, then copy the value of the new
2260 binding into `realvalue' (or through it). Also update
2261 LOADED-BINDING to point to the newly loaded binding.
2262
2263 `local_if_set' indicates that merely setting the variable creates a
2264 local binding for the current buffer. Otherwise the latter, setting
2265 the variable does not do that; only make-local-variable does that. */
2266
2267 struct Lisp_Buffer_Local_Value
2268 {
2269 /* True means that merely setting the variable creates a local
2270 binding for the current buffer. */
2271 bool_bf local_if_set : 1;
2272 /* True means this variable can have frame-local bindings, otherwise, it is
2273 can have buffer-local bindings. The two cannot be combined. */
2274 bool_bf frame_local : 1;
2275 /* True means that the binding now loaded was found.
2276 Presumably equivalent to (defcell!=valcell). */
2277 bool_bf found : 1;
2278 /* If non-NULL, a forwarding to the C var where it should also be set. */
2279 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2280 /* The buffer or frame for which the loaded binding was found. */
2281 Lisp_Object where;
2282 /* A cons cell that holds the default value. It has the form
2283 (SYMBOL . DEFAULT-VALUE). */
2284 Lisp_Object defcell;
2285 /* The cons cell from `where's parameter alist.
2286 It always has the form (SYMBOL . VALUE)
2287 Note that if `forward' is non-nil, VALUE may be out of date.
2288 Also if the currently loaded binding is the default binding, then
2289 this is `eq'ual to defcell. */
2290 Lisp_Object valcell;
2291 };
2292
2293 /* Like Lisp_Objfwd except that value lives in a slot in the
2294 current kboard. */
2295 struct Lisp_Kboard_Objfwd
2296 {
2297 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2298 int offset;
2299 };
2300
2301 union Lisp_Fwd
2302 {
2303 struct Lisp_Intfwd u_intfwd;
2304 struct Lisp_Boolfwd u_boolfwd;
2305 struct Lisp_Objfwd u_objfwd;
2306 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2307 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2308 };
2309
2310 INLINE enum Lisp_Fwd_Type
2311 XFWDTYPE (union Lisp_Fwd *a)
2312 {
2313 return a->u_intfwd.type;
2314 }
2315
2316 INLINE struct Lisp_Buffer_Objfwd *
2317 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2318 {
2319 eassert (BUFFER_OBJFWDP (a));
2320 return &a->u_buffer_objfwd;
2321 }
2322 \f
2323 /* Lisp floating point type. */
2324 struct Lisp_Float
2325 {
2326 union
2327 {
2328 double data;
2329 struct Lisp_Float *chain;
2330 } u;
2331 };
2332
2333 INLINE double
2334 XFLOAT_DATA (Lisp_Object f)
2335 {
2336 return XFLOAT (f)->u.data;
2337 }
2338
2339 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2340 representations, have infinities and NaNs, and do not trap on
2341 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2342 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2343 wanted here, but is not quite right because Emacs does not require
2344 all the features of C11 Annex F (and does not require C11 at all,
2345 for that matter). */
2346 enum
2347 {
2348 IEEE_FLOATING_POINT
2349 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2350 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2351 };
2352
2353 /* A character, declared with the following typedef, is a member
2354 of some character set associated with the current buffer. */
2355 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2356 #define _UCHAR_T
2357 typedef unsigned char UCHAR;
2358 #endif
2359
2360 /* Meanings of slots in a Lisp_Compiled: */
2361
2362 enum Lisp_Compiled
2363 {
2364 COMPILED_ARGLIST = 0,
2365 COMPILED_BYTECODE = 1,
2366 COMPILED_CONSTANTS = 2,
2367 COMPILED_STACK_DEPTH = 3,
2368 COMPILED_DOC_STRING = 4,
2369 COMPILED_INTERACTIVE = 5
2370 };
2371
2372 /* Flag bits in a character. These also get used in termhooks.h.
2373 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2374 (MUlti-Lingual Emacs) might need 22 bits for the character value
2375 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2376 enum char_bits
2377 {
2378 CHAR_ALT = 0x0400000,
2379 CHAR_SUPER = 0x0800000,
2380 CHAR_HYPER = 0x1000000,
2381 CHAR_SHIFT = 0x2000000,
2382 CHAR_CTL = 0x4000000,
2383 CHAR_META = 0x8000000,
2384
2385 CHAR_MODIFIER_MASK =
2386 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2387
2388 /* Actually, the current Emacs uses 22 bits for the character value
2389 itself. */
2390 CHARACTERBITS = 22
2391 };
2392 \f
2393 /* Data type checking. */
2394
2395 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2396
2397 INLINE bool
2398 NUMBERP (Lisp_Object x)
2399 {
2400 return INTEGERP (x) || FLOATP (x);
2401 }
2402 INLINE bool
2403 NATNUMP (Lisp_Object x)
2404 {
2405 return INTEGERP (x) && 0 <= XINT (x);
2406 }
2407
2408 INLINE bool
2409 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2410 {
2411 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2412 }
2413
2414 #define TYPE_RANGED_INTEGERP(type, x) \
2415 (INTEGERP (x) \
2416 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2417 && XINT (x) <= TYPE_MAXIMUM (type))
2418
2419 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2420 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2421 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2422 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2423 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2424 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2425 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2426
2427 INLINE bool
2428 STRINGP (Lisp_Object x)
2429 {
2430 return XTYPE (x) == Lisp_String;
2431 }
2432 INLINE bool
2433 VECTORP (Lisp_Object x)
2434 {
2435 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2436 }
2437 INLINE bool
2438 OVERLAYP (Lisp_Object x)
2439 {
2440 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2441 }
2442 INLINE bool
2443 SAVE_VALUEP (Lisp_Object x)
2444 {
2445 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2446 }
2447
2448 INLINE bool
2449 AUTOLOADP (Lisp_Object x)
2450 {
2451 return CONSP (x) && EQ (Qautoload, XCAR (x));
2452 }
2453
2454 INLINE bool
2455 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2456 {
2457 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2458 }
2459
2460 INLINE bool
2461 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2462 {
2463 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2464 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2465 }
2466
2467 /* True if A is a pseudovector whose code is CODE. */
2468 INLINE bool
2469 PSEUDOVECTORP (Lisp_Object a, int code)
2470 {
2471 if (! VECTORLIKEP (a))
2472 return false;
2473 else
2474 {
2475 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2476 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2477 return PSEUDOVECTOR_TYPEP (h, code);
2478 }
2479 }
2480
2481
2482 /* Test for specific pseudovector types. */
2483
2484 INLINE bool
2485 WINDOW_CONFIGURATIONP (Lisp_Object a)
2486 {
2487 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2488 }
2489
2490 INLINE bool
2491 PROCESSP (Lisp_Object a)
2492 {
2493 return PSEUDOVECTORP (a, PVEC_PROCESS);
2494 }
2495
2496 INLINE bool
2497 WINDOWP (Lisp_Object a)
2498 {
2499 return PSEUDOVECTORP (a, PVEC_WINDOW);
2500 }
2501
2502 INLINE bool
2503 TERMINALP (Lisp_Object a)
2504 {
2505 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2506 }
2507
2508 INLINE bool
2509 SUBRP (Lisp_Object a)
2510 {
2511 return PSEUDOVECTORP (a, PVEC_SUBR);
2512 }
2513
2514 INLINE bool
2515 COMPILEDP (Lisp_Object a)
2516 {
2517 return PSEUDOVECTORP (a, PVEC_COMPILED);
2518 }
2519
2520 INLINE bool
2521 BUFFERP (Lisp_Object a)
2522 {
2523 return PSEUDOVECTORP (a, PVEC_BUFFER);
2524 }
2525
2526 INLINE bool
2527 CHAR_TABLE_P (Lisp_Object a)
2528 {
2529 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2530 }
2531
2532 INLINE bool
2533 SUB_CHAR_TABLE_P (Lisp_Object a)
2534 {
2535 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2536 }
2537
2538 INLINE bool
2539 BOOL_VECTOR_P (Lisp_Object a)
2540 {
2541 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2542 }
2543
2544 INLINE bool
2545 FRAMEP (Lisp_Object a)
2546 {
2547 return PSEUDOVECTORP (a, PVEC_FRAME);
2548 }
2549
2550 /* Test for image (image . spec) */
2551 INLINE bool
2552 IMAGEP (Lisp_Object x)
2553 {
2554 return CONSP (x) && EQ (XCAR (x), Qimage);
2555 }
2556
2557 /* Array types. */
2558 INLINE bool
2559 ARRAYP (Lisp_Object x)
2560 {
2561 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2562 }
2563 \f
2564 INLINE void
2565 CHECK_LIST (Lisp_Object x)
2566 {
2567 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2568 }
2569
2570 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2571 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2572 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2573
2574 INLINE void
2575 CHECK_STRING (Lisp_Object x)
2576 {
2577 CHECK_TYPE (STRINGP (x), Qstringp, x);
2578 }
2579 INLINE void
2580 CHECK_STRING_CAR (Lisp_Object x)
2581 {
2582 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2583 }
2584 INLINE void
2585 CHECK_CONS (Lisp_Object x)
2586 {
2587 CHECK_TYPE (CONSP (x), Qconsp, x);
2588 }
2589 INLINE void
2590 CHECK_VECTOR (Lisp_Object x)
2591 {
2592 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2593 }
2594 INLINE void
2595 CHECK_BOOL_VECTOR (Lisp_Object x)
2596 {
2597 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2598 }
2599 /* This is a bit special because we always need size afterwards. */
2600 INLINE ptrdiff_t
2601 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2602 {
2603 if (VECTORP (x))
2604 return ASIZE (x);
2605 if (STRINGP (x))
2606 return SCHARS (x);
2607 wrong_type_argument (Qarrayp, x);
2608 }
2609 INLINE void
2610 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2611 {
2612 CHECK_TYPE (ARRAYP (x), predicate, x);
2613 }
2614 INLINE void
2615 CHECK_BUFFER (Lisp_Object x)
2616 {
2617 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2618 }
2619 INLINE void
2620 CHECK_WINDOW (Lisp_Object x)
2621 {
2622 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2623 }
2624 #ifdef subprocesses
2625 INLINE void
2626 CHECK_PROCESS (Lisp_Object x)
2627 {
2628 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2629 }
2630 #endif
2631 INLINE void
2632 CHECK_NATNUM (Lisp_Object x)
2633 {
2634 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2635 }
2636
2637 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2638 do { \
2639 CHECK_NUMBER (x); \
2640 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2641 args_out_of_range_3 \
2642 (x, \
2643 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2644 ? MOST_NEGATIVE_FIXNUM \
2645 : (lo)), \
2646 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2647 } while (false)
2648 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2649 do { \
2650 if (TYPE_SIGNED (type)) \
2651 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2652 else \
2653 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2654 } while (false)
2655
2656 #define CHECK_NUMBER_COERCE_MARKER(x) \
2657 do { \
2658 if (MARKERP ((x))) \
2659 XSETFASTINT (x, marker_position (x)); \
2660 else \
2661 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2662 } while (false)
2663
2664 INLINE double
2665 XFLOATINT (Lisp_Object n)
2666 {
2667 return extract_float (n);
2668 }
2669
2670 INLINE void
2671 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2672 {
2673 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2674 }
2675
2676 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2677 do { \
2678 if (MARKERP (x)) \
2679 XSETFASTINT (x, marker_position (x)); \
2680 else \
2681 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2682 } while (false)
2683
2684 /* Since we can't assign directly to the CAR or CDR fields of a cons
2685 cell, use these when checking that those fields contain numbers. */
2686 INLINE void
2687 CHECK_NUMBER_CAR (Lisp_Object x)
2688 {
2689 Lisp_Object tmp = XCAR (x);
2690 CHECK_NUMBER (tmp);
2691 XSETCAR (x, tmp);
2692 }
2693
2694 INLINE void
2695 CHECK_NUMBER_CDR (Lisp_Object x)
2696 {
2697 Lisp_Object tmp = XCDR (x);
2698 CHECK_NUMBER (tmp);
2699 XSETCDR (x, tmp);
2700 }
2701 \f
2702 /* Define a built-in function for calling from Lisp.
2703 `lname' should be the name to give the function in Lisp,
2704 as a null-terminated C string.
2705 `fnname' should be the name of the function in C.
2706 By convention, it starts with F.
2707 `sname' should be the name for the C constant structure
2708 that records information on this function for internal use.
2709 By convention, it should be the same as `fnname' but with S instead of F.
2710 It's too bad that C macros can't compute this from `fnname'.
2711 `minargs' should be a number, the minimum number of arguments allowed.
2712 `maxargs' should be a number, the maximum number of arguments allowed,
2713 or else MANY or UNEVALLED.
2714 MANY means pass a vector of evaluated arguments,
2715 in the form of an integer number-of-arguments
2716 followed by the address of a vector of Lisp_Objects
2717 which contains the argument values.
2718 UNEVALLED means pass the list of unevaluated arguments
2719 `intspec' says how interactive arguments are to be fetched.
2720 If the string starts with a `(', `intspec' is evaluated and the resulting
2721 list is the list of arguments.
2722 If it's a string that doesn't start with `(', the value should follow
2723 the one of the doc string for `interactive'.
2724 A null string means call interactively with no arguments.
2725 `doc' is documentation for the user. */
2726
2727 /* This version of DEFUN declares a function prototype with the right
2728 arguments, so we can catch errors with maxargs at compile-time. */
2729 #ifdef _MSC_VER
2730 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2731 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2732 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2733 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2734 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2735 { (Lisp_Object (__cdecl *)(void))fnname }, \
2736 minargs, maxargs, lname, intspec, 0}; \
2737 Lisp_Object fnname
2738 #else /* not _MSC_VER */
2739 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2740 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2741 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2742 { .a ## maxargs = fnname }, \
2743 minargs, maxargs, lname, intspec, 0}; \
2744 Lisp_Object fnname
2745 #endif
2746
2747 /* True if OBJ is a Lisp function. */
2748 INLINE bool
2749 FUNCTIONP (Lisp_Object obj)
2750 {
2751 return functionp (obj);
2752 }
2753
2754 /* defsubr (Sname);
2755 is how we define the symbol for function `name' at start-up time. */
2756 extern void defsubr (struct Lisp_Subr *);
2757
2758 enum maxargs
2759 {
2760 MANY = -2,
2761 UNEVALLED = -1
2762 };
2763
2764 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2765 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2766 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2767 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2768 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2769
2770 /* Macros we use to define forwarded Lisp variables.
2771 These are used in the syms_of_FILENAME functions.
2772
2773 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2774 lisp variable is actually a field in `struct emacs_globals'. The
2775 field's name begins with "f_", which is a convention enforced by
2776 these macros. Each such global has a corresponding #define in
2777 globals.h; the plain name should be used in the code.
2778
2779 E.g., the global "cons_cells_consed" is declared as "int
2780 f_cons_cells_consed" in globals.h, but there is a define:
2781
2782 #define cons_cells_consed globals.f_cons_cells_consed
2783
2784 All C code uses the `cons_cells_consed' name. This is all done
2785 this way to support indirection for multi-threaded Emacs. */
2786
2787 #define DEFVAR_LISP(lname, vname, doc) \
2788 do { \
2789 static struct Lisp_Objfwd o_fwd; \
2790 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2791 } while (false)
2792 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2793 do { \
2794 static struct Lisp_Objfwd o_fwd; \
2795 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2796 } while (false)
2797 #define DEFVAR_BOOL(lname, vname, doc) \
2798 do { \
2799 static struct Lisp_Boolfwd b_fwd; \
2800 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2801 } while (false)
2802 #define DEFVAR_INT(lname, vname, doc) \
2803 do { \
2804 static struct Lisp_Intfwd i_fwd; \
2805 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2806 } while (false)
2807
2808 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2809 do { \
2810 static struct Lisp_Objfwd o_fwd; \
2811 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2812 } while (false)
2813
2814 #define DEFVAR_KBOARD(lname, vname, doc) \
2815 do { \
2816 static struct Lisp_Kboard_Objfwd ko_fwd; \
2817 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2818 } while (false)
2819 \f
2820 /* Save and restore the instruction and environment pointers,
2821 without affecting the signal mask. */
2822
2823 #ifdef HAVE__SETJMP
2824 typedef jmp_buf sys_jmp_buf;
2825 # define sys_setjmp(j) _setjmp (j)
2826 # define sys_longjmp(j, v) _longjmp (j, v)
2827 #elif defined HAVE_SIGSETJMP
2828 typedef sigjmp_buf sys_jmp_buf;
2829 # define sys_setjmp(j) sigsetjmp (j, 0)
2830 # define sys_longjmp(j, v) siglongjmp (j, v)
2831 #else
2832 /* A platform that uses neither _longjmp nor siglongjmp; assume
2833 longjmp does not affect the sigmask. */
2834 typedef jmp_buf sys_jmp_buf;
2835 # define sys_setjmp(j) setjmp (j)
2836 # define sys_longjmp(j, v) longjmp (j, v)
2837 #endif
2838
2839 \f
2840 /* Elisp uses several stacks:
2841 - the C stack.
2842 - the bytecode stack: used internally by the bytecode interpreter.
2843 Allocated from the C stack.
2844 - The specpdl stack: keeps track of active unwind-protect and
2845 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2846 managed stack.
2847 - The handler stack: keeps track of active catch tags and condition-case
2848 handlers. Allocated in a manually managed stack implemented by a
2849 doubly-linked list allocated via xmalloc and never freed. */
2850
2851 /* Structure for recording Lisp call stack for backtrace purposes. */
2852
2853 /* The special binding stack holds the outer values of variables while
2854 they are bound by a function application or a let form, stores the
2855 code to be executed for unwind-protect forms.
2856
2857 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2858 used all over the place, needs to be fast, and needs to know the size of
2859 union specbinding. But only eval.c should access it. */
2860
2861 enum specbind_tag {
2862 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2863 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2864 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2865 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2866 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2867 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2868 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2869 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2870 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2871 };
2872
2873 union specbinding
2874 {
2875 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2876 struct {
2877 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2878 void (*func) (Lisp_Object);
2879 Lisp_Object arg;
2880 } unwind;
2881 struct {
2882 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2883 void (*func) (void *);
2884 void *arg;
2885 } unwind_ptr;
2886 struct {
2887 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2888 void (*func) (int);
2889 int arg;
2890 } unwind_int;
2891 struct {
2892 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2893 void (*func) (void);
2894 } unwind_void;
2895 struct {
2896 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2897 /* `where' is not used in the case of SPECPDL_LET. */
2898 Lisp_Object symbol, old_value, where;
2899 } let;
2900 struct {
2901 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2902 bool_bf debug_on_exit : 1;
2903 Lisp_Object function;
2904 Lisp_Object *args;
2905 ptrdiff_t nargs;
2906 } bt;
2907 };
2908
2909 extern union specbinding *specpdl;
2910 extern union specbinding *specpdl_ptr;
2911 extern ptrdiff_t specpdl_size;
2912
2913 INLINE ptrdiff_t
2914 SPECPDL_INDEX (void)
2915 {
2916 return specpdl_ptr - specpdl;
2917 }
2918
2919 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2920 control structures. A struct handler contains all the information needed to
2921 restore the state of the interpreter after a non-local jump.
2922
2923 handler structures are chained together in a doubly linked list; the `next'
2924 member points to the next outer catchtag and the `nextfree' member points in
2925 the other direction to the next inner element (which is typically the next
2926 free element since we mostly use it on the deepest handler).
2927
2928 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2929 member is TAG, and then unbinds to it. The `val' member is used to
2930 hold VAL while the stack is unwound; `val' is returned as the value
2931 of the catch form.
2932
2933 All the other members are concerned with restoring the interpreter
2934 state.
2935
2936 Members are volatile if their values need to survive _longjmp when
2937 a 'struct handler' is a local variable. */
2938
2939 enum handlertype { CATCHER, CONDITION_CASE };
2940
2941 struct handler
2942 {
2943 enum handlertype type;
2944 Lisp_Object tag_or_ch;
2945 Lisp_Object val;
2946 struct handler *next;
2947 struct handler *nextfree;
2948
2949 /* The bytecode interpreter can have several handlers active at the same
2950 time, so when we longjmp to one of them, it needs to know which handler
2951 this was and what was the corresponding internal state. This is stored
2952 here, and when we longjmp we make sure that handlerlist points to the
2953 proper handler. */
2954 Lisp_Object *bytecode_top;
2955 int bytecode_dest;
2956
2957 /* Most global vars are reset to their value via the specpdl mechanism,
2958 but a few others are handled by storing their value here. */
2959 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2960 struct gcpro *gcpro;
2961 #endif
2962 sys_jmp_buf jmp;
2963 EMACS_INT lisp_eval_depth;
2964 ptrdiff_t pdlcount;
2965 int poll_suppress_count;
2966 int interrupt_input_blocked;
2967 struct byte_stack *byte_stack;
2968 };
2969
2970 /* Fill in the components of c, and put it on the list. */
2971 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2972 if (handlerlist->nextfree) \
2973 (c) = handlerlist->nextfree; \
2974 else \
2975 { \
2976 (c) = xmalloc (sizeof (struct handler)); \
2977 (c)->nextfree = NULL; \
2978 handlerlist->nextfree = (c); \
2979 } \
2980 (c)->type = (handlertype); \
2981 (c)->tag_or_ch = (tag_ch_val); \
2982 (c)->val = Qnil; \
2983 (c)->next = handlerlist; \
2984 (c)->lisp_eval_depth = lisp_eval_depth; \
2985 (c)->pdlcount = SPECPDL_INDEX (); \
2986 (c)->poll_suppress_count = poll_suppress_count; \
2987 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2988 (c)->gcpro = gcprolist; \
2989 (c)->byte_stack = byte_stack_list; \
2990 handlerlist = (c);
2991
2992
2993 extern Lisp_Object memory_signal_data;
2994
2995 /* An address near the bottom of the stack.
2996 Tells GC how to save a copy of the stack. */
2997 extern char *stack_bottom;
2998
2999 /* Check quit-flag and quit if it is non-nil.
3000 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3001 So the program needs to do QUIT at times when it is safe to quit.
3002 Every loop that might run for a long time or might not exit
3003 ought to do QUIT at least once, at a safe place.
3004 Unless that is impossible, of course.
3005 But it is very desirable to avoid creating loops where QUIT is impossible.
3006
3007 Exception: if you set immediate_quit to true,
3008 then the handler that responds to the C-g does the quit itself.
3009 This is a good thing to do around a loop that has no side effects
3010 and (in particular) cannot call arbitrary Lisp code.
3011
3012 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3013 a request to exit Emacs when it is safe to do. */
3014
3015 extern void process_pending_signals (void);
3016 extern bool volatile pending_signals;
3017
3018 extern void process_quit_flag (void);
3019 #define QUIT \
3020 do { \
3021 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3022 process_quit_flag (); \
3023 else if (pending_signals) \
3024 process_pending_signals (); \
3025 } while (false)
3026
3027
3028 /* True if ought to quit now. */
3029
3030 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3031 \f
3032 extern Lisp_Object Vascii_downcase_table;
3033 extern Lisp_Object Vascii_canon_table;
3034 \f
3035 /* Structure for recording stack slots that need marking. */
3036
3037 /* This is a chain of structures, each of which points at a Lisp_Object
3038 variable whose value should be marked in garbage collection.
3039 Normally every link of the chain is an automatic variable of a function,
3040 and its `val' points to some argument or local variable of the function.
3041 On exit to the function, the chain is set back to the value it had on entry.
3042 This way, no link remains in the chain when the stack frame containing the
3043 link disappears.
3044
3045 Every function that can call Feval must protect in this fashion all
3046 Lisp_Object variables whose contents will be used again. */
3047
3048 extern struct gcpro *gcprolist;
3049
3050 struct gcpro
3051 {
3052 struct gcpro *next;
3053
3054 /* Address of first protected variable. */
3055 volatile Lisp_Object *var;
3056
3057 /* Number of consecutive protected variables. */
3058 ptrdiff_t nvars;
3059
3060 #ifdef DEBUG_GCPRO
3061 /* File name where this record is used. */
3062 const char *name;
3063
3064 /* Line number in this file. */
3065 int lineno;
3066
3067 /* Index in the local chain of records. */
3068 int idx;
3069
3070 /* Nesting level. */
3071 int level;
3072 #endif
3073 };
3074
3075 /* Values of GC_MARK_STACK during compilation:
3076
3077 0 Use GCPRO as before
3078 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3079 2 Mark the stack, and check that everything GCPRO'd is
3080 marked.
3081 3 Mark using GCPRO's, mark stack last, and count how many
3082 dead objects are kept alive.
3083
3084 Formerly, method 0 was used. Currently, method 1 is used unless
3085 otherwise specified by hand when building, e.g.,
3086 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3087 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3088
3089 #define GC_USE_GCPROS_AS_BEFORE 0
3090 #define GC_MAKE_GCPROS_NOOPS 1
3091 #define GC_MARK_STACK_CHECK_GCPROS 2
3092 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3093
3094 #ifndef GC_MARK_STACK
3095 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3096 #endif
3097
3098 /* Whether we do the stack marking manually. */
3099 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3100 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3101
3102
3103 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3104
3105 /* Do something silly with gcproN vars just so gcc shuts up. */
3106 /* You get warnings from MIPSPro... */
3107
3108 #define GCPRO1(varname) ((void) gcpro1)
3109 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3110 #define GCPRO3(varname1, varname2, varname3) \
3111 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3112 #define GCPRO4(varname1, varname2, varname3, varname4) \
3113 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3114 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3115 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3116 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3117 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3118 (void) gcpro1)
3119 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3120 #define UNGCPRO ((void) 0)
3121
3122 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3123
3124 #ifndef DEBUG_GCPRO
3125
3126 #define GCPRO1(a) \
3127 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3128 gcprolist = &gcpro1; }
3129
3130 #define GCPRO2(a, b) \
3131 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3132 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3133 gcprolist = &gcpro2; }
3134
3135 #define GCPRO3(a, b, c) \
3136 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3137 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3138 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3139 gcprolist = &gcpro3; }
3140
3141 #define GCPRO4(a, b, c, d) \
3142 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3143 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3144 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3145 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3146 gcprolist = &gcpro4; }
3147
3148 #define GCPRO5(a, b, c, d, e) \
3149 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3150 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3151 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3152 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3153 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3154 gcprolist = &gcpro5; }
3155
3156 #define GCPRO6(a, b, c, d, e, f) \
3157 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3158 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3159 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3160 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3161 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3162 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3163 gcprolist = &gcpro6; }
3164
3165 #define GCPRO7(a, b, c, d, e, f, g) \
3166 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3167 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3168 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3169 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3170 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3171 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3172 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3173 gcprolist = &gcpro7; }
3174
3175 #define UNGCPRO (gcprolist = gcpro1.next)
3176
3177 #else /* !DEBUG_GCPRO */
3178
3179 extern int gcpro_level;
3180
3181 #define GCPRO1(a) \
3182 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3183 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3184 gcpro1.level = gcpro_level++; \
3185 gcprolist = &gcpro1; }
3186
3187 #define GCPRO2(a, b) \
3188 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3189 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3190 gcpro1.level = gcpro_level; \
3191 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3192 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3193 gcpro2.level = gcpro_level++; \
3194 gcprolist = &gcpro2; }
3195
3196 #define GCPRO3(a, b, c) \
3197 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3198 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3199 gcpro1.level = gcpro_level; \
3200 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3201 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3202 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3203 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3204 gcpro3.level = gcpro_level++; \
3205 gcprolist = &gcpro3; }
3206
3207 #define GCPRO4(a, b, c, d) \
3208 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3209 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3210 gcpro1.level = gcpro_level; \
3211 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3212 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3213 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3214 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3215 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3216 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3217 gcpro4.level = gcpro_level++; \
3218 gcprolist = &gcpro4; }
3219
3220 #define GCPRO5(a, b, c, d, e) \
3221 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3222 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3223 gcpro1.level = gcpro_level; \
3224 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3225 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3226 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3227 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3228 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3229 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3230 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3231 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3232 gcpro5.level = gcpro_level++; \
3233 gcprolist = &gcpro5; }
3234
3235 #define GCPRO6(a, b, c, d, e, f) \
3236 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3237 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3238 gcpro1.level = gcpro_level; \
3239 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3240 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3241 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3242 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3243 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3244 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3245 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3246 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3247 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3248 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3249 gcpro6.level = gcpro_level++; \
3250 gcprolist = &gcpro6; }
3251
3252 #define GCPRO7(a, b, c, d, e, f, g) \
3253 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3254 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3255 gcpro1.level = gcpro_level; \
3256 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3257 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3258 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3259 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3260 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3261 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3262 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3263 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3264 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3265 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3266 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3267 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3268 gcpro7.level = gcpro_level++; \
3269 gcprolist = &gcpro7; }
3270
3271 #define UNGCPRO \
3272 (--gcpro_level != gcpro1.level \
3273 ? emacs_abort () \
3274 : (void) (gcprolist = gcpro1.next))
3275
3276 #endif /* DEBUG_GCPRO */
3277 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3278
3279
3280 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3281 #define RETURN_UNGCPRO(expr) \
3282 do \
3283 { \
3284 Lisp_Object ret_ungc_val; \
3285 ret_ungc_val = (expr); \
3286 UNGCPRO; \
3287 return ret_ungc_val; \
3288 } \
3289 while (false)
3290
3291 /* Call staticpro (&var) to protect static variable `var'. */
3292
3293 void staticpro (Lisp_Object *);
3294 \f
3295 /* Forward declarations for prototypes. */
3296 struct window;
3297 struct frame;
3298
3299 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3300
3301 INLINE void
3302 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3303 {
3304 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3305 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3306 }
3307
3308 /* Functions to modify hash tables. */
3309
3310 INLINE void
3311 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3312 {
3313 gc_aset (h->key_and_value, 2 * idx, val);
3314 }
3315
3316 INLINE void
3317 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3318 {
3319 gc_aset (h->key_and_value, 2 * idx + 1, val);
3320 }
3321
3322 /* Use these functions to set Lisp_Object
3323 or pointer slots of struct Lisp_Symbol. */
3324
3325 INLINE void
3326 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3327 {
3328 XSYMBOL (sym)->function = function;
3329 }
3330
3331 INLINE void
3332 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3333 {
3334 XSYMBOL (sym)->plist = plist;
3335 }
3336
3337 INLINE void
3338 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3339 {
3340 XSYMBOL (sym)->next = next;
3341 }
3342
3343 /* Buffer-local (also frame-local) variable access functions. */
3344
3345 INLINE int
3346 blv_found (struct Lisp_Buffer_Local_Value *blv)
3347 {
3348 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3349 return blv->found;
3350 }
3351
3352 /* Set overlay's property list. */
3353
3354 INLINE void
3355 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3356 {
3357 XOVERLAY (overlay)->plist = plist;
3358 }
3359
3360 /* Get text properties of S. */
3361
3362 INLINE INTERVAL
3363 string_intervals (Lisp_Object s)
3364 {
3365 return XSTRING (s)->intervals;
3366 }
3367
3368 /* Set text properties of S to I. */
3369
3370 INLINE void
3371 set_string_intervals (Lisp_Object s, INTERVAL i)
3372 {
3373 XSTRING (s)->intervals = i;
3374 }
3375
3376 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3377 of setting slots directly. */
3378
3379 INLINE void
3380 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3381 {
3382 XCHAR_TABLE (table)->defalt = val;
3383 }
3384 INLINE void
3385 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3386 {
3387 XCHAR_TABLE (table)->purpose = val;
3388 }
3389
3390 /* Set different slots in (sub)character tables. */
3391
3392 INLINE void
3393 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3394 {
3395 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3396 XCHAR_TABLE (table)->extras[idx] = val;
3397 }
3398
3399 INLINE void
3400 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3401 {
3402 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3403 XCHAR_TABLE (table)->contents[idx] = val;
3404 }
3405
3406 INLINE void
3407 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3408 {
3409 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3410 }
3411
3412 /* Defined in data.c. */
3413 extern Lisp_Object indirect_function (Lisp_Object);
3414 extern Lisp_Object find_symbol_value (Lisp_Object);
3415 enum Arith_Comparison {
3416 ARITH_EQUAL,
3417 ARITH_NOTEQUAL,
3418 ARITH_LESS,
3419 ARITH_GRTR,
3420 ARITH_LESS_OR_EQUAL,
3421 ARITH_GRTR_OR_EQUAL
3422 };
3423 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3424 enum Arith_Comparison comparison);
3425
3426 /* Convert the integer I to an Emacs representation, either the integer
3427 itself, or a cons of two or three integers, or if all else fails a float.
3428 I should not have side effects. */
3429 #define INTEGER_TO_CONS(i) \
3430 (! FIXNUM_OVERFLOW_P (i) \
3431 ? make_number (i) \
3432 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3433 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3434 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3435 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3436 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3437 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3438 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3439 ? Fcons (make_number ((i) >> 16 >> 24), \
3440 Fcons (make_number ((i) >> 16 & 0xffffff), \
3441 make_number ((i) & 0xffff))) \
3442 : make_float (i))
3443
3444 /* Convert the Emacs representation CONS back to an integer of type
3445 TYPE, storing the result the variable VAR. Signal an error if CONS
3446 is not a valid representation or is out of range for TYPE. */
3447 #define CONS_TO_INTEGER(cons, type, var) \
3448 (TYPE_SIGNED (type) \
3449 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3450 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3451 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3452 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3453
3454 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3455 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3456 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3457 Lisp_Object);
3458 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3459 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3460 extern void syms_of_data (void);
3461 extern void swap_in_global_binding (struct Lisp_Symbol *);
3462
3463 /* Defined in cmds.c */
3464 extern void syms_of_cmds (void);
3465 extern void keys_of_cmds (void);
3466
3467 /* Defined in coding.c. */
3468 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3469 ptrdiff_t, bool, bool, Lisp_Object);
3470 extern void init_coding (void);
3471 extern void init_coding_once (void);
3472 extern void syms_of_coding (void);
3473
3474 /* Defined in character.c. */
3475 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3476 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3477 extern void syms_of_character (void);
3478
3479 /* Defined in charset.c. */
3480 extern void init_charset (void);
3481 extern void init_charset_once (void);
3482 extern void syms_of_charset (void);
3483 /* Structure forward declarations. */
3484 struct charset;
3485
3486 /* Defined in syntax.c. */
3487 extern void init_syntax_once (void);
3488 extern void syms_of_syntax (void);
3489
3490 /* Defined in fns.c. */
3491 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3492 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3493 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3494 extern void sweep_weak_hash_tables (void);
3495 EMACS_UINT hash_string (char const *, ptrdiff_t);
3496 EMACS_UINT sxhash (Lisp_Object, int);
3497 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3498 Lisp_Object, Lisp_Object);
3499 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3500 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3501 EMACS_UINT);
3502 extern struct hash_table_test hashtest_eql, hashtest_equal;
3503 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3504 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3505 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3506 ptrdiff_t, ptrdiff_t);
3507 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3508 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3509 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3510 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3511 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3512 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3513 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3514 extern void clear_string_char_byte_cache (void);
3515 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3516 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3517 extern Lisp_Object string_to_multibyte (Lisp_Object);
3518 extern Lisp_Object string_make_unibyte (Lisp_Object);
3519 extern void syms_of_fns (void);
3520
3521 /* Defined in floatfns.c. */
3522 extern void syms_of_floatfns (void);
3523 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3524
3525 /* Defined in fringe.c. */
3526 extern void syms_of_fringe (void);
3527 extern void init_fringe (void);
3528 #ifdef HAVE_WINDOW_SYSTEM
3529 extern void mark_fringe_data (void);
3530 extern void init_fringe_once (void);
3531 #endif /* HAVE_WINDOW_SYSTEM */
3532
3533 /* Defined in image.c. */
3534 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3535 extern void reset_image_types (void);
3536 extern void syms_of_image (void);
3537
3538 /* Defined in insdel.c. */
3539 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3540 extern _Noreturn void buffer_overflow (void);
3541 extern void make_gap (ptrdiff_t);
3542 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3543 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3544 ptrdiff_t, bool, bool);
3545 extern int count_combining_before (const unsigned char *,
3546 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3547 extern int count_combining_after (const unsigned char *,
3548 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3549 extern void insert (const char *, ptrdiff_t);
3550 extern void insert_and_inherit (const char *, ptrdiff_t);
3551 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3552 bool, bool, bool);
3553 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3554 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3555 ptrdiff_t, ptrdiff_t, bool);
3556 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3557 extern void insert_char (int);
3558 extern void insert_string (const char *);
3559 extern void insert_before_markers (const char *, ptrdiff_t);
3560 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3561 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3562 ptrdiff_t, ptrdiff_t,
3563 ptrdiff_t, bool);
3564 extern void del_range (ptrdiff_t, ptrdiff_t);
3565 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3566 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3567 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3568 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3569 ptrdiff_t, ptrdiff_t, bool);
3570 extern void modify_text (ptrdiff_t, ptrdiff_t);
3571 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3572 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3573 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3574 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3575 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3576 ptrdiff_t, ptrdiff_t);
3577 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3578 ptrdiff_t, ptrdiff_t);
3579 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3580 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3581 const char *, ptrdiff_t, ptrdiff_t, bool);
3582 extern void syms_of_insdel (void);
3583
3584 /* Defined in dispnew.c. */
3585 #if (defined PROFILING \
3586 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3587 _Noreturn void __executable_start (void);
3588 #endif
3589 extern Lisp_Object Vwindow_system;
3590 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3591
3592 /* Defined in xdisp.c. */
3593 extern bool noninteractive_need_newline;
3594 extern Lisp_Object echo_area_buffer[2];
3595 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3596 extern void check_message_stack (void);
3597 extern void setup_echo_area_for_printing (int);
3598 extern bool push_message (void);
3599 extern void pop_message_unwind (void);
3600 extern Lisp_Object restore_message_unwind (Lisp_Object);
3601 extern void restore_message (void);
3602 extern Lisp_Object current_message (void);
3603 extern void clear_message (bool, bool);
3604 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3605 extern void message1 (const char *);
3606 extern void message1_nolog (const char *);
3607 extern void message3 (Lisp_Object);
3608 extern void message3_nolog (Lisp_Object);
3609 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3610 extern void message_with_string (const char *, Lisp_Object, int);
3611 extern void message_log_maybe_newline (void);
3612 extern void update_echo_area (void);
3613 extern void truncate_echo_area (ptrdiff_t);
3614 extern void redisplay (void);
3615
3616 void set_frame_cursor_types (struct frame *, Lisp_Object);
3617 extern void syms_of_xdisp (void);
3618 extern void init_xdisp (void);
3619 extern Lisp_Object safe_eval (Lisp_Object);
3620 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3621 int *, int *, int *, int *, int *);
3622
3623 /* Defined in xsettings.c. */
3624 extern void syms_of_xsettings (void);
3625
3626 /* Defined in vm-limit.c. */
3627 extern void memory_warnings (void *, void (*warnfun) (const char *));
3628
3629 /* Defined in character.c. */
3630 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3631 ptrdiff_t *, ptrdiff_t *);
3632
3633 /* Defined in alloc.c. */
3634 extern void check_pure_size (void);
3635 extern void free_misc (Lisp_Object);
3636 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3637 extern void malloc_warning (const char *);
3638 extern _Noreturn void memory_full (size_t);
3639 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3640 extern bool survives_gc_p (Lisp_Object);
3641 extern void mark_object (Lisp_Object);
3642 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3643 extern void refill_memory_reserve (void);
3644 #endif
3645 extern const char *pending_malloc_warning;
3646 extern Lisp_Object zero_vector;
3647 extern Lisp_Object *stack_base;
3648 extern EMACS_INT consing_since_gc;
3649 extern EMACS_INT gc_relative_threshold;
3650 extern EMACS_INT memory_full_cons_threshold;
3651 extern Lisp_Object list1 (Lisp_Object);
3652 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3653 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3654 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3655 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3656 Lisp_Object);
3657 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3658 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3659
3660 /* Build a frequently used 2/3/4-integer lists. */
3661
3662 INLINE Lisp_Object
3663 list2i (EMACS_INT x, EMACS_INT y)
3664 {
3665 return list2 (make_number (x), make_number (y));
3666 }
3667
3668 INLINE Lisp_Object
3669 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3670 {
3671 return list3 (make_number (x), make_number (y), make_number (w));
3672 }
3673
3674 INLINE Lisp_Object
3675 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3676 {
3677 return list4 (make_number (x), make_number (y),
3678 make_number (w), make_number (h));
3679 }
3680
3681 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3682 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3683 extern _Noreturn void string_overflow (void);
3684 extern Lisp_Object make_string (const char *, ptrdiff_t);
3685 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3686 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3687 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3688
3689 /* Make unibyte string from C string when the length isn't known. */
3690
3691 INLINE Lisp_Object
3692 build_unibyte_string (const char *str)
3693 {
3694 return make_unibyte_string (str, strlen (str));
3695 }
3696
3697 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3698 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3699 extern Lisp_Object make_uninit_string (EMACS_INT);
3700 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3701 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3702 extern Lisp_Object make_specified_string (const char *,
3703 ptrdiff_t, ptrdiff_t, bool);
3704 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3705 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3706
3707 /* Make a string allocated in pure space, use STR as string data. */
3708
3709 INLINE Lisp_Object
3710 build_pure_c_string (const char *str)
3711 {
3712 return make_pure_c_string (str, strlen (str));
3713 }
3714
3715 /* Make a string from the data at STR, treating it as multibyte if the
3716 data warrants. */
3717
3718 INLINE Lisp_Object
3719 build_string (const char *str)
3720 {
3721 return make_string (str, strlen (str));
3722 }
3723
3724 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3725 extern void make_byte_code (struct Lisp_Vector *);
3726 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3727
3728 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3729 be sure that GC cannot happen until the vector is completely
3730 initialized. E.g. the following code is likely to crash:
3731
3732 v = make_uninit_vector (3);
3733 ASET (v, 0, obj0);
3734 ASET (v, 1, Ffunction_can_gc ());
3735 ASET (v, 2, obj1); */
3736
3737 INLINE Lisp_Object
3738 make_uninit_vector (ptrdiff_t size)
3739 {
3740 Lisp_Object v;
3741 struct Lisp_Vector *p;
3742
3743 p = allocate_vector (size);
3744 XSETVECTOR (v, p);
3745 return v;
3746 }
3747
3748 /* Like above, but special for sub char-tables. */
3749
3750 INLINE Lisp_Object
3751 make_uninit_sub_char_table (int depth, int min_char)
3752 {
3753 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3754 Lisp_Object v = make_uninit_vector (slots);
3755
3756 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3757 XSUB_CHAR_TABLE (v)->depth = depth;
3758 XSUB_CHAR_TABLE (v)->min_char = min_char;
3759 return v;
3760 }
3761
3762 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3763 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3764 ((typ*) \
3765 allocate_pseudovector \
3766 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3767 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3768 extern struct window *allocate_window (void);
3769 extern struct frame *allocate_frame (void);
3770 extern struct Lisp_Process *allocate_process (void);
3771 extern struct terminal *allocate_terminal (void);
3772 extern bool gc_in_progress;
3773 extern bool abort_on_gc;
3774 extern Lisp_Object make_float (double);
3775 extern void display_malloc_warning (void);
3776 extern ptrdiff_t inhibit_garbage_collection (void);
3777 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3778 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3779 Lisp_Object, Lisp_Object);
3780 extern Lisp_Object make_save_ptr (void *);
3781 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3782 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3783 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3784 Lisp_Object);
3785 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3786 extern void free_save_value (Lisp_Object);
3787 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3788 extern void free_marker (Lisp_Object);
3789 extern void free_cons (struct Lisp_Cons *);
3790 extern void init_alloc_once (void);
3791 extern void init_alloc (void);
3792 extern void syms_of_alloc (void);
3793 extern struct buffer * allocate_buffer (void);
3794 extern int valid_lisp_object_p (Lisp_Object);
3795 extern int relocatable_string_data_p (const char *);
3796 #ifdef GC_CHECK_CONS_LIST
3797 extern void check_cons_list (void);
3798 #else
3799 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3800 #endif
3801
3802 #ifdef REL_ALLOC
3803 /* Defined in ralloc.c. */
3804 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3805 extern void r_alloc_free (void **);
3806 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3807 extern void r_alloc_reset_variable (void **, void **);
3808 extern void r_alloc_inhibit_buffer_relocation (int);
3809 #endif
3810
3811 /* Defined in chartab.c. */
3812 extern Lisp_Object copy_char_table (Lisp_Object);
3813 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3814 int *, int *);
3815 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3816 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3817 Lisp_Object),
3818 Lisp_Object, Lisp_Object, Lisp_Object);
3819 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3820 Lisp_Object, Lisp_Object,
3821 Lisp_Object, struct charset *,
3822 unsigned, unsigned);
3823 extern Lisp_Object uniprop_table (Lisp_Object);
3824 extern void syms_of_chartab (void);
3825
3826 /* Defined in print.c. */
3827 extern Lisp_Object Vprin1_to_string_buffer;
3828 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3829 extern void temp_output_buffer_setup (const char *);
3830 extern int print_level;
3831 extern void write_string (const char *, int);
3832 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3833 Lisp_Object);
3834 extern Lisp_Object internal_with_output_to_temp_buffer
3835 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3836 #define FLOAT_TO_STRING_BUFSIZE 350
3837 extern int float_to_string (char *, double);
3838 extern void init_print_once (void);
3839 extern void syms_of_print (void);
3840
3841 /* Defined in doprnt.c. */
3842 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3843 va_list);
3844 extern ptrdiff_t esprintf (char *, char const *, ...)
3845 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3846 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3847 char const *, ...)
3848 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3849 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3850 char const *, va_list)
3851 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3852
3853 /* Defined in lread.c. */
3854 extern Lisp_Object check_obarray (Lisp_Object);
3855 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3856 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3857 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3858 extern void init_symbol (Lisp_Object, Lisp_Object);
3859 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3860 INLINE void
3861 LOADHIST_ATTACH (Lisp_Object x)
3862 {
3863 if (initialized)
3864 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3865 }
3866 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3867 Lisp_Object *, Lisp_Object, bool);
3868 extern Lisp_Object string_to_number (char const *, int, bool);
3869 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3870 Lisp_Object);
3871 extern void dir_warning (const char *, Lisp_Object);
3872 extern void init_obarray (void);
3873 extern void init_lread (void);
3874 extern void syms_of_lread (void);
3875
3876 INLINE Lisp_Object
3877 intern (const char *str)
3878 {
3879 return intern_1 (str, strlen (str));
3880 }
3881
3882 INLINE Lisp_Object
3883 intern_c_string (const char *str)
3884 {
3885 return intern_c_string_1 (str, strlen (str));
3886 }
3887
3888 /* Defined in eval.c. */
3889 extern EMACS_INT lisp_eval_depth;
3890 extern Lisp_Object Vautoload_queue;
3891 extern Lisp_Object Vrun_hooks;
3892 extern Lisp_Object Vsignaling_function;
3893 extern Lisp_Object inhibit_lisp_code;
3894 extern struct handler *handlerlist;
3895
3896 /* To run a normal hook, use the appropriate function from the list below.
3897 The calling convention:
3898
3899 if (!NILP (Vrun_hooks))
3900 call1 (Vrun_hooks, Qmy_funny_hook);
3901
3902 should no longer be used. */
3903 extern void run_hook (Lisp_Object);
3904 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3905 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3906 Lisp_Object (*funcall)
3907 (ptrdiff_t nargs, Lisp_Object *args));
3908 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3909 extern _Noreturn void xsignal0 (Lisp_Object);
3910 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3911 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3912 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3913 Lisp_Object);
3914 extern _Noreturn void signal_error (const char *, Lisp_Object);
3915 extern Lisp_Object eval_sub (Lisp_Object form);
3916 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3917 extern Lisp_Object call0 (Lisp_Object);
3918 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3919 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3920 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3921 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3922 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3923 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3924 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3925 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3926 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3927 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3928 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3929 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3930 extern Lisp_Object internal_condition_case_n
3931 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3932 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3933 extern void specbind (Lisp_Object, Lisp_Object);
3934 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3935 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3936 extern void record_unwind_protect_int (void (*) (int), int);
3937 extern void record_unwind_protect_void (void (*) (void));
3938 extern void record_unwind_protect_nothing (void);
3939 extern void clear_unwind_protect (ptrdiff_t);
3940 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3941 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3942 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3943 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3944 extern _Noreturn void verror (const char *, va_list)
3945 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3946 extern void un_autoload (Lisp_Object);
3947 extern Lisp_Object call_debugger (Lisp_Object arg);
3948 extern void init_eval_once (void);
3949 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3950 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3951 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3952 extern void init_eval (void);
3953 extern void syms_of_eval (void);
3954 extern void unwind_body (Lisp_Object);
3955 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3956 extern void mark_specpdl (void);
3957 extern void get_backtrace (Lisp_Object array);
3958 Lisp_Object backtrace_top_function (void);
3959 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3960 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3961
3962
3963 /* Defined in editfns.c. */
3964 extern void insert1 (Lisp_Object);
3965 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3966 extern Lisp_Object save_excursion_save (void);
3967 extern Lisp_Object save_restriction_save (void);
3968 extern void save_excursion_restore (Lisp_Object);
3969 extern void save_restriction_restore (Lisp_Object);
3970 extern _Noreturn void time_overflow (void);
3971 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3972 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3973 ptrdiff_t, bool);
3974 extern void init_editfns (void);
3975 extern void syms_of_editfns (void);
3976
3977 /* Defined in buffer.c. */
3978 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3979 extern _Noreturn void nsberror (Lisp_Object);
3980 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3981 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3982 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3983 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3984 Lisp_Object, Lisp_Object, Lisp_Object);
3985 extern bool overlay_touches_p (ptrdiff_t);
3986 extern Lisp_Object other_buffer_safely (Lisp_Object);
3987 extern Lisp_Object get_truename_buffer (Lisp_Object);
3988 extern void init_buffer_once (void);
3989 extern void init_buffer (int);
3990 extern void syms_of_buffer (void);
3991 extern void keys_of_buffer (void);
3992
3993 /* Defined in marker.c. */
3994
3995 extern ptrdiff_t marker_position (Lisp_Object);
3996 extern ptrdiff_t marker_byte_position (Lisp_Object);
3997 extern void clear_charpos_cache (struct buffer *);
3998 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3999 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4000 extern void unchain_marker (struct Lisp_Marker *marker);
4001 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4002 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4003 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4004 ptrdiff_t, ptrdiff_t);
4005 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4006 extern void syms_of_marker (void);
4007
4008 /* Defined in fileio.c. */
4009
4010 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4011 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4012 Lisp_Object, Lisp_Object, Lisp_Object,
4013 Lisp_Object, int);
4014 extern void close_file_unwind (int);
4015 extern void fclose_unwind (void *);
4016 extern void restore_point_unwind (Lisp_Object);
4017 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4018 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4019 extern bool internal_delete_file (Lisp_Object);
4020 extern Lisp_Object emacs_readlinkat (int, const char *);
4021 extern bool file_directory_p (const char *);
4022 extern bool file_accessible_directory_p (Lisp_Object);
4023 extern void init_fileio (void);
4024 extern void syms_of_fileio (void);
4025 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4026
4027 /* Defined in search.c. */
4028 extern void shrink_regexp_cache (void);
4029 extern void restore_search_regs (void);
4030 extern void record_unwind_save_match_data (void);
4031 struct re_registers;
4032 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4033 struct re_registers *,
4034 Lisp_Object, bool, bool);
4035 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4036 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4037 ptrdiff_t);
4038 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4039 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4040 ptrdiff_t, ptrdiff_t, Lisp_Object);
4041 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4042 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4043 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4044 ptrdiff_t, bool);
4045 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4046 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4047 ptrdiff_t, ptrdiff_t *);
4048 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4049 ptrdiff_t, ptrdiff_t *);
4050 extern void syms_of_search (void);
4051 extern void clear_regexp_cache (void);
4052
4053 /* Defined in minibuf.c. */
4054
4055 extern Lisp_Object Vminibuffer_list;
4056 extern Lisp_Object last_minibuf_string;
4057 extern Lisp_Object get_minibuffer (EMACS_INT);
4058 extern void init_minibuf_once (void);
4059 extern void syms_of_minibuf (void);
4060
4061 /* Defined in callint.c. */
4062
4063 extern void syms_of_callint (void);
4064
4065 /* Defined in casefiddle.c. */
4066
4067 extern void syms_of_casefiddle (void);
4068 extern void keys_of_casefiddle (void);
4069
4070 /* Defined in casetab.c. */
4071
4072 extern void init_casetab_once (void);
4073 extern void syms_of_casetab (void);
4074
4075 /* Defined in keyboard.c. */
4076
4077 extern Lisp_Object echo_message_buffer;
4078 extern struct kboard *echo_kboard;
4079 extern void cancel_echoing (void);
4080 extern Lisp_Object last_undo_boundary;
4081 extern bool input_pending;
4082 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4083 extern sigjmp_buf return_to_command_loop;
4084 #endif
4085 extern Lisp_Object menu_bar_items (Lisp_Object);
4086 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4087 extern void discard_mouse_events (void);
4088 #ifdef USABLE_SIGIO
4089 void handle_input_available_signal (int);
4090 #endif
4091 extern Lisp_Object pending_funcalls;
4092 extern bool detect_input_pending (void);
4093 extern bool detect_input_pending_ignore_squeezables (void);
4094 extern bool detect_input_pending_run_timers (bool);
4095 extern void safe_run_hooks (Lisp_Object);
4096 extern void cmd_error_internal (Lisp_Object, const char *);
4097 extern Lisp_Object command_loop_1 (void);
4098 extern Lisp_Object read_menu_command (void);
4099 extern Lisp_Object recursive_edit_1 (void);
4100 extern void record_auto_save (void);
4101 extern void force_auto_save_soon (void);
4102 extern void init_keyboard (void);
4103 extern void syms_of_keyboard (void);
4104 extern void keys_of_keyboard (void);
4105
4106 /* Defined in indent.c. */
4107 extern ptrdiff_t current_column (void);
4108 extern void invalidate_current_column (void);
4109 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4110 extern void syms_of_indent (void);
4111
4112 /* Defined in frame.c. */
4113 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4114 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4115 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4116 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4117 extern void frames_discard_buffer (Lisp_Object);
4118 extern void syms_of_frame (void);
4119
4120 /* Defined in emacs.c. */
4121 extern char **initial_argv;
4122 extern int initial_argc;
4123 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4124 extern bool display_arg;
4125 #endif
4126 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4127 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4128 extern _Noreturn void terminate_due_to_signal (int, int);
4129 #ifdef WINDOWSNT
4130 extern Lisp_Object Vlibrary_cache;
4131 #endif
4132 #if HAVE_SETLOCALE
4133 void fixup_locale (void);
4134 void synchronize_system_messages_locale (void);
4135 void synchronize_system_time_locale (void);
4136 #else
4137 INLINE void fixup_locale (void) {}
4138 INLINE void synchronize_system_messages_locale (void) {}
4139 INLINE void synchronize_system_time_locale (void) {}
4140 #endif
4141 extern void shut_down_emacs (int, Lisp_Object);
4142
4143 /* True means don't do interactive redisplay and don't change tty modes. */
4144 extern bool noninteractive;
4145
4146 /* True means remove site-lisp directories from load-path. */
4147 extern bool no_site_lisp;
4148
4149 /* Pipe used to send exit notification to the daemon parent at
4150 startup. */
4151 extern int daemon_pipe[2];
4152 #define IS_DAEMON (daemon_pipe[1] != 0)
4153
4154 /* True if handling a fatal error already. */
4155 extern bool fatal_error_in_progress;
4156
4157 /* True means don't do use window-system-specific display code. */
4158 extern bool inhibit_window_system;
4159 /* True means that a filter or a sentinel is running. */
4160 extern bool running_asynch_code;
4161
4162 /* Defined in process.c. */
4163 extern void kill_buffer_processes (Lisp_Object);
4164 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4165 struct Lisp_Process *, int);
4166 /* Max value for the first argument of wait_reading_process_output. */
4167 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4168 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4169 The bug merely causes a bogus warning, but the warning is annoying. */
4170 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4171 #else
4172 # define WAIT_READING_MAX INTMAX_MAX
4173 #endif
4174 #ifdef HAVE_TIMERFD
4175 extern void add_timer_wait_descriptor (int);
4176 #endif
4177 extern void add_keyboard_wait_descriptor (int);
4178 extern void delete_keyboard_wait_descriptor (int);
4179 #ifdef HAVE_GPM
4180 extern void add_gpm_wait_descriptor (int);
4181 extern void delete_gpm_wait_descriptor (int);
4182 #endif
4183 extern void init_process_emacs (void);
4184 extern void syms_of_process (void);
4185 extern void setup_process_coding_systems (Lisp_Object);
4186
4187 /* Defined in callproc.c. */
4188 #ifndef DOS_NT
4189 _Noreturn
4190 #endif
4191 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4192 extern void init_callproc_1 (void);
4193 extern void init_callproc (void);
4194 extern void set_initial_environment (void);
4195 extern void syms_of_callproc (void);
4196
4197 /* Defined in doc.c. */
4198 extern Lisp_Object read_doc_string (Lisp_Object);
4199 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4200 extern void syms_of_doc (void);
4201 extern int read_bytecode_char (bool);
4202
4203 /* Defined in bytecode.c. */
4204 extern void syms_of_bytecode (void);
4205 extern struct byte_stack *byte_stack_list;
4206 #if BYTE_MARK_STACK
4207 extern void mark_byte_stack (void);
4208 #endif
4209 extern void unmark_byte_stack (void);
4210 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4211 Lisp_Object, ptrdiff_t, Lisp_Object *);
4212
4213 /* Defined in macros.c. */
4214 extern void init_macros (void);
4215 extern void syms_of_macros (void);
4216
4217 /* Defined in undo.c. */
4218 extern void truncate_undo_list (struct buffer *);
4219 extern void record_insert (ptrdiff_t, ptrdiff_t);
4220 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4221 extern void record_first_change (void);
4222 extern void record_change (ptrdiff_t, ptrdiff_t);
4223 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4224 Lisp_Object, Lisp_Object,
4225 Lisp_Object);
4226 extern void syms_of_undo (void);
4227
4228 /* Defined in textprop.c. */
4229 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4230
4231 /* Defined in menu.c. */
4232 extern void syms_of_menu (void);
4233
4234 /* Defined in xmenu.c. */
4235 extern void syms_of_xmenu (void);
4236
4237 /* Defined in termchar.h. */
4238 struct tty_display_info;
4239
4240 /* Defined in termhooks.h. */
4241 struct terminal;
4242
4243 /* Defined in sysdep.c. */
4244 #ifndef HAVE_GET_CURRENT_DIR_NAME
4245 extern char *get_current_dir_name (void);
4246 #endif
4247 extern void stuff_char (char c);
4248 extern void init_foreground_group (void);
4249 extern void sys_subshell (void);
4250 extern void sys_suspend (void);
4251 extern void discard_tty_input (void);
4252 extern void init_sys_modes (struct tty_display_info *);
4253 extern void reset_sys_modes (struct tty_display_info *);
4254 extern void init_all_sys_modes (void);
4255 extern void reset_all_sys_modes (void);
4256 extern void child_setup_tty (int);
4257 extern void setup_pty (int);
4258 extern int set_window_size (int, int, int);
4259 extern EMACS_INT get_random (void);
4260 extern void seed_random (void *, ptrdiff_t);
4261 extern void init_random (void);
4262 extern void emacs_backtrace (int);
4263 extern _Noreturn void emacs_abort (void) NO_INLINE;
4264 extern int emacs_open (const char *, int, int);
4265 extern int emacs_pipe (int[2]);
4266 extern int emacs_close (int);
4267 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4268 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4269 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4270 extern void emacs_perror (char const *);
4271
4272 extern void unlock_all_files (void);
4273 extern void lock_file (Lisp_Object);
4274 extern void unlock_file (Lisp_Object);
4275 extern void unlock_buffer (struct buffer *);
4276 extern void syms_of_filelock (void);
4277 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4278
4279 /* Defined in sound.c. */
4280 extern void syms_of_sound (void);
4281
4282 /* Defined in category.c. */
4283 extern void init_category_once (void);
4284 extern Lisp_Object char_category_set (int);
4285 extern void syms_of_category (void);
4286
4287 /* Defined in ccl.c. */
4288 extern void syms_of_ccl (void);
4289
4290 /* Defined in dired.c. */
4291 extern void syms_of_dired (void);
4292 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4293 Lisp_Object, Lisp_Object,
4294 bool, Lisp_Object);
4295
4296 /* Defined in term.c. */
4297 extern int *char_ins_del_vector;
4298 extern void syms_of_term (void);
4299 extern _Noreturn void fatal (const char *msgid, ...)
4300 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4301
4302 /* Defined in terminal.c. */
4303 extern void syms_of_terminal (void);
4304
4305 /* Defined in font.c. */
4306 extern void syms_of_font (void);
4307 extern void init_font (void);
4308
4309 #ifdef HAVE_WINDOW_SYSTEM
4310 /* Defined in fontset.c. */
4311 extern void syms_of_fontset (void);
4312 #endif
4313
4314 /* Defined in gfilenotify.c */
4315 #ifdef HAVE_GFILENOTIFY
4316 extern void globals_of_gfilenotify (void);
4317 extern void syms_of_gfilenotify (void);
4318 #endif
4319
4320 /* Defined in inotify.c */
4321 #ifdef HAVE_INOTIFY
4322 extern void syms_of_inotify (void);
4323 #endif
4324
4325 #ifdef HAVE_W32NOTIFY
4326 /* Defined on w32notify.c. */
4327 extern void syms_of_w32notify (void);
4328 #endif
4329
4330 /* Defined in xfaces.c. */
4331 extern Lisp_Object Vface_alternative_font_family_alist;
4332 extern Lisp_Object Vface_alternative_font_registry_alist;
4333 extern void syms_of_xfaces (void);
4334
4335 #ifdef HAVE_X_WINDOWS
4336 /* Defined in xfns.c. */
4337 extern void syms_of_xfns (void);
4338
4339 /* Defined in xsmfns.c. */
4340 extern void syms_of_xsmfns (void);
4341
4342 /* Defined in xselect.c. */
4343 extern void syms_of_xselect (void);
4344
4345 /* Defined in xterm.c. */
4346 extern void init_xterm (void);
4347 extern void syms_of_xterm (void);
4348 #endif /* HAVE_X_WINDOWS */
4349
4350 #ifdef HAVE_WINDOW_SYSTEM
4351 /* Defined in xterm.c, nsterm.m, w32term.c. */
4352 extern char *x_get_keysym_name (int);
4353 #endif /* HAVE_WINDOW_SYSTEM */
4354
4355 #ifdef HAVE_LIBXML2
4356 /* Defined in xml.c. */
4357 extern void syms_of_xml (void);
4358 extern void xml_cleanup_parser (void);
4359 #endif
4360
4361 #ifdef HAVE_ZLIB
4362 /* Defined in decompress.c. */
4363 extern void syms_of_decompress (void);
4364 #endif
4365
4366 #ifdef HAVE_DBUS
4367 /* Defined in dbusbind.c. */
4368 void init_dbusbind (void);
4369 void syms_of_dbusbind (void);
4370 #endif
4371
4372
4373 /* Defined in profiler.c. */
4374 extern bool profiler_memory_running;
4375 extern void malloc_probe (size_t);
4376 extern void syms_of_profiler (void);
4377
4378
4379 #ifdef DOS_NT
4380 /* Defined in msdos.c, w32.c. */
4381 extern char *emacs_root_dir (void);
4382 #endif /* DOS_NT */
4383
4384 /* Defined in lastfile.c. */
4385 extern char my_edata[];
4386 extern char my_endbss[];
4387 extern char *my_endbss_static;
4388
4389 /* True means ^G can quit instantly. */
4390 extern bool immediate_quit;
4391
4392 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4393 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4394 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4395 extern void xfree (void *);
4396 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4397 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4398 ATTRIBUTE_ALLOC_SIZE ((2,3));
4399 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4400
4401 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4402 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4403 extern void dupstring (char **, char const *);
4404
4405 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4406 null byte. This is like stpcpy, except the source is a Lisp string. */
4407
4408 INLINE char *
4409 lispstpcpy (char *dest, Lisp_Object string)
4410 {
4411 ptrdiff_t len = SBYTES (string);
4412 memcpy (dest, SDATA (string), len + 1);
4413 return dest + len;
4414 }
4415
4416 extern void xputenv (const char *);
4417
4418 extern char *egetenv_internal (const char *, ptrdiff_t);
4419
4420 INLINE char *
4421 egetenv (const char *var)
4422 {
4423 /* When VAR is a string literal, strlen can be optimized away. */
4424 return egetenv_internal (var, strlen (var));
4425 }
4426
4427 /* Set up the name of the machine we're running on. */
4428 extern void init_system_name (void);
4429
4430 /* Return the absolute value of X. X should be a signed integer
4431 expression without side effects, and X's absolute value should not
4432 exceed the maximum for its promoted type. This is called 'eabs'
4433 because 'abs' is reserved by the C standard. */
4434 #define eabs(x) ((x) < 0 ? -(x) : (x))
4435
4436 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4437 fixnum. */
4438
4439 #define make_fixnum_or_float(val) \
4440 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4441
4442 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4443 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4444
4445 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4446
4447 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4448
4449 #define USE_SAFE_ALLOCA \
4450 ptrdiff_t sa_avail = MAX_ALLOCA; \
4451 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4452
4453 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4454
4455 /* SAFE_ALLOCA allocates a simple buffer. */
4456
4457 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4458 ? AVAIL_ALLOCA (size) \
4459 : (sa_must_free = true, record_xmalloc (size)))
4460
4461 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4462 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4463 positive. The code is tuned for MULTIPLIER being a constant. */
4464
4465 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4466 do { \
4467 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4468 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4469 else \
4470 { \
4471 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4472 sa_must_free = true; \
4473 record_unwind_protect_ptr (xfree, buf); \
4474 } \
4475 } while (false)
4476
4477 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4478
4479 #define SAFE_ALLOCA_STRING(ptr, string) \
4480 do { \
4481 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4482 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4483 } while (false)
4484
4485 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4486
4487 #define SAFE_FREE() \
4488 do { \
4489 if (sa_must_free) { \
4490 sa_must_free = false; \
4491 unbind_to (sa_count, Qnil); \
4492 } \
4493 } while (false)
4494
4495
4496 /* Return floor (NBYTES / WORD_SIZE). */
4497
4498 INLINE ptrdiff_t
4499 lisp_word_count (ptrdiff_t nbytes)
4500 {
4501 if (-1 >> 1 == -1)
4502 switch (word_size)
4503 {
4504 case 2: return nbytes >> 1;
4505 case 4: return nbytes >> 2;
4506 case 8: return nbytes >> 3;
4507 case 16: return nbytes >> 4;
4508 }
4509 return nbytes / word_size - (nbytes % word_size < 0);
4510 }
4511
4512 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4513
4514 #define SAFE_ALLOCA_LISP(buf, nelt) \
4515 do { \
4516 if ((nelt) <= lisp_word_count (sa_avail)) \
4517 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4518 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4519 { \
4520 Lisp_Object arg_; \
4521 (buf) = xmalloc ((nelt) * word_size); \
4522 arg_ = make_save_memory (buf, nelt); \
4523 sa_must_free = true; \
4524 record_unwind_protect (free_save_value, arg_); \
4525 } \
4526 else \
4527 memory_full (SIZE_MAX); \
4528 } while (false)
4529
4530
4531 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4532 block-scoped conses and strings. These objects are not
4533 managed by the garbage collector, so they are dangerous: passing them
4534 out of their scope (e.g., to user code) results in undefined behavior.
4535 Conversely, they have better performance because GC is not involved.
4536
4537 This feature is experimental and requires careful debugging.
4538 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4539
4540 #ifndef USE_STACK_LISP_OBJECTS
4541 # define USE_STACK_LISP_OBJECTS true
4542 #endif
4543
4544 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4545
4546 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4547 # undef USE_STACK_LISP_OBJECTS
4548 # define USE_STACK_LISP_OBJECTS false
4549 #endif
4550
4551 #ifdef GC_CHECK_STRING_BYTES
4552 enum { defined_GC_CHECK_STRING_BYTES = true };
4553 #else
4554 enum { defined_GC_CHECK_STRING_BYTES = false };
4555 #endif
4556
4557 /* Struct inside unions that are typically no larger and aligned enough. */
4558
4559 union Aligned_Cons
4560 {
4561 struct Lisp_Cons s;
4562 double d; intmax_t i; void *p;
4563 };
4564
4565 union Aligned_String
4566 {
4567 struct Lisp_String s;
4568 double d; intmax_t i; void *p;
4569 };
4570
4571 /* True for stack-based cons and string implementations, respectively.
4572 Use stack-based strings only if stack-based cons also works.
4573 Otherwise, STACK_CONS would create heap-based cons cells that
4574 could point to stack-based strings, which is a no-no. */
4575
4576 enum
4577 {
4578 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4579 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4580 USE_STACK_STRING = (USE_STACK_CONS
4581 && !defined_GC_CHECK_STRING_BYTES
4582 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4583 };
4584
4585 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4586 use these only in macros like AUTO_CONS that declare a local
4587 variable whose lifetime will be clear to the programmer. */
4588 #define STACK_CONS(a, b) \
4589 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4590 #define AUTO_CONS_EXPR(a, b) \
4591 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4592
4593 /* Declare NAME as an auto Lisp cons or short list if possible, a
4594 GC-based one otherwise. This is in the sense of the C keyword
4595 'auto'; i.e., the object has the lifetime of the containing block.
4596 The resulting object should not be made visible to user Lisp code. */
4597
4598 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4599 #define AUTO_LIST1(name, a) \
4600 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4601 #define AUTO_LIST2(name, a, b) \
4602 Lisp_Object name = (USE_STACK_CONS \
4603 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4604 : list2 (a, b))
4605 #define AUTO_LIST3(name, a, b, c) \
4606 Lisp_Object name = (USE_STACK_CONS \
4607 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4608 : list3 (a, b, c))
4609 #define AUTO_LIST4(name, a, b, c, d) \
4610 Lisp_Object name \
4611 = (USE_STACK_CONS \
4612 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4613 STACK_CONS (d, Qnil)))) \
4614 : list4 (a, b, c, d))
4615
4616 /* Check whether stack-allocated strings are ASCII-only. */
4617
4618 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4619 extern const char *verify_ascii (const char *);
4620 #else
4621 # define verify_ascii(str) (str)
4622 #endif
4623
4624 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4625 Take its value from STR. STR is not necessarily copied and should
4626 contain only ASCII characters. The resulting Lisp string should
4627 not be modified or made visible to user code. */
4628
4629 #define AUTO_STRING(name, str) \
4630 Lisp_Object name = \
4631 (USE_STACK_STRING \
4632 ? (make_lisp_ptr \
4633 ((&(union Aligned_String) \
4634 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4635 Lisp_String)) \
4636 : build_string (verify_ascii (str)))
4637
4638 /* Loop over all tails of a list, checking for cycles.
4639 FIXME: Make tortoise and n internal declarations.
4640 FIXME: Unroll the loop body so we don't need `n'. */
4641 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4642 for ((tortoise) = (hare) = (list), (n) = true; \
4643 CONSP (hare); \
4644 (hare = XCDR (hare), (n) = !(n), \
4645 ((n) \
4646 ? (EQ (hare, tortoise) \
4647 ? xsignal1 (Qcircular_list, list) \
4648 : (void) 0) \
4649 /* Move tortoise before the next iteration, in case */ \
4650 /* the next iteration does an Fsetcdr. */ \
4651 : (void) ((tortoise) = XCDR (tortoise)))))
4652
4653 /* Do a `for' loop over alist values. */
4654
4655 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4656 for ((list_var) = (head_var); \
4657 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4658 (list_var) = XCDR (list_var))
4659
4660 /* Check whether it's time for GC, and run it if so. */
4661
4662 INLINE void
4663 maybe_gc (void)
4664 {
4665 if ((consing_since_gc > gc_cons_threshold
4666 && consing_since_gc > gc_relative_threshold)
4667 || (!NILP (Vmemory_full)
4668 && consing_since_gc > memory_full_cons_threshold))
4669 Fgarbage_collect ();
4670 }
4671
4672 INLINE bool
4673 functionp (Lisp_Object object)
4674 {
4675 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4676 {
4677 object = Findirect_function (object, Qt);
4678
4679 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4680 {
4681 /* Autoloaded symbols are functions, except if they load
4682 macros or keymaps. */
4683 int i;
4684 for (i = 0; i < 4 && CONSP (object); i++)
4685 object = XCDR (object);
4686
4687 return ! (CONSP (object) && !NILP (XCAR (object)));
4688 }
4689 }
4690
4691 if (SUBRP (object))
4692 return XSUBR (object)->max_args != UNEVALLED;
4693 else if (COMPILEDP (object))
4694 return true;
4695 else if (CONSP (object))
4696 {
4697 Lisp_Object car = XCAR (object);
4698 return EQ (car, Qlambda) || EQ (car, Qclosure);
4699 }
4700 else
4701 return false;
4702 }
4703
4704 INLINE_HEADER_END
4705
4706 #endif /* EMACS_LISP_H */