]> code.delx.au - gnu-emacs/blob - src/alloc.c
[HAVE_NTGUI]: Include w32term.h.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Note that this declares bzero on OSF/1. How dumb. */
21 #include <signal.h>
22
23 #include <config.h>
24 #include "lisp.h"
25 #include "intervals.h"
26 #include "puresize.h"
27 #ifndef standalone
28 #include "buffer.h"
29 #include "window.h"
30 #include "frame.h"
31 #include "blockinput.h"
32 #include "keyboard.h"
33 #endif
34
35 #include "syssignal.h"
36
37 extern char *sbrk ();
38
39 /* The following come from gmalloc.c. */
40
41 #if defined (__STDC__) && __STDC__
42 #include <stddef.h>
43 #define __malloc_size_t size_t
44 #else
45 #define __malloc_size_t unsigned int
46 #endif
47 extern __malloc_size_t _bytes_used;
48 extern int __malloc_extra_blocks;
49
50 #define max(A,B) ((A) > (B) ? (A) : (B))
51 #define min(A,B) ((A) < (B) ? (A) : (B))
52
53 /* Macro to verify that storage intended for Lisp objects is not
54 out of range to fit in the space for a pointer.
55 ADDRESS is the start of the block, and SIZE
56 is the amount of space within which objects can start. */
57 #define VALIDATE_LISP_STORAGE(address, size) \
58 do \
59 { \
60 Lisp_Object val; \
61 XSETCONS (val, (char *) address + size); \
62 if ((char *) XCONS (val) != (char *) address + size) \
63 { \
64 xfree (address); \
65 memory_full (); \
66 } \
67 } while (0)
68
69 /* Value of _bytes_used, when spare_memory was freed. */
70 static __malloc_size_t bytes_used_when_full;
71
72 /* Number of bytes of consing done since the last gc */
73 int consing_since_gc;
74
75 /* Count the amount of consing of various sorts of space. */
76 int cons_cells_consed;
77 int floats_consed;
78 int vector_cells_consed;
79 int symbols_consed;
80 int string_chars_consed;
81 int misc_objects_consed;
82 int intervals_consed;
83
84 /* Number of bytes of consing since gc before another gc should be done. */
85 int gc_cons_threshold;
86
87 /* Nonzero during gc */
88 int gc_in_progress;
89
90 #ifndef VIRT_ADDR_VARIES
91 extern
92 #endif /* VIRT_ADDR_VARIES */
93 int malloc_sbrk_used;
94
95 #ifndef VIRT_ADDR_VARIES
96 extern
97 #endif /* VIRT_ADDR_VARIES */
98 int malloc_sbrk_unused;
99
100 /* Two limits controlling how much undo information to keep. */
101 int undo_limit;
102 int undo_strong_limit;
103
104 /* Points to memory space allocated as "spare",
105 to be freed if we run out of memory. */
106 static char *spare_memory;
107
108 /* Amount of spare memory to keep in reserve. */
109 #define SPARE_MEMORY (1 << 14)
110
111 /* Number of extra blocks malloc should get when it needs more core. */
112 static int malloc_hysteresis;
113
114 /* Nonzero when malloc is called for allocating Lisp object space. */
115 int allocating_for_lisp;
116
117 /* Non-nil means defun should do purecopy on the function definition */
118 Lisp_Object Vpurify_flag;
119
120 #ifndef HAVE_SHM
121 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,}; /* Force it into data space! */
122 #define PUREBEG (char *) pure
123 #else
124 #define pure PURE_SEG_BITS /* Use shared memory segment */
125 #define PUREBEG (char *)PURE_SEG_BITS
126
127 /* This variable is used only by the XPNTR macro when HAVE_SHM is
128 defined. If we used the PURESIZE macro directly there, that would
129 make most of emacs dependent on puresize.h, which we don't want -
130 you should be able to change that without too much recompilation.
131 So map_in_data initializes pure_size, and the dependencies work
132 out. */
133 EMACS_INT pure_size;
134 #endif /* not HAVE_SHM */
135
136 /* Index in pure at which next pure object will be allocated. */
137 int pureptr;
138
139 /* If nonzero, this is a warning delivered by malloc and not yet displayed. */
140 char *pending_malloc_warning;
141
142 /* Pre-computed signal argument for use when memory is exhausted. */
143 Lisp_Object memory_signal_data;
144
145 /* Maximum amount of C stack to save when a GC happens. */
146
147 #ifndef MAX_SAVE_STACK
148 #define MAX_SAVE_STACK 16000
149 #endif
150
151 /* Define DONT_COPY_FLAG to be some bit which will always be zero in a
152 pointer to a Lisp_Object, when that pointer is viewed as an integer.
153 (On most machines, pointers are even, so we can use the low bit.
154 Word-addressible architectures may need to override this in the m-file.)
155 When linking references to small strings through the size field, we
156 use this slot to hold the bit that would otherwise be interpreted as
157 the GC mark bit. */
158 #ifndef DONT_COPY_FLAG
159 #define DONT_COPY_FLAG 1
160 #endif /* no DONT_COPY_FLAG */
161
162 /* Buffer in which we save a copy of the C stack at each GC. */
163
164 char *stack_copy;
165 int stack_copy_size;
166
167 /* Non-zero means ignore malloc warnings. Set during initialization. */
168 int ignore_warnings;
169
170 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
171
172 static void mark_object (), mark_buffer (), mark_kboards ();
173 static void clear_marks (), gc_sweep ();
174 static void compact_strings ();
175 \f
176 /* Versions of malloc and realloc that print warnings as memory gets full. */
177
178 Lisp_Object
179 malloc_warning_1 (str)
180 Lisp_Object str;
181 {
182 Fprinc (str, Vstandard_output);
183 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
184 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
185 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
186 return Qnil;
187 }
188
189 /* malloc calls this if it finds we are near exhausting storage */
190 malloc_warning (str)
191 char *str;
192 {
193 pending_malloc_warning = str;
194 }
195
196 display_malloc_warning ()
197 {
198 register Lisp_Object val;
199
200 val = build_string (pending_malloc_warning);
201 pending_malloc_warning = 0;
202 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
203 }
204
205 /* Called if malloc returns zero */
206
207 memory_full ()
208 {
209 #ifndef SYSTEM_MALLOC
210 bytes_used_when_full = _bytes_used;
211 #endif
212
213 /* The first time we get here, free the spare memory. */
214 if (spare_memory)
215 {
216 free (spare_memory);
217 spare_memory = 0;
218 }
219
220 /* This used to call error, but if we've run out of memory, we could get
221 infinite recursion trying to build the string. */
222 while (1)
223 Fsignal (Qerror, memory_signal_data);
224 }
225
226 /* Called if we can't allocate relocatable space for a buffer. */
227
228 void
229 buffer_memory_full ()
230 {
231 /* If buffers use the relocating allocator,
232 no need to free spare_memory, because we may have plenty of malloc
233 space left that we could get, and if we don't, the malloc that fails
234 will itself cause spare_memory to be freed.
235 If buffers don't use the relocating allocator,
236 treat this like any other failing malloc. */
237
238 #ifndef REL_ALLOC
239 memory_full ();
240 #endif
241
242 /* This used to call error, but if we've run out of memory, we could get
243 infinite recursion trying to build the string. */
244 while (1)
245 Fsignal (Qerror, memory_signal_data);
246 }
247
248 /* like malloc routines but check for no memory and block interrupt input. */
249
250 long *
251 xmalloc (size)
252 int size;
253 {
254 register long *val;
255
256 BLOCK_INPUT;
257 val = (long *) malloc (size);
258 UNBLOCK_INPUT;
259
260 if (!val && size) memory_full ();
261 return val;
262 }
263
264 long *
265 xrealloc (block, size)
266 long *block;
267 int size;
268 {
269 register long *val;
270
271 BLOCK_INPUT;
272 /* We must call malloc explicitly when BLOCK is 0, since some
273 reallocs don't do this. */
274 if (! block)
275 val = (long *) malloc (size);
276 else
277 val = (long *) realloc (block, size);
278 UNBLOCK_INPUT;
279
280 if (!val && size) memory_full ();
281 return val;
282 }
283
284 void
285 xfree (block)
286 long *block;
287 {
288 BLOCK_INPUT;
289 free (block);
290 UNBLOCK_INPUT;
291 }
292
293 \f
294 /* Arranging to disable input signals while we're in malloc.
295
296 This only works with GNU malloc. To help out systems which can't
297 use GNU malloc, all the calls to malloc, realloc, and free
298 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
299 pairs; unfortunately, we have no idea what C library functions
300 might call malloc, so we can't really protect them unless you're
301 using GNU malloc. Fortunately, most of the major operating can use
302 GNU malloc. */
303
304 #ifndef SYSTEM_MALLOC
305 extern void * (*__malloc_hook) ();
306 static void * (*old_malloc_hook) ();
307 extern void * (*__realloc_hook) ();
308 static void * (*old_realloc_hook) ();
309 extern void (*__free_hook) ();
310 static void (*old_free_hook) ();
311
312 /* This function is used as the hook for free to call. */
313
314 static void
315 emacs_blocked_free (ptr)
316 void *ptr;
317 {
318 BLOCK_INPUT;
319 __free_hook = old_free_hook;
320 free (ptr);
321 /* If we released our reserve (due to running out of memory),
322 and we have a fair amount free once again,
323 try to set aside another reserve in case we run out once more. */
324 if (spare_memory == 0
325 /* Verify there is enough space that even with the malloc
326 hysteresis this call won't run out again.
327 The code here is correct as long as SPARE_MEMORY
328 is substantially larger than the block size malloc uses. */
329 && (bytes_used_when_full
330 > _bytes_used + max (malloc_hysteresis, 4) * SPARE_MEMORY))
331 spare_memory = (char *) malloc (SPARE_MEMORY);
332
333 __free_hook = emacs_blocked_free;
334 UNBLOCK_INPUT;
335 }
336
337 /* If we released our reserve (due to running out of memory),
338 and we have a fair amount free once again,
339 try to set aside another reserve in case we run out once more.
340
341 This is called when a relocatable block is freed in ralloc.c. */
342
343 void
344 refill_memory_reserve ()
345 {
346 if (spare_memory == 0)
347 spare_memory = (char *) malloc (SPARE_MEMORY);
348 }
349
350 /* This function is the malloc hook that Emacs uses. */
351
352 static void *
353 emacs_blocked_malloc (size)
354 unsigned size;
355 {
356 void *value;
357
358 BLOCK_INPUT;
359 __malloc_hook = old_malloc_hook;
360 __malloc_extra_blocks = malloc_hysteresis;
361 value = (void *) malloc (size);
362 __malloc_hook = emacs_blocked_malloc;
363 UNBLOCK_INPUT;
364
365 return value;
366 }
367
368 static void *
369 emacs_blocked_realloc (ptr, size)
370 void *ptr;
371 unsigned size;
372 {
373 void *value;
374
375 BLOCK_INPUT;
376 __realloc_hook = old_realloc_hook;
377 value = (void *) realloc (ptr, size);
378 __realloc_hook = emacs_blocked_realloc;
379 UNBLOCK_INPUT;
380
381 return value;
382 }
383
384 void
385 uninterrupt_malloc ()
386 {
387 old_free_hook = __free_hook;
388 __free_hook = emacs_blocked_free;
389
390 old_malloc_hook = __malloc_hook;
391 __malloc_hook = emacs_blocked_malloc;
392
393 old_realloc_hook = __realloc_hook;
394 __realloc_hook = emacs_blocked_realloc;
395 }
396 #endif
397 \f
398 /* Interval allocation. */
399
400 #ifdef USE_TEXT_PROPERTIES
401 #define INTERVAL_BLOCK_SIZE \
402 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
403
404 struct interval_block
405 {
406 struct interval_block *next;
407 struct interval intervals[INTERVAL_BLOCK_SIZE];
408 };
409
410 struct interval_block *interval_block;
411 static int interval_block_index;
412
413 INTERVAL interval_free_list;
414
415 static void
416 init_intervals ()
417 {
418 allocating_for_lisp = 1;
419 interval_block
420 = (struct interval_block *) malloc (sizeof (struct interval_block));
421 allocating_for_lisp = 0;
422 interval_block->next = 0;
423 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
424 interval_block_index = 0;
425 interval_free_list = 0;
426 }
427
428 #define INIT_INTERVALS init_intervals ()
429
430 INTERVAL
431 make_interval ()
432 {
433 INTERVAL val;
434
435 if (interval_free_list)
436 {
437 val = interval_free_list;
438 interval_free_list = interval_free_list->parent;
439 }
440 else
441 {
442 if (interval_block_index == INTERVAL_BLOCK_SIZE)
443 {
444 register struct interval_block *newi;
445
446 allocating_for_lisp = 1;
447 newi = (struct interval_block *) xmalloc (sizeof (struct interval_block));
448
449 allocating_for_lisp = 0;
450 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
451 newi->next = interval_block;
452 interval_block = newi;
453 interval_block_index = 0;
454 }
455 val = &interval_block->intervals[interval_block_index++];
456 }
457 consing_since_gc += sizeof (struct interval);
458 intervals_consed++;
459 RESET_INTERVAL (val);
460 return val;
461 }
462
463 static int total_free_intervals, total_intervals;
464
465 /* Mark the pointers of one interval. */
466
467 static void
468 mark_interval (i, dummy)
469 register INTERVAL i;
470 Lisp_Object dummy;
471 {
472 if (XMARKBIT (i->plist))
473 abort ();
474 mark_object (&i->plist);
475 XMARK (i->plist);
476 }
477
478 static void
479 mark_interval_tree (tree)
480 register INTERVAL tree;
481 {
482 /* No need to test if this tree has been marked already; this
483 function is always called through the MARK_INTERVAL_TREE macro,
484 which takes care of that. */
485
486 /* XMARK expands to an assignment; the LHS of an assignment can't be
487 a cast. */
488 XMARK (* (Lisp_Object *) &tree->parent);
489
490 traverse_intervals (tree, 1, 0, mark_interval, Qnil);
491 }
492
493 #define MARK_INTERVAL_TREE(i) \
494 do { \
495 if (!NULL_INTERVAL_P (i) \
496 && ! XMARKBIT ((Lisp_Object) i->parent)) \
497 mark_interval_tree (i); \
498 } while (0)
499
500 /* The oddity in the call to XUNMARK is necessary because XUNMARK
501 expands to an assignment to its argument, and most C compilers don't
502 support casts on the left operand of `='. */
503 #define UNMARK_BALANCE_INTERVALS(i) \
504 { \
505 if (! NULL_INTERVAL_P (i)) \
506 { \
507 XUNMARK (* (Lisp_Object *) (&(i)->parent)); \
508 (i) = balance_intervals (i); \
509 } \
510 }
511
512 #else /* no interval use */
513
514 #define INIT_INTERVALS
515
516 #define UNMARK_BALANCE_INTERVALS(i)
517 #define MARK_INTERVAL_TREE(i)
518
519 #endif /* no interval use */
520 \f
521 /* Floating point allocation. */
522
523 #ifdef LISP_FLOAT_TYPE
524 /* Allocation of float cells, just like conses */
525 /* We store float cells inside of float_blocks, allocating a new
526 float_block with malloc whenever necessary. Float cells reclaimed by
527 GC are put on a free list to be reallocated before allocating
528 any new float cells from the latest float_block.
529
530 Each float_block is just under 1020 bytes long,
531 since malloc really allocates in units of powers of two
532 and uses 4 bytes for its own overhead. */
533
534 #define FLOAT_BLOCK_SIZE \
535 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
536
537 struct float_block
538 {
539 struct float_block *next;
540 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
541 };
542
543 struct float_block *float_block;
544 int float_block_index;
545
546 struct Lisp_Float *float_free_list;
547
548 void
549 init_float ()
550 {
551 allocating_for_lisp = 1;
552 float_block = (struct float_block *) malloc (sizeof (struct float_block));
553 allocating_for_lisp = 0;
554 float_block->next = 0;
555 bzero ((char *) float_block->floats, sizeof float_block->floats);
556 float_block_index = 0;
557 float_free_list = 0;
558 }
559
560 /* Explicitly free a float cell. */
561 free_float (ptr)
562 struct Lisp_Float *ptr;
563 {
564 *(struct Lisp_Float **)&ptr->type = float_free_list;
565 float_free_list = ptr;
566 }
567
568 Lisp_Object
569 make_float (float_value)
570 double float_value;
571 {
572 register Lisp_Object val;
573
574 if (float_free_list)
575 {
576 XSETFLOAT (val, float_free_list);
577 float_free_list = *(struct Lisp_Float **)&float_free_list->type;
578 }
579 else
580 {
581 if (float_block_index == FLOAT_BLOCK_SIZE)
582 {
583 register struct float_block *new;
584
585 allocating_for_lisp = 1;
586 new = (struct float_block *) xmalloc (sizeof (struct float_block));
587 allocating_for_lisp = 0;
588 VALIDATE_LISP_STORAGE (new, sizeof *new);
589 new->next = float_block;
590 float_block = new;
591 float_block_index = 0;
592 }
593 XSETFLOAT (val, &float_block->floats[float_block_index++]);
594 }
595 XFLOAT (val)->data = float_value;
596 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
597 consing_since_gc += sizeof (struct Lisp_Float);
598 floats_consed++;
599 return val;
600 }
601
602 #endif /* LISP_FLOAT_TYPE */
603 \f
604 /* Allocation of cons cells */
605 /* We store cons cells inside of cons_blocks, allocating a new
606 cons_block with malloc whenever necessary. Cons cells reclaimed by
607 GC are put on a free list to be reallocated before allocating
608 any new cons cells from the latest cons_block.
609
610 Each cons_block is just under 1020 bytes long,
611 since malloc really allocates in units of powers of two
612 and uses 4 bytes for its own overhead. */
613
614 #define CONS_BLOCK_SIZE \
615 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
616
617 struct cons_block
618 {
619 struct cons_block *next;
620 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
621 };
622
623 struct cons_block *cons_block;
624 int cons_block_index;
625
626 struct Lisp_Cons *cons_free_list;
627
628 void
629 init_cons ()
630 {
631 allocating_for_lisp = 1;
632 cons_block = (struct cons_block *) malloc (sizeof (struct cons_block));
633 allocating_for_lisp = 0;
634 cons_block->next = 0;
635 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
636 cons_block_index = 0;
637 cons_free_list = 0;
638 }
639
640 /* Explicitly free a cons cell. */
641 free_cons (ptr)
642 struct Lisp_Cons *ptr;
643 {
644 *(struct Lisp_Cons **)&ptr->car = cons_free_list;
645 cons_free_list = ptr;
646 }
647
648 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
649 "Create a new cons, give it CAR and CDR as components, and return it.")
650 (car, cdr)
651 Lisp_Object car, cdr;
652 {
653 register Lisp_Object val;
654
655 if (cons_free_list)
656 {
657 XSETCONS (val, cons_free_list);
658 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->car;
659 }
660 else
661 {
662 if (cons_block_index == CONS_BLOCK_SIZE)
663 {
664 register struct cons_block *new;
665 allocating_for_lisp = 1;
666 new = (struct cons_block *) xmalloc (sizeof (struct cons_block));
667 allocating_for_lisp = 0;
668 VALIDATE_LISP_STORAGE (new, sizeof *new);
669 new->next = cons_block;
670 cons_block = new;
671 cons_block_index = 0;
672 }
673 XSETCONS (val, &cons_block->conses[cons_block_index++]);
674 }
675 XCONS (val)->car = car;
676 XCONS (val)->cdr = cdr;
677 consing_since_gc += sizeof (struct Lisp_Cons);
678 cons_cells_consed++;
679 return val;
680 }
681
682 DEFUN ("list", Flist, Slist, 0, MANY, 0,
683 "Return a newly created list with specified arguments as elements.\n\
684 Any number of arguments, even zero arguments, are allowed.")
685 (nargs, args)
686 int nargs;
687 register Lisp_Object *args;
688 {
689 register Lisp_Object val = Qnil;
690
691 while (nargs--)
692 val = Fcons (args[nargs], val);
693 return val;
694 }
695
696 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
697 "Return a newly created list of length LENGTH, with each element being INIT.")
698 (length, init)
699 register Lisp_Object length, init;
700 {
701 register Lisp_Object val;
702 register int size;
703
704 CHECK_NATNUM (length, 0);
705 size = XFASTINT (length);
706
707 val = Qnil;
708 while (size-- > 0)
709 val = Fcons (init, val);
710 return val;
711 }
712 \f
713 /* Allocation of vectors */
714
715 struct Lisp_Vector *all_vectors;
716
717 struct Lisp_Vector *
718 allocate_vectorlike (len)
719 EMACS_INT len;
720 {
721 struct Lisp_Vector *p;
722
723 allocating_for_lisp = 1;
724 p = (struct Lisp_Vector *)xmalloc (sizeof (struct Lisp_Vector)
725 + (len - 1) * sizeof (Lisp_Object));
726 allocating_for_lisp = 0;
727 VALIDATE_LISP_STORAGE (p, 0);
728 consing_since_gc += (sizeof (struct Lisp_Vector)
729 + (len - 1) * sizeof (Lisp_Object));
730 vector_cells_consed += len;
731
732 p->next = all_vectors;
733 all_vectors = p;
734 return p;
735 }
736
737 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
738 "Return a newly created vector of length LENGTH, with each element being INIT.\n\
739 See also the function `vector'.")
740 (length, init)
741 register Lisp_Object length, init;
742 {
743 Lisp_Object vector;
744 register EMACS_INT sizei;
745 register int index;
746 register struct Lisp_Vector *p;
747
748 CHECK_NATNUM (length, 0);
749 sizei = XFASTINT (length);
750
751 p = allocate_vectorlike (sizei);
752 p->size = sizei;
753 for (index = 0; index < sizei; index++)
754 p->contents[index] = init;
755
756 XSETVECTOR (vector, p);
757 return vector;
758 }
759
760 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
761 "Return a newly created char-table, with purpose PURPOSE.\n\
762 Each element is initialized to INIT, which defaults to nil.\n\
763 PURPOSE should be a symbol which has a `char-table-extra-slot' property.\n\
764 The property's value should be an integer between 0 and 10.")
765 (purpose, init)
766 register Lisp_Object purpose, init;
767 {
768 Lisp_Object vector;
769 Lisp_Object n;
770 CHECK_SYMBOL (purpose, 1);
771 n = Fget (purpose, Qchar_table_extra_slots);
772 CHECK_NUMBER (n, 0);
773 if (XINT (n) < 0 || XINT (n) > 10)
774 args_out_of_range (n, Qnil);
775 /* Add 2 to the size for the defalt and parent slots. */
776 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
777 init);
778 XCHAR_TABLE (vector)->parent = Qnil;
779 XCHAR_TABLE (vector)->purpose = purpose;
780 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
781 return vector;
782 }
783
784 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
785 "Return a newly created vector with specified arguments as elements.\n\
786 Any number of arguments, even zero arguments, are allowed.")
787 (nargs, args)
788 register int nargs;
789 Lisp_Object *args;
790 {
791 register Lisp_Object len, val;
792 register int index;
793 register struct Lisp_Vector *p;
794
795 XSETFASTINT (len, nargs);
796 val = Fmake_vector (len, Qnil);
797 p = XVECTOR (val);
798 for (index = 0; index < nargs; index++)
799 p->contents[index] = args[index];
800 return val;
801 }
802
803 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
804 "Create a byte-code object with specified arguments as elements.\n\
805 The arguments should be the arglist, bytecode-string, constant vector,\n\
806 stack size, (optional) doc string, and (optional) interactive spec.\n\
807 The first four arguments are required; at most six have any\n\
808 significance.")
809 (nargs, args)
810 register int nargs;
811 Lisp_Object *args;
812 {
813 register Lisp_Object len, val;
814 register int index;
815 register struct Lisp_Vector *p;
816
817 XSETFASTINT (len, nargs);
818 if (!NILP (Vpurify_flag))
819 val = make_pure_vector (len);
820 else
821 val = Fmake_vector (len, Qnil);
822 p = XVECTOR (val);
823 for (index = 0; index < nargs; index++)
824 {
825 if (!NILP (Vpurify_flag))
826 args[index] = Fpurecopy (args[index]);
827 p->contents[index] = args[index];
828 }
829 XSETCOMPILED (val, val);
830 return val;
831 }
832 \f
833 /* Allocation of symbols.
834 Just like allocation of conses!
835
836 Each symbol_block is just under 1020 bytes long,
837 since malloc really allocates in units of powers of two
838 and uses 4 bytes for its own overhead. */
839
840 #define SYMBOL_BLOCK_SIZE \
841 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
842
843 struct symbol_block
844 {
845 struct symbol_block *next;
846 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
847 };
848
849 struct symbol_block *symbol_block;
850 int symbol_block_index;
851
852 struct Lisp_Symbol *symbol_free_list;
853
854 void
855 init_symbol ()
856 {
857 allocating_for_lisp = 1;
858 symbol_block = (struct symbol_block *) malloc (sizeof (struct symbol_block));
859 allocating_for_lisp = 0;
860 symbol_block->next = 0;
861 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
862 symbol_block_index = 0;
863 symbol_free_list = 0;
864 }
865
866 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
867 "Return a newly allocated uninterned symbol whose name is NAME.\n\
868 Its value and function definition are void, and its property list is nil.")
869 (str)
870 Lisp_Object str;
871 {
872 register Lisp_Object val;
873 register struct Lisp_Symbol *p;
874
875 CHECK_STRING (str, 0);
876
877 if (symbol_free_list)
878 {
879 XSETSYMBOL (val, symbol_free_list);
880 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
881 }
882 else
883 {
884 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
885 {
886 struct symbol_block *new;
887 allocating_for_lisp = 1;
888 new = (struct symbol_block *) xmalloc (sizeof (struct symbol_block));
889 allocating_for_lisp = 0;
890 VALIDATE_LISP_STORAGE (new, sizeof *new);
891 new->next = symbol_block;
892 symbol_block = new;
893 symbol_block_index = 0;
894 }
895 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
896 }
897 p = XSYMBOL (val);
898 p->name = XSTRING (str);
899 p->plist = Qnil;
900 p->value = Qunbound;
901 p->function = Qunbound;
902 p->next = 0;
903 consing_since_gc += sizeof (struct Lisp_Symbol);
904 symbols_consed++;
905 return val;
906 }
907 \f
908 /* Allocation of markers and other objects that share that structure.
909 Works like allocation of conses. */
910
911 #define MARKER_BLOCK_SIZE \
912 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
913
914 struct marker_block
915 {
916 struct marker_block *next;
917 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
918 };
919
920 struct marker_block *marker_block;
921 int marker_block_index;
922
923 union Lisp_Misc *marker_free_list;
924
925 void
926 init_marker ()
927 {
928 allocating_for_lisp = 1;
929 marker_block = (struct marker_block *) malloc (sizeof (struct marker_block));
930 allocating_for_lisp = 0;
931 marker_block->next = 0;
932 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
933 marker_block_index = 0;
934 marker_free_list = 0;
935 }
936
937 /* Return a newly allocated Lisp_Misc object, with no substructure. */
938 Lisp_Object
939 allocate_misc ()
940 {
941 Lisp_Object val;
942
943 if (marker_free_list)
944 {
945 XSETMISC (val, marker_free_list);
946 marker_free_list = marker_free_list->u_free.chain;
947 }
948 else
949 {
950 if (marker_block_index == MARKER_BLOCK_SIZE)
951 {
952 struct marker_block *new;
953 allocating_for_lisp = 1;
954 new = (struct marker_block *) xmalloc (sizeof (struct marker_block));
955 allocating_for_lisp = 0;
956 VALIDATE_LISP_STORAGE (new, sizeof *new);
957 new->next = marker_block;
958 marker_block = new;
959 marker_block_index = 0;
960 }
961 XSETMISC (val, &marker_block->markers[marker_block_index++]);
962 }
963 consing_since_gc += sizeof (union Lisp_Misc);
964 misc_objects_consed++;
965 return val;
966 }
967
968 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
969 "Return a newly allocated marker which does not point at any place.")
970 ()
971 {
972 register Lisp_Object val;
973 register struct Lisp_Marker *p;
974
975 val = allocate_misc ();
976 XMISCTYPE (val) = Lisp_Misc_Marker;
977 p = XMARKER (val);
978 p->buffer = 0;
979 p->bufpos = 0;
980 p->chain = Qnil;
981 p->insertion_type = 0;
982 return val;
983 }
984 \f
985 /* Allocation of strings */
986
987 /* Strings reside inside of string_blocks. The entire data of the string,
988 both the size and the contents, live in part of the `chars' component of a string_block.
989 The `pos' component is the index within `chars' of the first free byte.
990
991 first_string_block points to the first string_block ever allocated.
992 Each block points to the next one with its `next' field.
993 The `prev' fields chain in reverse order.
994 The last one allocated is the one currently being filled.
995 current_string_block points to it.
996
997 The string_blocks that hold individual large strings
998 go in a separate chain, started by large_string_blocks. */
999
1000
1001 /* String blocks contain this many useful bytes.
1002 8188 is power of 2, minus 4 for malloc overhead. */
1003 #define STRING_BLOCK_SIZE (8188 - sizeof (struct string_block_head))
1004
1005 /* A string bigger than this gets its own specially-made string block
1006 if it doesn't fit in the current one. */
1007 #define STRING_BLOCK_OUTSIZE 1024
1008
1009 struct string_block_head
1010 {
1011 struct string_block *next, *prev;
1012 int pos;
1013 };
1014
1015 struct string_block
1016 {
1017 struct string_block *next, *prev;
1018 EMACS_INT pos;
1019 char chars[STRING_BLOCK_SIZE];
1020 };
1021
1022 /* This points to the string block we are now allocating strings. */
1023
1024 struct string_block *current_string_block;
1025
1026 /* This points to the oldest string block, the one that starts the chain. */
1027
1028 struct string_block *first_string_block;
1029
1030 /* Last string block in chain of those made for individual large strings. */
1031
1032 struct string_block *large_string_blocks;
1033
1034 /* If SIZE is the length of a string, this returns how many bytes
1035 the string occupies in a string_block (including padding). */
1036
1037 #define STRING_FULLSIZE(size) (((size) + sizeof (struct Lisp_String) + PAD) \
1038 & ~(PAD - 1))
1039 #define PAD (sizeof (EMACS_INT))
1040
1041 #if 0
1042 #define STRING_FULLSIZE(SIZE) \
1043 (((SIZE) + 2 * sizeof (EMACS_INT)) & ~(sizeof (EMACS_INT) - 1))
1044 #endif
1045
1046 void
1047 init_strings ()
1048 {
1049 allocating_for_lisp = 1;
1050 current_string_block = (struct string_block *) malloc (sizeof (struct string_block));
1051 allocating_for_lisp = 0;
1052 first_string_block = current_string_block;
1053 consing_since_gc += sizeof (struct string_block);
1054 current_string_block->next = 0;
1055 current_string_block->prev = 0;
1056 current_string_block->pos = 0;
1057 large_string_blocks = 0;
1058 }
1059
1060 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1061 "Return a newly created string of length LENGTH, with each element being INIT.\n\
1062 Both LENGTH and INIT must be numbers.")
1063 (length, init)
1064 Lisp_Object length, init;
1065 {
1066 register Lisp_Object val;
1067 register unsigned char *p, *end, c;
1068
1069 CHECK_NATNUM (length, 0);
1070 CHECK_NUMBER (init, 1);
1071 val = make_uninit_string (XFASTINT (length));
1072 c = XINT (init);
1073 p = XSTRING (val)->data;
1074 end = p + XSTRING (val)->size;
1075 while (p != end)
1076 *p++ = c;
1077 *p = 0;
1078 return val;
1079 }
1080
1081 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1082 "Return a newly created bitstring of length LENGTH, with INIT as each element.\n\
1083 Both LENGTH and INIT must be numbers. INIT matters only in whether it is t or nil.")
1084 (length, init)
1085 Lisp_Object length, init;
1086 {
1087 register Lisp_Object val;
1088 struct Lisp_Bool_Vector *p;
1089 int real_init, i;
1090 int length_in_chars, length_in_elts, bits_per_value;
1091
1092 CHECK_NATNUM (length, 0);
1093
1094 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1095
1096 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1097 length_in_chars = length_in_elts * sizeof (EMACS_INT);
1098
1099 val = Fmake_vector (make_number (length_in_elts), Qnil);
1100 p = XBOOL_VECTOR (val);
1101 /* Get rid of any bits that would cause confusion. */
1102 p->vector_size = 0;
1103 XSETBOOL_VECTOR (val, p);
1104 p->size = XFASTINT (length);
1105
1106 real_init = (NILP (init) ? 0 : -1);
1107 for (i = 0; i < length_in_chars ; i++)
1108 p->data[i] = real_init;
1109
1110 return val;
1111 }
1112
1113 Lisp_Object
1114 make_string (contents, length)
1115 char *contents;
1116 int length;
1117 {
1118 register Lisp_Object val;
1119 val = make_uninit_string (length);
1120 bcopy (contents, XSTRING (val)->data, length);
1121 return val;
1122 }
1123
1124 Lisp_Object
1125 build_string (str)
1126 char *str;
1127 {
1128 return make_string (str, strlen (str));
1129 }
1130
1131 Lisp_Object
1132 make_uninit_string (length)
1133 int length;
1134 {
1135 register Lisp_Object val;
1136 register int fullsize = STRING_FULLSIZE (length);
1137
1138 if (length < 0) abort ();
1139
1140 if (fullsize <= STRING_BLOCK_SIZE - current_string_block->pos)
1141 /* This string can fit in the current string block */
1142 {
1143 XSETSTRING (val,
1144 ((struct Lisp_String *)
1145 (current_string_block->chars + current_string_block->pos)));
1146 current_string_block->pos += fullsize;
1147 }
1148 else if (fullsize > STRING_BLOCK_OUTSIZE)
1149 /* This string gets its own string block */
1150 {
1151 register struct string_block *new;
1152 allocating_for_lisp = 1;
1153 new = (struct string_block *) xmalloc (sizeof (struct string_block_head) + fullsize);
1154 allocating_for_lisp = 0;
1155 VALIDATE_LISP_STORAGE (new, 0);
1156 consing_since_gc += sizeof (struct string_block_head) + fullsize;
1157 new->pos = fullsize;
1158 new->next = large_string_blocks;
1159 large_string_blocks = new;
1160 XSETSTRING (val,
1161 ((struct Lisp_String *)
1162 ((struct string_block_head *)new + 1)));
1163 }
1164 else
1165 /* Make a new current string block and start it off with this string */
1166 {
1167 register struct string_block *new;
1168 allocating_for_lisp = 1;
1169 new = (struct string_block *) xmalloc (sizeof (struct string_block));
1170 allocating_for_lisp = 0;
1171 VALIDATE_LISP_STORAGE (new, sizeof *new);
1172 consing_since_gc += sizeof (struct string_block);
1173 current_string_block->next = new;
1174 new->prev = current_string_block;
1175 new->next = 0;
1176 current_string_block = new;
1177 new->pos = fullsize;
1178 XSETSTRING (val,
1179 (struct Lisp_String *) current_string_block->chars);
1180 }
1181
1182 string_chars_consed += fullsize;
1183 XSTRING (val)->size = length;
1184 XSTRING (val)->data[length] = 0;
1185 INITIALIZE_INTERVAL (XSTRING (val), NULL_INTERVAL);
1186
1187 return val;
1188 }
1189
1190 /* Return a newly created vector or string with specified arguments as
1191 elements. If all the arguments are characters that can fit
1192 in a string of events, make a string; otherwise, make a vector.
1193
1194 Any number of arguments, even zero arguments, are allowed. */
1195
1196 Lisp_Object
1197 make_event_array (nargs, args)
1198 register int nargs;
1199 Lisp_Object *args;
1200 {
1201 int i;
1202
1203 for (i = 0; i < nargs; i++)
1204 /* The things that fit in a string
1205 are characters that are in 0...127,
1206 after discarding the meta bit and all the bits above it. */
1207 if (!INTEGERP (args[i])
1208 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
1209 return Fvector (nargs, args);
1210
1211 /* Since the loop exited, we know that all the things in it are
1212 characters, so we can make a string. */
1213 {
1214 Lisp_Object result;
1215
1216 result = Fmake_string (nargs, make_number (0));
1217 for (i = 0; i < nargs; i++)
1218 {
1219 XSTRING (result)->data[i] = XINT (args[i]);
1220 /* Move the meta bit to the right place for a string char. */
1221 if (XINT (args[i]) & CHAR_META)
1222 XSTRING (result)->data[i] |= 0x80;
1223 }
1224
1225 return result;
1226 }
1227 }
1228 \f
1229 /* Pure storage management. */
1230
1231 /* Must get an error if pure storage is full,
1232 since if it cannot hold a large string
1233 it may be able to hold conses that point to that string;
1234 then the string is not protected from gc. */
1235
1236 Lisp_Object
1237 make_pure_string (data, length)
1238 char *data;
1239 int length;
1240 {
1241 register Lisp_Object new;
1242 register int size = sizeof (EMACS_INT) + INTERVAL_PTR_SIZE + length + 1;
1243
1244 if (pureptr + size > PURESIZE)
1245 error ("Pure Lisp storage exhausted");
1246 XSETSTRING (new, PUREBEG + pureptr);
1247 XSTRING (new)->size = length;
1248 bcopy (data, XSTRING (new)->data, length);
1249 XSTRING (new)->data[length] = 0;
1250
1251 /* We must give strings in pure storage some kind of interval. So we
1252 give them a null one. */
1253 #if defined (USE_TEXT_PROPERTIES)
1254 XSTRING (new)->intervals = NULL_INTERVAL;
1255 #endif
1256 pureptr += (size + sizeof (EMACS_INT) - 1)
1257 / sizeof (EMACS_INT) * sizeof (EMACS_INT);
1258 return new;
1259 }
1260
1261 Lisp_Object
1262 pure_cons (car, cdr)
1263 Lisp_Object car, cdr;
1264 {
1265 register Lisp_Object new;
1266
1267 if (pureptr + sizeof (struct Lisp_Cons) > PURESIZE)
1268 error ("Pure Lisp storage exhausted");
1269 XSETCONS (new, PUREBEG + pureptr);
1270 pureptr += sizeof (struct Lisp_Cons);
1271 XCONS (new)->car = Fpurecopy (car);
1272 XCONS (new)->cdr = Fpurecopy (cdr);
1273 return new;
1274 }
1275
1276 #ifdef LISP_FLOAT_TYPE
1277
1278 Lisp_Object
1279 make_pure_float (num)
1280 double num;
1281 {
1282 register Lisp_Object new;
1283
1284 /* Make sure that PUREBEG + pureptr is aligned on at least a sizeof
1285 (double) boundary. Some architectures (like the sparc) require
1286 this, and I suspect that floats are rare enough that it's no
1287 tragedy for those that do. */
1288 {
1289 int alignment;
1290 char *p = PUREBEG + pureptr;
1291
1292 #ifdef __GNUC__
1293 #if __GNUC__ >= 2
1294 alignment = __alignof (struct Lisp_Float);
1295 #else
1296 alignment = sizeof (struct Lisp_Float);
1297 #endif
1298 #else
1299 alignment = sizeof (struct Lisp_Float);
1300 #endif
1301 p = (char *) (((unsigned long) p + alignment - 1) & - alignment);
1302 pureptr = p - PUREBEG;
1303 }
1304
1305 if (pureptr + sizeof (struct Lisp_Float) > PURESIZE)
1306 error ("Pure Lisp storage exhausted");
1307 XSETFLOAT (new, PUREBEG + pureptr);
1308 pureptr += sizeof (struct Lisp_Float);
1309 XFLOAT (new)->data = num;
1310 XSETFASTINT (XFLOAT (new)->type, 0); /* bug chasing -wsr */
1311 return new;
1312 }
1313
1314 #endif /* LISP_FLOAT_TYPE */
1315
1316 Lisp_Object
1317 make_pure_vector (len)
1318 EMACS_INT len;
1319 {
1320 register Lisp_Object new;
1321 register EMACS_INT size = sizeof (struct Lisp_Vector) + (len - 1) * sizeof (Lisp_Object);
1322
1323 if (pureptr + size > PURESIZE)
1324 error ("Pure Lisp storage exhausted");
1325
1326 XSETVECTOR (new, PUREBEG + pureptr);
1327 pureptr += size;
1328 XVECTOR (new)->size = len;
1329 return new;
1330 }
1331
1332 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
1333 "Make a copy of OBJECT in pure storage.\n\
1334 Recursively copies contents of vectors and cons cells.\n\
1335 Does not copy symbols.")
1336 (obj)
1337 register Lisp_Object obj;
1338 {
1339 if (NILP (Vpurify_flag))
1340 return obj;
1341
1342 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
1343 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
1344 return obj;
1345
1346 if (CONSP (obj))
1347 return pure_cons (XCONS (obj)->car, XCONS (obj)->cdr);
1348 #ifdef LISP_FLOAT_TYPE
1349 else if (FLOATP (obj))
1350 return make_pure_float (XFLOAT (obj)->data);
1351 #endif /* LISP_FLOAT_TYPE */
1352 else if (STRINGP (obj))
1353 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size);
1354 else if (COMPILEDP (obj) || VECTORP (obj))
1355 {
1356 register struct Lisp_Vector *vec;
1357 register int i, size;
1358
1359 size = XVECTOR (obj)->size;
1360 if (size & PSEUDOVECTOR_FLAG)
1361 size &= PSEUDOVECTOR_SIZE_MASK;
1362 vec = XVECTOR (make_pure_vector (size));
1363 for (i = 0; i < size; i++)
1364 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
1365 if (COMPILEDP (obj))
1366 XSETCOMPILED (obj, vec);
1367 else
1368 XSETVECTOR (obj, vec);
1369 return obj;
1370 }
1371 else if (MARKERP (obj))
1372 error ("Attempt to copy a marker to pure storage");
1373 else
1374 return obj;
1375 }
1376 \f
1377 /* Recording what needs to be marked for gc. */
1378
1379 struct gcpro *gcprolist;
1380
1381 #define NSTATICS 768
1382
1383 Lisp_Object *staticvec[NSTATICS] = {0};
1384
1385 int staticidx = 0;
1386
1387 /* Put an entry in staticvec, pointing at the variable whose address is given */
1388
1389 void
1390 staticpro (varaddress)
1391 Lisp_Object *varaddress;
1392 {
1393 staticvec[staticidx++] = varaddress;
1394 if (staticidx >= NSTATICS)
1395 abort ();
1396 }
1397
1398 struct catchtag
1399 {
1400 Lisp_Object tag;
1401 Lisp_Object val;
1402 struct catchtag *next;
1403 /* jmp_buf jmp; /* We don't need this for GC purposes */
1404 };
1405
1406 struct backtrace
1407 {
1408 struct backtrace *next;
1409 Lisp_Object *function;
1410 Lisp_Object *args; /* Points to vector of args. */
1411 int nargs; /* length of vector */
1412 /* if nargs is UNEVALLED, args points to slot holding list of unevalled args */
1413 char evalargs;
1414 };
1415 \f
1416 /* Garbage collection! */
1417
1418 int total_conses, total_markers, total_symbols, total_string_size, total_vector_size;
1419 int total_free_conses, total_free_markers, total_free_symbols;
1420 #ifdef LISP_FLOAT_TYPE
1421 int total_free_floats, total_floats;
1422 #endif /* LISP_FLOAT_TYPE */
1423
1424 /* Temporarily prevent garbage collection. */
1425
1426 int
1427 inhibit_garbage_collection ()
1428 {
1429 int count = specpdl_ptr - specpdl;
1430 Lisp_Object number;
1431 int nbits = min (VALBITS, BITS_PER_INT);
1432
1433 XSETINT (number, ((EMACS_INT) 1 << (nbits - 1)) - 1);
1434
1435 specbind (Qgc_cons_threshold, number);
1436
1437 return count;
1438 }
1439
1440 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
1441 "Reclaim storage for Lisp objects no longer needed.\n\
1442 Returns info on amount of space in use:\n\
1443 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)\n\
1444 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS\n\
1445 (USED-FLOATS . FREE-FLOATS))\n\
1446 Garbage collection happens automatically if you cons more than\n\
1447 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.")
1448 ()
1449 {
1450 register struct gcpro *tail;
1451 register struct specbinding *bind;
1452 struct catchtag *catch;
1453 struct handler *handler;
1454 register struct backtrace *backlist;
1455 register Lisp_Object tem;
1456 char *omessage = echo_area_glyphs;
1457 int omessage_length = echo_area_glyphs_length;
1458 char stack_top_variable;
1459 register int i;
1460
1461 /* In case user calls debug_print during GC,
1462 don't let that cause a recursive GC. */
1463 consing_since_gc = 0;
1464
1465 /* Save a copy of the contents of the stack, for debugging. */
1466 #if MAX_SAVE_STACK > 0
1467 if (NILP (Vpurify_flag))
1468 {
1469 i = &stack_top_variable - stack_bottom;
1470 if (i < 0) i = -i;
1471 if (i < MAX_SAVE_STACK)
1472 {
1473 if (stack_copy == 0)
1474 stack_copy = (char *) xmalloc (stack_copy_size = i);
1475 else if (stack_copy_size < i)
1476 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
1477 if (stack_copy)
1478 {
1479 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
1480 bcopy (stack_bottom, stack_copy, i);
1481 else
1482 bcopy (&stack_top_variable, stack_copy, i);
1483 }
1484 }
1485 }
1486 #endif /* MAX_SAVE_STACK > 0 */
1487
1488 if (!noninteractive)
1489 message1_nolog ("Garbage collecting...");
1490
1491 /* Don't keep command history around forever */
1492 tem = Fnthcdr (make_number (30), Vcommand_history);
1493 if (CONSP (tem))
1494 XCONS (tem)->cdr = Qnil;
1495
1496 /* Likewise for undo information. */
1497 {
1498 register struct buffer *nextb = all_buffers;
1499
1500 while (nextb)
1501 {
1502 /* If a buffer's undo list is Qt, that means that undo is
1503 turned off in that buffer. Calling truncate_undo_list on
1504 Qt tends to return NULL, which effectively turns undo back on.
1505 So don't call truncate_undo_list if undo_list is Qt. */
1506 if (! EQ (nextb->undo_list, Qt))
1507 nextb->undo_list
1508 = truncate_undo_list (nextb->undo_list, undo_limit,
1509 undo_strong_limit);
1510 nextb = nextb->next;
1511 }
1512 }
1513
1514 gc_in_progress = 1;
1515
1516 /* clear_marks (); */
1517
1518 /* In each "large string", set the MARKBIT of the size field.
1519 That enables mark_object to recognize them. */
1520 {
1521 register struct string_block *b;
1522 for (b = large_string_blocks; b; b = b->next)
1523 ((struct Lisp_String *)(&b->chars[0]))->size |= MARKBIT;
1524 }
1525
1526 /* Mark all the special slots that serve as the roots of accessibility.
1527
1528 Usually the special slots to mark are contained in particular structures.
1529 Then we know no slot is marked twice because the structures don't overlap.
1530 In some cases, the structures point to the slots to be marked.
1531 For these, we use MARKBIT to avoid double marking of the slot. */
1532
1533 for (i = 0; i < staticidx; i++)
1534 mark_object (staticvec[i]);
1535 for (tail = gcprolist; tail; tail = tail->next)
1536 for (i = 0; i < tail->nvars; i++)
1537 if (!XMARKBIT (tail->var[i]))
1538 {
1539 mark_object (&tail->var[i]);
1540 XMARK (tail->var[i]);
1541 }
1542 for (bind = specpdl; bind != specpdl_ptr; bind++)
1543 {
1544 mark_object (&bind->symbol);
1545 mark_object (&bind->old_value);
1546 }
1547 for (catch = catchlist; catch; catch = catch->next)
1548 {
1549 mark_object (&catch->tag);
1550 mark_object (&catch->val);
1551 }
1552 for (handler = handlerlist; handler; handler = handler->next)
1553 {
1554 mark_object (&handler->handler);
1555 mark_object (&handler->var);
1556 }
1557 for (backlist = backtrace_list; backlist; backlist = backlist->next)
1558 {
1559 if (!XMARKBIT (*backlist->function))
1560 {
1561 mark_object (backlist->function);
1562 XMARK (*backlist->function);
1563 }
1564 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
1565 i = 0;
1566 else
1567 i = backlist->nargs - 1;
1568 for (; i >= 0; i--)
1569 if (!XMARKBIT (backlist->args[i]))
1570 {
1571 mark_object (&backlist->args[i]);
1572 XMARK (backlist->args[i]);
1573 }
1574 }
1575 mark_kboards ();
1576
1577 gc_sweep ();
1578
1579 /* Clear the mark bits that we set in certain root slots. */
1580
1581 for (tail = gcprolist; tail; tail = tail->next)
1582 for (i = 0; i < tail->nvars; i++)
1583 XUNMARK (tail->var[i]);
1584 for (backlist = backtrace_list; backlist; backlist = backlist->next)
1585 {
1586 XUNMARK (*backlist->function);
1587 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
1588 i = 0;
1589 else
1590 i = backlist->nargs - 1;
1591 for (; i >= 0; i--)
1592 XUNMARK (backlist->args[i]);
1593 }
1594 XUNMARK (buffer_defaults.name);
1595 XUNMARK (buffer_local_symbols.name);
1596
1597 /* clear_marks (); */
1598 gc_in_progress = 0;
1599
1600 consing_since_gc = 0;
1601 if (gc_cons_threshold < 10000)
1602 gc_cons_threshold = 10000;
1603
1604 if (omessage || minibuf_level > 0)
1605 message2_nolog (omessage, omessage_length);
1606 else if (!noninteractive)
1607 message1_nolog ("Garbage collecting...done");
1608
1609 return Fcons (Fcons (make_number (total_conses),
1610 make_number (total_free_conses)),
1611 Fcons (Fcons (make_number (total_symbols),
1612 make_number (total_free_symbols)),
1613 Fcons (Fcons (make_number (total_markers),
1614 make_number (total_free_markers)),
1615 Fcons (make_number (total_string_size),
1616 Fcons (make_number (total_vector_size),
1617
1618 #ifdef LISP_FLOAT_TYPE
1619 Fcons (Fcons (make_number (total_floats),
1620 make_number (total_free_floats)),
1621 Qnil)
1622 #else /* not LISP_FLOAT_TYPE */
1623 Qnil
1624 #endif /* not LISP_FLOAT_TYPE */
1625 )))));
1626 }
1627 \f
1628 #if 0
1629 static void
1630 clear_marks ()
1631 {
1632 /* Clear marks on all conses */
1633 {
1634 register struct cons_block *cblk;
1635 register int lim = cons_block_index;
1636
1637 for (cblk = cons_block; cblk; cblk = cblk->next)
1638 {
1639 register int i;
1640 for (i = 0; i < lim; i++)
1641 XUNMARK (cblk->conses[i].car);
1642 lim = CONS_BLOCK_SIZE;
1643 }
1644 }
1645 /* Clear marks on all symbols */
1646 {
1647 register struct symbol_block *sblk;
1648 register int lim = symbol_block_index;
1649
1650 for (sblk = symbol_block; sblk; sblk = sblk->next)
1651 {
1652 register int i;
1653 for (i = 0; i < lim; i++)
1654 {
1655 XUNMARK (sblk->symbols[i].plist);
1656 }
1657 lim = SYMBOL_BLOCK_SIZE;
1658 }
1659 }
1660 /* Clear marks on all markers */
1661 {
1662 register struct marker_block *sblk;
1663 register int lim = marker_block_index;
1664
1665 for (sblk = marker_block; sblk; sblk = sblk->next)
1666 {
1667 register int i;
1668 for (i = 0; i < lim; i++)
1669 if (sblk->markers[i].u_marker.type == Lisp_Misc_Marker)
1670 XUNMARK (sblk->markers[i].u_marker.chain);
1671 lim = MARKER_BLOCK_SIZE;
1672 }
1673 }
1674 /* Clear mark bits on all buffers */
1675 {
1676 register struct buffer *nextb = all_buffers;
1677
1678 while (nextb)
1679 {
1680 XUNMARK (nextb->name);
1681 nextb = nextb->next;
1682 }
1683 }
1684 }
1685 #endif
1686 \f
1687 /* Mark reference to a Lisp_Object.
1688 If the object referred to has not been seen yet, recursively mark
1689 all the references contained in it.
1690
1691 If the object referenced is a short string, the referencing slot
1692 is threaded into a chain of such slots, pointed to from
1693 the `size' field of the string. The actual string size
1694 lives in the last slot in the chain. We recognize the end
1695 because it is < (unsigned) STRING_BLOCK_SIZE. */
1696
1697 #define LAST_MARKED_SIZE 500
1698 Lisp_Object *last_marked[LAST_MARKED_SIZE];
1699 int last_marked_index;
1700
1701 static void
1702 mark_object (objptr)
1703 Lisp_Object *objptr;
1704 {
1705 register Lisp_Object obj;
1706
1707 loop:
1708 obj = *objptr;
1709 loop2:
1710 XUNMARK (obj);
1711
1712 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
1713 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
1714 return;
1715
1716 last_marked[last_marked_index++] = objptr;
1717 if (last_marked_index == LAST_MARKED_SIZE)
1718 last_marked_index = 0;
1719
1720 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
1721 {
1722 case Lisp_String:
1723 {
1724 register struct Lisp_String *ptr = XSTRING (obj);
1725
1726 MARK_INTERVAL_TREE (ptr->intervals);
1727 if (ptr->size & MARKBIT)
1728 /* A large string. Just set ARRAY_MARK_FLAG. */
1729 ptr->size |= ARRAY_MARK_FLAG;
1730 else
1731 {
1732 /* A small string. Put this reference
1733 into the chain of references to it.
1734 If the address includes MARKBIT, put that bit elsewhere
1735 when we store OBJPTR into the size field. */
1736
1737 if (XMARKBIT (*objptr))
1738 {
1739 XSETFASTINT (*objptr, ptr->size);
1740 XMARK (*objptr);
1741 }
1742 else
1743 XSETFASTINT (*objptr, ptr->size);
1744
1745 if ((EMACS_INT) objptr & DONT_COPY_FLAG)
1746 abort ();
1747 ptr->size = (EMACS_INT) objptr;
1748 if (ptr->size & MARKBIT)
1749 ptr->size ^= MARKBIT | DONT_COPY_FLAG;
1750 }
1751 }
1752 break;
1753
1754 case Lisp_Vectorlike:
1755 if (GC_BUFFERP (obj))
1756 {
1757 if (!XMARKBIT (XBUFFER (obj)->name))
1758 mark_buffer (obj);
1759 }
1760 else if (GC_SUBRP (obj))
1761 break;
1762 else if (GC_COMPILEDP (obj))
1763 /* We could treat this just like a vector, but it is better
1764 to save the COMPILED_CONSTANTS element for last and avoid recursion
1765 there. */
1766 {
1767 register struct Lisp_Vector *ptr = XVECTOR (obj);
1768 register EMACS_INT size = ptr->size;
1769 /* See comment above under Lisp_Vector. */
1770 struct Lisp_Vector *volatile ptr1 = ptr;
1771 register int i;
1772
1773 if (size & ARRAY_MARK_FLAG)
1774 break; /* Already marked */
1775 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
1776 size &= PSEUDOVECTOR_SIZE_MASK;
1777 for (i = 0; i < size; i++) /* and then mark its elements */
1778 {
1779 if (i != COMPILED_CONSTANTS)
1780 mark_object (&ptr1->contents[i]);
1781 }
1782 /* This cast should be unnecessary, but some Mips compiler complains
1783 (MIPS-ABI + SysVR4, DC/OSx, etc). */
1784 objptr = (Lisp_Object *) &ptr1->contents[COMPILED_CONSTANTS];
1785 goto loop;
1786 }
1787 #ifdef MULTI_FRAME
1788 else if (GC_FRAMEP (obj))
1789 {
1790 /* See comment above under Lisp_Vector for why this is volatile. */
1791 register struct frame *volatile ptr = XFRAME (obj);
1792 register EMACS_INT size = ptr->size;
1793
1794 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
1795 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
1796
1797 mark_object (&ptr->name);
1798 mark_object (&ptr->icon_name);
1799 mark_object (&ptr->focus_frame);
1800 mark_object (&ptr->selected_window);
1801 mark_object (&ptr->minibuffer_window);
1802 mark_object (&ptr->param_alist);
1803 mark_object (&ptr->scroll_bars);
1804 mark_object (&ptr->condemned_scroll_bars);
1805 mark_object (&ptr->menu_bar_items);
1806 mark_object (&ptr->face_alist);
1807 mark_object (&ptr->menu_bar_vector);
1808 mark_object (&ptr->buffer_predicate);
1809 }
1810 #endif /* MULTI_FRAME */
1811 else if (GC_BOOL_VECTOR_P (obj))
1812 ;
1813 else
1814 {
1815 register struct Lisp_Vector *ptr = XVECTOR (obj);
1816 register EMACS_INT size = ptr->size;
1817 /* The reason we use ptr1 is to avoid an apparent hardware bug
1818 that happens occasionally on the FSF's HP 300s.
1819 The bug is that a2 gets clobbered by recursive calls to mark_object.
1820 The clobberage seems to happen during function entry,
1821 perhaps in the moveml instruction.
1822 Yes, this is a crock, but we have to do it. */
1823 struct Lisp_Vector *volatile ptr1 = ptr;
1824 register int i;
1825
1826 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
1827 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
1828 if (size & PSEUDOVECTOR_FLAG)
1829 size &= PSEUDOVECTOR_SIZE_MASK;
1830 for (i = 0; i < size; i++) /* and then mark its elements */
1831 mark_object (&ptr1->contents[i]);
1832 }
1833 break;
1834
1835 case Lisp_Symbol:
1836 {
1837 /* See comment above under Lisp_Vector for why this is volatile. */
1838 register struct Lisp_Symbol *volatile ptr = XSYMBOL (obj);
1839 struct Lisp_Symbol *ptrx;
1840
1841 if (XMARKBIT (ptr->plist)) break;
1842 XMARK (ptr->plist);
1843 mark_object ((Lisp_Object *) &ptr->value);
1844 mark_object (&ptr->function);
1845 mark_object (&ptr->plist);
1846 XSETTYPE (*(Lisp_Object *) &ptr->name, Lisp_String);
1847 mark_object (&ptr->name);
1848 ptr = ptr->next;
1849 if (ptr)
1850 {
1851 /* For the benefit of the last_marked log. */
1852 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
1853 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
1854 XSETSYMBOL (obj, ptrx);
1855 /* We can't goto loop here because *objptr doesn't contain an
1856 actual Lisp_Object with valid datatype field. */
1857 goto loop2;
1858 }
1859 }
1860 break;
1861
1862 case Lisp_Misc:
1863 switch (XMISCTYPE (obj))
1864 {
1865 case Lisp_Misc_Marker:
1866 XMARK (XMARKER (obj)->chain);
1867 /* DO NOT mark thru the marker's chain.
1868 The buffer's markers chain does not preserve markers from gc;
1869 instead, markers are removed from the chain when freed by gc. */
1870 break;
1871
1872 case Lisp_Misc_Buffer_Local_Value:
1873 case Lisp_Misc_Some_Buffer_Local_Value:
1874 {
1875 register struct Lisp_Buffer_Local_Value *ptr
1876 = XBUFFER_LOCAL_VALUE (obj);
1877 if (XMARKBIT (ptr->car)) break;
1878 XMARK (ptr->car);
1879 /* If the cdr is nil, avoid recursion for the car. */
1880 if (EQ (ptr->cdr, Qnil))
1881 {
1882 objptr = &ptr->car;
1883 goto loop;
1884 }
1885 mark_object (&ptr->car);
1886 /* See comment above under Lisp_Vector for why not use ptr here. */
1887 objptr = &XBUFFER_LOCAL_VALUE (obj)->cdr;
1888 goto loop;
1889 }
1890
1891 case Lisp_Misc_Intfwd:
1892 case Lisp_Misc_Boolfwd:
1893 case Lisp_Misc_Objfwd:
1894 case Lisp_Misc_Buffer_Objfwd:
1895 case Lisp_Misc_Kboard_Objfwd:
1896 /* Don't bother with Lisp_Buffer_Objfwd,
1897 since all markable slots in current buffer marked anyway. */
1898 /* Don't need to do Lisp_Objfwd, since the places they point
1899 are protected with staticpro. */
1900 break;
1901
1902 case Lisp_Misc_Overlay:
1903 {
1904 struct Lisp_Overlay *ptr = XOVERLAY (obj);
1905 if (!XMARKBIT (ptr->plist))
1906 {
1907 XMARK (ptr->plist);
1908 mark_object (&ptr->start);
1909 mark_object (&ptr->end);
1910 objptr = &ptr->plist;
1911 goto loop;
1912 }
1913 }
1914 break;
1915
1916 default:
1917 abort ();
1918 }
1919 break;
1920
1921 case Lisp_Cons:
1922 {
1923 register struct Lisp_Cons *ptr = XCONS (obj);
1924 if (XMARKBIT (ptr->car)) break;
1925 XMARK (ptr->car);
1926 /* If the cdr is nil, avoid recursion for the car. */
1927 if (EQ (ptr->cdr, Qnil))
1928 {
1929 objptr = &ptr->car;
1930 goto loop;
1931 }
1932 mark_object (&ptr->car);
1933 /* See comment above under Lisp_Vector for why not use ptr here. */
1934 objptr = &XCONS (obj)->cdr;
1935 goto loop;
1936 }
1937
1938 #ifdef LISP_FLOAT_TYPE
1939 case Lisp_Float:
1940 XMARK (XFLOAT (obj)->type);
1941 break;
1942 #endif /* LISP_FLOAT_TYPE */
1943
1944 case Lisp_Int:
1945 break;
1946
1947 default:
1948 abort ();
1949 }
1950 }
1951
1952 /* Mark the pointers in a buffer structure. */
1953
1954 static void
1955 mark_buffer (buf)
1956 Lisp_Object buf;
1957 {
1958 register struct buffer *buffer = XBUFFER (buf);
1959 register Lisp_Object *ptr;
1960 Lisp_Object base_buffer;
1961
1962 /* This is the buffer's markbit */
1963 mark_object (&buffer->name);
1964 XMARK (buffer->name);
1965
1966 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
1967
1968 #if 0
1969 mark_object (buffer->syntax_table);
1970
1971 /* Mark the various string-pointers in the buffer object.
1972 Since the strings may be relocated, we must mark them
1973 in their actual slots. So gc_sweep must convert each slot
1974 back to an ordinary C pointer. */
1975 XSETSTRING (*(Lisp_Object *)&buffer->upcase_table, buffer->upcase_table);
1976 mark_object ((Lisp_Object *)&buffer->upcase_table);
1977 XSETSTRING (*(Lisp_Object *)&buffer->downcase_table, buffer->downcase_table);
1978 mark_object ((Lisp_Object *)&buffer->downcase_table);
1979
1980 XSETSTRING (*(Lisp_Object *)&buffer->sort_table, buffer->sort_table);
1981 mark_object ((Lisp_Object *)&buffer->sort_table);
1982 XSETSTRING (*(Lisp_Object *)&buffer->folding_sort_table, buffer->folding_sort_table);
1983 mark_object ((Lisp_Object *)&buffer->folding_sort_table);
1984 #endif
1985
1986 for (ptr = &buffer->name + 1;
1987 (char *)ptr < (char *)buffer + sizeof (struct buffer);
1988 ptr++)
1989 mark_object (ptr);
1990
1991 /* If this is an indirect buffer, mark its base buffer. */
1992 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
1993 {
1994 XSETBUFFER (base_buffer, buffer->base_buffer);
1995 mark_buffer (base_buffer);
1996 }
1997 }
1998
1999
2000 /* Mark the pointers in the kboard objects. */
2001
2002 static void
2003 mark_kboards ()
2004 {
2005 KBOARD *kb;
2006 Lisp_Object *p;
2007 for (kb = all_kboards; kb; kb = kb->next_kboard)
2008 {
2009 if (kb->kbd_macro_buffer)
2010 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
2011 mark_object (p);
2012 mark_object (&kb->Vprefix_arg);
2013 mark_object (&kb->kbd_queue);
2014 mark_object (&kb->Vlast_kbd_macro);
2015 mark_object (&kb->Vsystem_key_alist);
2016 mark_object (&kb->system_key_syms);
2017 }
2018 }
2019 \f
2020 /* Sweep: find all structures not marked, and free them. */
2021
2022 static void
2023 gc_sweep ()
2024 {
2025 total_string_size = 0;
2026 compact_strings ();
2027
2028 /* Put all unmarked conses on free list */
2029 {
2030 register struct cons_block *cblk;
2031 register int lim = cons_block_index;
2032 register int num_free = 0, num_used = 0;
2033
2034 cons_free_list = 0;
2035
2036 for (cblk = cons_block; cblk; cblk = cblk->next)
2037 {
2038 register int i;
2039 for (i = 0; i < lim; i++)
2040 if (!XMARKBIT (cblk->conses[i].car))
2041 {
2042 num_free++;
2043 *(struct Lisp_Cons **)&cblk->conses[i].car = cons_free_list;
2044 cons_free_list = &cblk->conses[i];
2045 }
2046 else
2047 {
2048 num_used++;
2049 XUNMARK (cblk->conses[i].car);
2050 }
2051 lim = CONS_BLOCK_SIZE;
2052 }
2053 total_conses = num_used;
2054 total_free_conses = num_free;
2055 }
2056
2057 #ifdef LISP_FLOAT_TYPE
2058 /* Put all unmarked floats on free list */
2059 {
2060 register struct float_block *fblk;
2061 register int lim = float_block_index;
2062 register int num_free = 0, num_used = 0;
2063
2064 float_free_list = 0;
2065
2066 for (fblk = float_block; fblk; fblk = fblk->next)
2067 {
2068 register int i;
2069 for (i = 0; i < lim; i++)
2070 if (!XMARKBIT (fblk->floats[i].type))
2071 {
2072 num_free++;
2073 *(struct Lisp_Float **)&fblk->floats[i].type = float_free_list;
2074 float_free_list = &fblk->floats[i];
2075 }
2076 else
2077 {
2078 num_used++;
2079 XUNMARK (fblk->floats[i].type);
2080 }
2081 lim = FLOAT_BLOCK_SIZE;
2082 }
2083 total_floats = num_used;
2084 total_free_floats = num_free;
2085 }
2086 #endif /* LISP_FLOAT_TYPE */
2087
2088 #ifdef USE_TEXT_PROPERTIES
2089 /* Put all unmarked intervals on free list */
2090 {
2091 register struct interval_block *iblk;
2092 register int lim = interval_block_index;
2093 register int num_free = 0, num_used = 0;
2094
2095 interval_free_list = 0;
2096
2097 for (iblk = interval_block; iblk; iblk = iblk->next)
2098 {
2099 register int i;
2100
2101 for (i = 0; i < lim; i++)
2102 {
2103 if (! XMARKBIT (iblk->intervals[i].plist))
2104 {
2105 iblk->intervals[i].parent = interval_free_list;
2106 interval_free_list = &iblk->intervals[i];
2107 num_free++;
2108 }
2109 else
2110 {
2111 num_used++;
2112 XUNMARK (iblk->intervals[i].plist);
2113 }
2114 }
2115 lim = INTERVAL_BLOCK_SIZE;
2116 }
2117 total_intervals = num_used;
2118 total_free_intervals = num_free;
2119 }
2120 #endif /* USE_TEXT_PROPERTIES */
2121
2122 /* Put all unmarked symbols on free list */
2123 {
2124 register struct symbol_block *sblk;
2125 register int lim = symbol_block_index;
2126 register int num_free = 0, num_used = 0;
2127
2128 symbol_free_list = 0;
2129
2130 for (sblk = symbol_block; sblk; sblk = sblk->next)
2131 {
2132 register int i;
2133 for (i = 0; i < lim; i++)
2134 if (!XMARKBIT (sblk->symbols[i].plist))
2135 {
2136 *(struct Lisp_Symbol **)&sblk->symbols[i].value = symbol_free_list;
2137 symbol_free_list = &sblk->symbols[i];
2138 num_free++;
2139 }
2140 else
2141 {
2142 num_used++;
2143 sblk->symbols[i].name
2144 = XSTRING (*(Lisp_Object *) &sblk->symbols[i].name);
2145 XUNMARK (sblk->symbols[i].plist);
2146 }
2147 lim = SYMBOL_BLOCK_SIZE;
2148 }
2149 total_symbols = num_used;
2150 total_free_symbols = num_free;
2151 }
2152
2153 #ifndef standalone
2154 /* Put all unmarked markers on free list.
2155 Dechain each one first from the buffer it points into,
2156 but only if it's a real marker. */
2157 {
2158 register struct marker_block *mblk;
2159 register int lim = marker_block_index;
2160 register int num_free = 0, num_used = 0;
2161
2162 marker_free_list = 0;
2163
2164 for (mblk = marker_block; mblk; mblk = mblk->next)
2165 {
2166 register int i;
2167 EMACS_INT already_free = -1;
2168
2169 for (i = 0; i < lim; i++)
2170 {
2171 Lisp_Object *markword;
2172 switch (mblk->markers[i].u_marker.type)
2173 {
2174 case Lisp_Misc_Marker:
2175 markword = &mblk->markers[i].u_marker.chain;
2176 break;
2177 case Lisp_Misc_Buffer_Local_Value:
2178 case Lisp_Misc_Some_Buffer_Local_Value:
2179 markword = &mblk->markers[i].u_buffer_local_value.car;
2180 break;
2181 case Lisp_Misc_Overlay:
2182 markword = &mblk->markers[i].u_overlay.plist;
2183 break;
2184 case Lisp_Misc_Free:
2185 /* If the object was already free, keep it
2186 on the free list. */
2187 markword = &already_free;
2188 break;
2189 default:
2190 markword = 0;
2191 break;
2192 }
2193 if (markword && !XMARKBIT (*markword))
2194 {
2195 Lisp_Object tem;
2196 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
2197 {
2198 /* tem1 avoids Sun compiler bug */
2199 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
2200 XSETMARKER (tem, tem1);
2201 unchain_marker (tem);
2202 }
2203 /* Set the type of the freed object to Lisp_Misc_Free.
2204 We could leave the type alone, since nobody checks it,
2205 but this might catch bugs faster. */
2206 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
2207 mblk->markers[i].u_free.chain = marker_free_list;
2208 marker_free_list = &mblk->markers[i];
2209 num_free++;
2210 }
2211 else
2212 {
2213 num_used++;
2214 if (markword)
2215 XUNMARK (*markword);
2216 }
2217 }
2218 lim = MARKER_BLOCK_SIZE;
2219 }
2220
2221 total_markers = num_used;
2222 total_free_markers = num_free;
2223 }
2224
2225 /* Free all unmarked buffers */
2226 {
2227 register struct buffer *buffer = all_buffers, *prev = 0, *next;
2228
2229 while (buffer)
2230 if (!XMARKBIT (buffer->name))
2231 {
2232 if (prev)
2233 prev->next = buffer->next;
2234 else
2235 all_buffers = buffer->next;
2236 next = buffer->next;
2237 xfree (buffer);
2238 buffer = next;
2239 }
2240 else
2241 {
2242 XUNMARK (buffer->name);
2243 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
2244
2245 #if 0
2246 /* Each `struct Lisp_String *' was turned into a Lisp_Object
2247 for purposes of marking and relocation.
2248 Turn them back into C pointers now. */
2249 buffer->upcase_table
2250 = XSTRING (*(Lisp_Object *)&buffer->upcase_table);
2251 buffer->downcase_table
2252 = XSTRING (*(Lisp_Object *)&buffer->downcase_table);
2253 buffer->sort_table
2254 = XSTRING (*(Lisp_Object *)&buffer->sort_table);
2255 buffer->folding_sort_table
2256 = XSTRING (*(Lisp_Object *)&buffer->folding_sort_table);
2257 #endif
2258
2259 prev = buffer, buffer = buffer->next;
2260 }
2261 }
2262
2263 #endif /* standalone */
2264
2265 /* Free all unmarked vectors */
2266 {
2267 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
2268 total_vector_size = 0;
2269
2270 while (vector)
2271 if (!(vector->size & ARRAY_MARK_FLAG))
2272 {
2273 if (prev)
2274 prev->next = vector->next;
2275 else
2276 all_vectors = vector->next;
2277 next = vector->next;
2278 xfree (vector);
2279 vector = next;
2280 }
2281 else
2282 {
2283 vector->size &= ~ARRAY_MARK_FLAG;
2284 if (vector->size & PSEUDOVECTOR_FLAG)
2285 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
2286 else
2287 total_vector_size += vector->size;
2288 prev = vector, vector = vector->next;
2289 }
2290 }
2291
2292 /* Free all "large strings" not marked with ARRAY_MARK_FLAG. */
2293 {
2294 register struct string_block *sb = large_string_blocks, *prev = 0, *next;
2295 struct Lisp_String *s;
2296
2297 while (sb)
2298 {
2299 s = (struct Lisp_String *) &sb->chars[0];
2300 if (s->size & ARRAY_MARK_FLAG)
2301 {
2302 ((struct Lisp_String *)(&sb->chars[0]))->size
2303 &= ~ARRAY_MARK_FLAG & ~MARKBIT;
2304 UNMARK_BALANCE_INTERVALS (s->intervals);
2305 total_string_size += ((struct Lisp_String *)(&sb->chars[0]))->size;
2306 prev = sb, sb = sb->next;
2307 }
2308 else
2309 {
2310 if (prev)
2311 prev->next = sb->next;
2312 else
2313 large_string_blocks = sb->next;
2314 next = sb->next;
2315 xfree (sb);
2316 sb = next;
2317 }
2318 }
2319 }
2320 }
2321 \f
2322 /* Compactify strings, relocate references, and free empty string blocks. */
2323
2324 static void
2325 compact_strings ()
2326 {
2327 /* String block of old strings we are scanning. */
2328 register struct string_block *from_sb;
2329 /* A preceding string block (or maybe the same one)
2330 where we are copying the still-live strings to. */
2331 register struct string_block *to_sb;
2332 int pos;
2333 int to_pos;
2334
2335 to_sb = first_string_block;
2336 to_pos = 0;
2337
2338 /* Scan each existing string block sequentially, string by string. */
2339 for (from_sb = first_string_block; from_sb; from_sb = from_sb->next)
2340 {
2341 pos = 0;
2342 /* POS is the index of the next string in the block. */
2343 while (pos < from_sb->pos)
2344 {
2345 register struct Lisp_String *nextstr
2346 = (struct Lisp_String *) &from_sb->chars[pos];
2347
2348 register struct Lisp_String *newaddr;
2349 register EMACS_INT size = nextstr->size;
2350
2351 /* NEXTSTR is the old address of the next string.
2352 Just skip it if it isn't marked. */
2353 if (((EMACS_UINT) size & ~DONT_COPY_FLAG) > STRING_BLOCK_SIZE)
2354 {
2355 /* It is marked, so its size field is really a chain of refs.
2356 Find the end of the chain, where the actual size lives. */
2357 while (((EMACS_UINT) size & ~DONT_COPY_FLAG) > STRING_BLOCK_SIZE)
2358 {
2359 if (size & DONT_COPY_FLAG)
2360 size ^= MARKBIT | DONT_COPY_FLAG;
2361 size = *(EMACS_INT *)size & ~MARKBIT;
2362 }
2363
2364 total_string_size += size;
2365
2366 /* If it won't fit in TO_SB, close it out,
2367 and move to the next sb. Keep doing so until
2368 TO_SB reaches a large enough, empty enough string block.
2369 We know that TO_SB cannot advance past FROM_SB here
2370 since FROM_SB is large enough to contain this string.
2371 Any string blocks skipped here
2372 will be patched out and freed later. */
2373 while (to_pos + STRING_FULLSIZE (size)
2374 > max (to_sb->pos, STRING_BLOCK_SIZE))
2375 {
2376 to_sb->pos = to_pos;
2377 to_sb = to_sb->next;
2378 to_pos = 0;
2379 }
2380 /* Compute new address of this string
2381 and update TO_POS for the space being used. */
2382 newaddr = (struct Lisp_String *) &to_sb->chars[to_pos];
2383 to_pos += STRING_FULLSIZE (size);
2384
2385 /* Copy the string itself to the new place. */
2386 if (nextstr != newaddr)
2387 bcopy (nextstr, newaddr, size + 1 + sizeof (EMACS_INT)
2388 + INTERVAL_PTR_SIZE);
2389
2390 /* Go through NEXTSTR's chain of references
2391 and make each slot in the chain point to
2392 the new address of this string. */
2393 size = newaddr->size;
2394 while (((EMACS_UINT) size & ~DONT_COPY_FLAG) > STRING_BLOCK_SIZE)
2395 {
2396 register Lisp_Object *objptr;
2397 if (size & DONT_COPY_FLAG)
2398 size ^= MARKBIT | DONT_COPY_FLAG;
2399 objptr = (Lisp_Object *)size;
2400
2401 size = XFASTINT (*objptr) & ~MARKBIT;
2402 if (XMARKBIT (*objptr))
2403 {
2404 XSETSTRING (*objptr, newaddr);
2405 XMARK (*objptr);
2406 }
2407 else
2408 XSETSTRING (*objptr, newaddr);
2409 }
2410 /* Store the actual size in the size field. */
2411 newaddr->size = size;
2412
2413 #ifdef USE_TEXT_PROPERTIES
2414 /* Now that the string has been relocated, rebalance its
2415 interval tree, and update the tree's parent pointer. */
2416 if (! NULL_INTERVAL_P (newaddr->intervals))
2417 {
2418 UNMARK_BALANCE_INTERVALS (newaddr->intervals);
2419 XSETSTRING (* (Lisp_Object *) &newaddr->intervals->parent,
2420 newaddr);
2421 }
2422 #endif /* USE_TEXT_PROPERTIES */
2423 }
2424 pos += STRING_FULLSIZE (size);
2425 }
2426 }
2427
2428 /* Close out the last string block still used and free any that follow. */
2429 to_sb->pos = to_pos;
2430 current_string_block = to_sb;
2431
2432 from_sb = to_sb->next;
2433 to_sb->next = 0;
2434 while (from_sb)
2435 {
2436 to_sb = from_sb->next;
2437 xfree (from_sb);
2438 from_sb = to_sb;
2439 }
2440
2441 /* Free any empty string blocks further back in the chain.
2442 This loop will never free first_string_block, but it is very
2443 unlikely that that one will become empty, so why bother checking? */
2444
2445 from_sb = first_string_block;
2446 while (to_sb = from_sb->next)
2447 {
2448 if (to_sb->pos == 0)
2449 {
2450 if (from_sb->next = to_sb->next)
2451 from_sb->next->prev = from_sb;
2452 xfree (to_sb);
2453 }
2454 else
2455 from_sb = to_sb;
2456 }
2457 }
2458 \f
2459 /* Debugging aids. */
2460
2461 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
2462 "Return the address of the last byte Emacs has allocated, divided by 1024.\n\
2463 This may be helpful in debugging Emacs's memory usage.\n\
2464 We divide the value by 1024 to make sure it fits in a Lisp integer.")
2465 ()
2466 {
2467 Lisp_Object end;
2468
2469 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
2470
2471 return end;
2472 }
2473
2474 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
2475 "Return a list of counters that measure how much consing there has been.\n\
2476 Each of these counters increments for a certain kind of object.\n\
2477 The counters wrap around from the largest positive integer to zero.\n\
2478 Garbage collection does not decrease them.\n\
2479 The elements of the value are as follows:\n\
2480 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS)\n\
2481 All are in units of 1 = one object consed\n\
2482 except for VECTOR-CELLS and STRING-CHARS, which count the total length of\n\
2483 objects consed.\n\
2484 MISCS include overlays, markers, and some internal types.\n\
2485 Frames, windows, buffers, and subprocesses count as vectors\n\
2486 (but the contents of a buffer's text do not count here).")
2487 ()
2488 {
2489 Lisp_Object lisp_cons_cells_consed;
2490 Lisp_Object lisp_floats_consed;
2491 Lisp_Object lisp_vector_cells_consed;
2492 Lisp_Object lisp_symbols_consed;
2493 Lisp_Object lisp_string_chars_consed;
2494 Lisp_Object lisp_misc_objects_consed;
2495 Lisp_Object lisp_intervals_consed;
2496
2497 XSETINT (lisp_cons_cells_consed,
2498 cons_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2499 XSETINT (lisp_floats_consed,
2500 floats_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2501 XSETINT (lisp_vector_cells_consed,
2502 vector_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2503 XSETINT (lisp_symbols_consed,
2504 symbols_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2505 XSETINT (lisp_string_chars_consed,
2506 string_chars_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2507 XSETINT (lisp_misc_objects_consed,
2508 misc_objects_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2509 XSETINT (lisp_intervals_consed,
2510 intervals_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2511
2512 return Fcons (lisp_cons_cells_consed,
2513 Fcons (lisp_floats_consed,
2514 Fcons (lisp_vector_cells_consed,
2515 Fcons (lisp_symbols_consed,
2516 Fcons (lisp_string_chars_consed,
2517 Fcons (lisp_misc_objects_consed,
2518 Fcons (lisp_intervals_consed,
2519 Qnil)))))));
2520 }
2521 \f
2522 /* Initialization */
2523
2524 init_alloc_once ()
2525 {
2526 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
2527 pureptr = 0;
2528 #ifdef HAVE_SHM
2529 pure_size = PURESIZE;
2530 #endif
2531 all_vectors = 0;
2532 ignore_warnings = 1;
2533 init_strings ();
2534 init_cons ();
2535 init_symbol ();
2536 init_marker ();
2537 #ifdef LISP_FLOAT_TYPE
2538 init_float ();
2539 #endif /* LISP_FLOAT_TYPE */
2540 INIT_INTERVALS;
2541
2542 #ifdef REL_ALLOC
2543 malloc_hysteresis = 32;
2544 #else
2545 malloc_hysteresis = 0;
2546 #endif
2547
2548 spare_memory = (char *) malloc (SPARE_MEMORY);
2549
2550 ignore_warnings = 0;
2551 gcprolist = 0;
2552 staticidx = 0;
2553 consing_since_gc = 0;
2554 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
2555 #ifdef VIRT_ADDR_VARIES
2556 malloc_sbrk_unused = 1<<22; /* A large number */
2557 malloc_sbrk_used = 100000; /* as reasonable as any number */
2558 #endif /* VIRT_ADDR_VARIES */
2559 }
2560
2561 init_alloc ()
2562 {
2563 gcprolist = 0;
2564 }
2565
2566 void
2567 syms_of_alloc ()
2568 {
2569 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
2570 "*Number of bytes of consing between garbage collections.\n\
2571 Garbage collection can happen automatically once this many bytes have been\n\
2572 allocated since the last garbage collection. All data types count.\n\n\
2573 Garbage collection happens automatically only when `eval' is called.\n\n\
2574 By binding this temporarily to a large number, you can effectively\n\
2575 prevent garbage collection during a part of the program.");
2576
2577 DEFVAR_INT ("pure-bytes-used", &pureptr,
2578 "Number of bytes of sharable Lisp data allocated so far.");
2579
2580 #if 0
2581 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used,
2582 "Number of bytes of unshared memory allocated in this session.");
2583
2584 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused,
2585 "Number of bytes of unshared memory remaining available in this session.");
2586 #endif
2587
2588 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
2589 "Non-nil means loading Lisp code in order to dump an executable.\n\
2590 This means that certain objects should be allocated in shared (pure) space.");
2591
2592 DEFVAR_INT ("undo-limit", &undo_limit,
2593 "Keep no more undo information once it exceeds this size.\n\
2594 This limit is applied when garbage collection happens.\n\
2595 The size is counted as the number of bytes occupied,\n\
2596 which includes both saved text and other data.");
2597 undo_limit = 20000;
2598
2599 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
2600 "Don't keep more than this much size of undo information.\n\
2601 A command which pushes past this size is itself forgotten.\n\
2602 This limit is applied when garbage collection happens.\n\
2603 The size is counted as the number of bytes occupied,\n\
2604 which includes both saved text and other data.");
2605 undo_strong_limit = 30000;
2606
2607 /* We build this in advance because if we wait until we need it, we might
2608 not be able to allocate the memory to hold it. */
2609 memory_signal_data
2610 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
2611 staticpro (&memory_signal_data);
2612
2613 staticpro (&Qgc_cons_threshold);
2614 Qgc_cons_threshold = intern ("gc-cons-threshold");
2615
2616 staticpro (&Qchar_table_extra_slots);
2617 Qchar_table_extra_slots = intern ("char-table-extra-slots");
2618
2619 defsubr (&Scons);
2620 defsubr (&Slist);
2621 defsubr (&Svector);
2622 defsubr (&Smake_byte_code);
2623 defsubr (&Smake_list);
2624 defsubr (&Smake_vector);
2625 defsubr (&Smake_char_table);
2626 defsubr (&Smake_string);
2627 defsubr (&Smake_bool_vector);
2628 defsubr (&Smake_symbol);
2629 defsubr (&Smake_marker);
2630 defsubr (&Spurecopy);
2631 defsubr (&Sgarbage_collect);
2632 defsubr (&Smemory_limit);
2633 defsubr (&Smemory_use_counts);
2634 }