]> code.delx.au - gnu-emacs/blob - src/fns.c
(map_char_table): Fix previous change.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 extern int minibuffer_auto_raise;
63 extern Lisp_Object minibuf_window;
64 extern Lisp_Object Vlocale_coding_system;
65
66 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
67 Lisp_Object Qyes_or_no_p_history;
68 Lisp_Object Qcursor_in_echo_area;
69 Lisp_Object Qwidget_type;
70 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
71
72 extern Lisp_Object Qinput_method_function;
73
74 static int internal_equal ();
75
76 extern long get_random ();
77 extern void seed_random ();
78
79 #ifndef HAVE_UNISTD_H
80 extern long time ();
81 #endif
82 \f
83 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
84 doc: /* Return the argument unchanged. */)
85 (arg)
86 Lisp_Object arg;
87 {
88 return arg;
89 }
90
91 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
92 doc: /* Return a pseudo-random number.
93 All integers representable in Lisp are equally likely.
94 On most systems, this is 28 bits' worth.
95 With positive integer argument N, return random number in interval [0,N).
96 With argument t, set the random number seed from the current time and pid. */)
97 (n)
98 Lisp_Object n;
99 {
100 EMACS_INT val;
101 Lisp_Object lispy_val;
102 unsigned long denominator;
103
104 if (EQ (n, Qt))
105 seed_random (getpid () + time (NULL));
106 if (NATNUMP (n) && XFASTINT (n) != 0)
107 {
108 /* Try to take our random number from the higher bits of VAL,
109 not the lower, since (says Gentzel) the low bits of `random'
110 are less random than the higher ones. We do this by using the
111 quotient rather than the remainder. At the high end of the RNG
112 it's possible to get a quotient larger than n; discarding
113 these values eliminates the bias that would otherwise appear
114 when using a large n. */
115 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
116 do
117 val = get_random () / denominator;
118 while (val >= XFASTINT (n));
119 }
120 else
121 val = get_random ();
122 XSETINT (lispy_val, val);
123 return lispy_val;
124 }
125 \f
126 /* Random data-structure functions */
127
128 DEFUN ("length", Flength, Slength, 1, 1, 0,
129 doc: /* Return the length of vector, list or string SEQUENCE.
130 A byte-code function object is also allowed.
131 If the string contains multibyte characters, this is not necessarily
132 the number of bytes in the string; it is the number of characters.
133 To get the number of bytes, use `string-bytes'. */)
134 (sequence)
135 register Lisp_Object sequence;
136 {
137 register Lisp_Object val;
138 register int i;
139
140 retry:
141 if (STRINGP (sequence))
142 XSETFASTINT (val, SCHARS (sequence));
143 else if (VECTORP (sequence))
144 XSETFASTINT (val, XVECTOR (sequence)->size);
145 else if (SUB_CHAR_TABLE_P (sequence))
146 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
147 else if (CHAR_TABLE_P (sequence))
148 XSETFASTINT (val, MAX_CHAR);
149 else if (BOOL_VECTOR_P (sequence))
150 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
151 else if (COMPILEDP (sequence))
152 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
153 else if (CONSP (sequence))
154 {
155 i = 0;
156 while (CONSP (sequence))
157 {
158 sequence = XCDR (sequence);
159 ++i;
160
161 if (!CONSP (sequence))
162 break;
163
164 sequence = XCDR (sequence);
165 ++i;
166 QUIT;
167 }
168
169 if (!NILP (sequence))
170 wrong_type_argument (Qlistp, sequence);
171
172 val = make_number (i);
173 }
174 else if (NILP (sequence))
175 XSETFASTINT (val, 0);
176 else
177 {
178 sequence = wrong_type_argument (Qsequencep, sequence);
179 goto retry;
180 }
181 return val;
182 }
183
184 /* This does not check for quits. That is safe
185 since it must terminate. */
186
187 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
188 doc: /* Return the length of a list, but avoid error or infinite loop.
189 This function never gets an error. If LIST is not really a list,
190 it returns 0. If LIST is circular, it returns a finite value
191 which is at least the number of distinct elements. */)
192 (list)
193 Lisp_Object list;
194 {
195 Lisp_Object tail, halftail, length;
196 int len = 0;
197
198 /* halftail is used to detect circular lists. */
199 halftail = list;
200 for (tail = list; CONSP (tail); tail = XCDR (tail))
201 {
202 if (EQ (tail, halftail) && len != 0)
203 break;
204 len++;
205 if ((len & 1) == 0)
206 halftail = XCDR (halftail);
207 }
208
209 XSETINT (length, len);
210 return length;
211 }
212
213 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
214 doc: /* Return the number of bytes in STRING.
215 If STRING is a multibyte string, this is greater than the length of STRING. */)
216 (string)
217 Lisp_Object string;
218 {
219 CHECK_STRING (string);
220 return make_number (SBYTES (string));
221 }
222
223 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
224 doc: /* Return t if two strings have identical contents.
225 Case is significant, but text properties are ignored.
226 Symbols are also allowed; their print names are used instead. */)
227 (s1, s2)
228 register Lisp_Object s1, s2;
229 {
230 if (SYMBOLP (s1))
231 s1 = SYMBOL_NAME (s1);
232 if (SYMBOLP (s2))
233 s2 = SYMBOL_NAME (s2);
234 CHECK_STRING (s1);
235 CHECK_STRING (s2);
236
237 if (SCHARS (s1) != SCHARS (s2)
238 || SBYTES (s1) != SBYTES (s2)
239 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
240 return Qnil;
241 return Qt;
242 }
243
244 DEFUN ("compare-strings", Fcompare_strings,
245 Scompare_strings, 6, 7, 0,
246 doc: /* Compare the contents of two strings, converting to multibyte if needed.
247 In string STR1, skip the first START1 characters and stop at END1.
248 In string STR2, skip the first START2 characters and stop at END2.
249 END1 and END2 default to the full lengths of the respective strings.
250
251 Case is significant in this comparison if IGNORE-CASE is nil.
252 Unibyte strings are converted to multibyte for comparison.
253
254 The value is t if the strings (or specified portions) match.
255 If string STR1 is less, the value is a negative number N;
256 - 1 - N is the number of characters that match at the beginning.
257 If string STR1 is greater, the value is a positive number N;
258 N - 1 is the number of characters that match at the beginning. */)
259 (str1, start1, end1, str2, start2, end2, ignore_case)
260 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
261 {
262 register int end1_char, end2_char;
263 register int i1, i1_byte, i2, i2_byte;
264
265 CHECK_STRING (str1);
266 CHECK_STRING (str2);
267 if (NILP (start1))
268 start1 = make_number (0);
269 if (NILP (start2))
270 start2 = make_number (0);
271 CHECK_NATNUM (start1);
272 CHECK_NATNUM (start2);
273 if (! NILP (end1))
274 CHECK_NATNUM (end1);
275 if (! NILP (end2))
276 CHECK_NATNUM (end2);
277
278 i1 = XINT (start1);
279 i2 = XINT (start2);
280
281 i1_byte = string_char_to_byte (str1, i1);
282 i2_byte = string_char_to_byte (str2, i2);
283
284 end1_char = SCHARS (str1);
285 if (! NILP (end1) && end1_char > XINT (end1))
286 end1_char = XINT (end1);
287
288 end2_char = SCHARS (str2);
289 if (! NILP (end2) && end2_char > XINT (end2))
290 end2_char = XINT (end2);
291
292 while (i1 < end1_char && i2 < end2_char)
293 {
294 /* When we find a mismatch, we must compare the
295 characters, not just the bytes. */
296 int c1, c2;
297
298 if (STRING_MULTIBYTE (str1))
299 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
300 else
301 {
302 c1 = SREF (str1, i1++);
303 c1 = unibyte_char_to_multibyte (c1);
304 }
305
306 if (STRING_MULTIBYTE (str2))
307 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
308 else
309 {
310 c2 = SREF (str2, i2++);
311 c2 = unibyte_char_to_multibyte (c2);
312 }
313
314 if (c1 == c2)
315 continue;
316
317 if (! NILP (ignore_case))
318 {
319 Lisp_Object tem;
320
321 tem = Fupcase (make_number (c1));
322 c1 = XINT (tem);
323 tem = Fupcase (make_number (c2));
324 c2 = XINT (tem);
325 }
326
327 if (c1 == c2)
328 continue;
329
330 /* Note that I1 has already been incremented
331 past the character that we are comparing;
332 hence we don't add or subtract 1 here. */
333 if (c1 < c2)
334 return make_number (- i1 + XINT (start1));
335 else
336 return make_number (i1 - XINT (start1));
337 }
338
339 if (i1 < end1_char)
340 return make_number (i1 - XINT (start1) + 1);
341 if (i2 < end2_char)
342 return make_number (- i1 + XINT (start1) - 1);
343
344 return Qt;
345 }
346
347 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
348 doc: /* Return t if first arg string is less than second in lexicographic order.
349 Case is significant.
350 Symbols are also allowed; their print names are used instead. */)
351 (s1, s2)
352 register Lisp_Object s1, s2;
353 {
354 register int end;
355 register int i1, i1_byte, i2, i2_byte;
356
357 if (SYMBOLP (s1))
358 s1 = SYMBOL_NAME (s1);
359 if (SYMBOLP (s2))
360 s2 = SYMBOL_NAME (s2);
361 CHECK_STRING (s1);
362 CHECK_STRING (s2);
363
364 i1 = i1_byte = i2 = i2_byte = 0;
365
366 end = SCHARS (s1);
367 if (end > SCHARS (s2))
368 end = SCHARS (s2);
369
370 while (i1 < end)
371 {
372 /* When we find a mismatch, we must compare the
373 characters, not just the bytes. */
374 int c1, c2;
375
376 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
377 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
378
379 if (c1 != c2)
380 return c1 < c2 ? Qt : Qnil;
381 }
382 return i1 < SCHARS (s2) ? Qt : Qnil;
383 }
384 \f
385 static Lisp_Object concat ();
386
387 /* ARGSUSED */
388 Lisp_Object
389 concat2 (s1, s2)
390 Lisp_Object s1, s2;
391 {
392 #ifdef NO_ARG_ARRAY
393 Lisp_Object args[2];
394 args[0] = s1;
395 args[1] = s2;
396 return concat (2, args, Lisp_String, 0);
397 #else
398 return concat (2, &s1, Lisp_String, 0);
399 #endif /* NO_ARG_ARRAY */
400 }
401
402 /* ARGSUSED */
403 Lisp_Object
404 concat3 (s1, s2, s3)
405 Lisp_Object s1, s2, s3;
406 {
407 #ifdef NO_ARG_ARRAY
408 Lisp_Object args[3];
409 args[0] = s1;
410 args[1] = s2;
411 args[2] = s3;
412 return concat (3, args, Lisp_String, 0);
413 #else
414 return concat (3, &s1, Lisp_String, 0);
415 #endif /* NO_ARG_ARRAY */
416 }
417
418 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
419 doc: /* Concatenate all the arguments and make the result a list.
420 The result is a list whose elements are the elements of all the arguments.
421 Each argument may be a list, vector or string.
422 The last argument is not copied, just used as the tail of the new list.
423 usage: (append &rest SEQUENCES) */)
424 (nargs, args)
425 int nargs;
426 Lisp_Object *args;
427 {
428 return concat (nargs, args, Lisp_Cons, 1);
429 }
430
431 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
432 doc: /* Concatenate all the arguments and make the result a string.
433 The result is a string whose elements are the elements of all the arguments.
434 Each argument may be a string or a list or vector of characters (integers).
435 usage: (concat &rest SEQUENCES) */)
436 (nargs, args)
437 int nargs;
438 Lisp_Object *args;
439 {
440 return concat (nargs, args, Lisp_String, 0);
441 }
442
443 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
444 doc: /* Concatenate all the arguments and make the result a vector.
445 The result is a vector whose elements are the elements of all the arguments.
446 Each argument may be a list, vector or string.
447 usage: (vconcat &rest SEQUENCES) */)
448 (nargs, args)
449 int nargs;
450 Lisp_Object *args;
451 {
452 return concat (nargs, args, Lisp_Vectorlike, 0);
453 }
454
455 /* Return a copy of a sub char table ARG. The elements except for a
456 nested sub char table are not copied. */
457 static Lisp_Object
458 copy_sub_char_table (arg)
459 Lisp_Object arg;
460 {
461 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
462 int i;
463
464 /* Copy all the contents. */
465 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
466 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
467 /* Recursively copy any sub char-tables in the ordinary slots. */
468 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
469 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
470 XCHAR_TABLE (copy)->contents[i]
471 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
472
473 return copy;
474 }
475
476
477 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
478 doc: /* Return a copy of a list, vector, string or char-table.
479 The elements of a list or vector are not copied; they are shared
480 with the original. */)
481 (arg)
482 Lisp_Object arg;
483 {
484 if (NILP (arg)) return arg;
485
486 if (CHAR_TABLE_P (arg))
487 {
488 int i;
489 Lisp_Object copy;
490
491 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
492 /* Copy all the slots, including the extra ones. */
493 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
494 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
495 * sizeof (Lisp_Object)));
496
497 /* Recursively copy any sub char tables in the ordinary slots
498 for multibyte characters. */
499 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
500 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
501 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
502 XCHAR_TABLE (copy)->contents[i]
503 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
504
505 return copy;
506 }
507
508 if (BOOL_VECTOR_P (arg))
509 {
510 Lisp_Object val;
511 int size_in_chars
512 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
513
514 val = Fmake_bool_vector (Flength (arg), Qnil);
515 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
516 size_in_chars);
517 return val;
518 }
519
520 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
521 arg = wrong_type_argument (Qsequencep, arg);
522 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
523 }
524
525 /* In string STR of length LEN, see if bytes before STR[I] combine
526 with bytes after STR[I] to form a single character. If so, return
527 the number of bytes after STR[I] which combine in this way.
528 Otherwize, return 0. */
529
530 static int
531 count_combining (str, len, i)
532 unsigned char *str;
533 int len, i;
534 {
535 int j = i - 1, bytes;
536
537 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
538 return 0;
539 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
540 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
541 return 0;
542 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
543 return (bytes <= i - j ? 0 : bytes - (i - j));
544 }
545
546 /* This structure holds information of an argument of `concat' that is
547 a string and has text properties to be copied. */
548 struct textprop_rec
549 {
550 int argnum; /* refer to ARGS (arguments of `concat') */
551 int from; /* refer to ARGS[argnum] (argument string) */
552 int to; /* refer to VAL (the target string) */
553 };
554
555 static Lisp_Object
556 concat (nargs, args, target_type, last_special)
557 int nargs;
558 Lisp_Object *args;
559 enum Lisp_Type target_type;
560 int last_special;
561 {
562 Lisp_Object val;
563 register Lisp_Object tail;
564 register Lisp_Object this;
565 int toindex;
566 int toindex_byte = 0;
567 register int result_len;
568 register int result_len_byte;
569 register int argnum;
570 Lisp_Object last_tail;
571 Lisp_Object prev;
572 int some_multibyte;
573 /* When we make a multibyte string, we can't copy text properties
574 while concatinating each string because the length of resulting
575 string can't be decided until we finish the whole concatination.
576 So, we record strings that have text properties to be copied
577 here, and copy the text properties after the concatination. */
578 struct textprop_rec *textprops = NULL;
579 /* Number of elments in textprops. */
580 int num_textprops = 0;
581
582 tail = Qnil;
583
584 /* In append, the last arg isn't treated like the others */
585 if (last_special && nargs > 0)
586 {
587 nargs--;
588 last_tail = args[nargs];
589 }
590 else
591 last_tail = Qnil;
592
593 /* Canonicalize each argument. */
594 for (argnum = 0; argnum < nargs; argnum++)
595 {
596 this = args[argnum];
597 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
598 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
599 {
600 args[argnum] = wrong_type_argument (Qsequencep, this);
601 }
602 }
603
604 /* Compute total length in chars of arguments in RESULT_LEN.
605 If desired output is a string, also compute length in bytes
606 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
607 whether the result should be a multibyte string. */
608 result_len_byte = 0;
609 result_len = 0;
610 some_multibyte = 0;
611 for (argnum = 0; argnum < nargs; argnum++)
612 {
613 int len;
614 this = args[argnum];
615 len = XFASTINT (Flength (this));
616 if (target_type == Lisp_String)
617 {
618 /* We must count the number of bytes needed in the string
619 as well as the number of characters. */
620 int i;
621 Lisp_Object ch;
622 int this_len_byte;
623
624 if (VECTORP (this))
625 for (i = 0; i < len; i++)
626 {
627 ch = XVECTOR (this)->contents[i];
628 if (! INTEGERP (ch))
629 wrong_type_argument (Qintegerp, ch);
630 this_len_byte = CHAR_BYTES (XINT (ch));
631 result_len_byte += this_len_byte;
632 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
633 some_multibyte = 1;
634 }
635 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
636 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
637 else if (CONSP (this))
638 for (; CONSP (this); this = XCDR (this))
639 {
640 ch = XCAR (this);
641 if (! INTEGERP (ch))
642 wrong_type_argument (Qintegerp, ch);
643 this_len_byte = CHAR_BYTES (XINT (ch));
644 result_len_byte += this_len_byte;
645 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
646 some_multibyte = 1;
647 }
648 else if (STRINGP (this))
649 {
650 if (STRING_MULTIBYTE (this))
651 {
652 some_multibyte = 1;
653 result_len_byte += SBYTES (this);
654 }
655 else
656 result_len_byte += count_size_as_multibyte (SDATA (this),
657 SCHARS (this));
658 }
659 }
660
661 result_len += len;
662 }
663
664 if (! some_multibyte)
665 result_len_byte = result_len;
666
667 /* Create the output object. */
668 if (target_type == Lisp_Cons)
669 val = Fmake_list (make_number (result_len), Qnil);
670 else if (target_type == Lisp_Vectorlike)
671 val = Fmake_vector (make_number (result_len), Qnil);
672 else if (some_multibyte)
673 val = make_uninit_multibyte_string (result_len, result_len_byte);
674 else
675 val = make_uninit_string (result_len);
676
677 /* In `append', if all but last arg are nil, return last arg. */
678 if (target_type == Lisp_Cons && EQ (val, Qnil))
679 return last_tail;
680
681 /* Copy the contents of the args into the result. */
682 if (CONSP (val))
683 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
684 else
685 toindex = 0, toindex_byte = 0;
686
687 prev = Qnil;
688 if (STRINGP (val))
689 textprops
690 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
691
692 for (argnum = 0; argnum < nargs; argnum++)
693 {
694 Lisp_Object thislen;
695 int thisleni = 0;
696 register unsigned int thisindex = 0;
697 register unsigned int thisindex_byte = 0;
698
699 this = args[argnum];
700 if (!CONSP (this))
701 thislen = Flength (this), thisleni = XINT (thislen);
702
703 /* Between strings of the same kind, copy fast. */
704 if (STRINGP (this) && STRINGP (val)
705 && STRING_MULTIBYTE (this) == some_multibyte)
706 {
707 int thislen_byte = SBYTES (this);
708 int combined;
709
710 bcopy (SDATA (this), SDATA (val) + toindex_byte,
711 SBYTES (this));
712 combined = (some_multibyte && toindex_byte > 0
713 ? count_combining (SDATA (val),
714 toindex_byte + thislen_byte,
715 toindex_byte)
716 : 0);
717 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
718 {
719 textprops[num_textprops].argnum = argnum;
720 /* We ignore text properties on characters being combined. */
721 textprops[num_textprops].from = combined;
722 textprops[num_textprops++].to = toindex;
723 }
724 toindex_byte += thislen_byte;
725 toindex += thisleni - combined;
726 STRING_SET_CHARS (val, SCHARS (val) - combined);
727 }
728 /* Copy a single-byte string to a multibyte string. */
729 else if (STRINGP (this) && STRINGP (val))
730 {
731 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
732 {
733 textprops[num_textprops].argnum = argnum;
734 textprops[num_textprops].from = 0;
735 textprops[num_textprops++].to = toindex;
736 }
737 toindex_byte += copy_text (SDATA (this),
738 SDATA (val) + toindex_byte,
739 SCHARS (this), 0, 1);
740 toindex += thisleni;
741 }
742 else
743 /* Copy element by element. */
744 while (1)
745 {
746 register Lisp_Object elt;
747
748 /* Fetch next element of `this' arg into `elt', or break if
749 `this' is exhausted. */
750 if (NILP (this)) break;
751 if (CONSP (this))
752 elt = XCAR (this), this = XCDR (this);
753 else if (thisindex >= thisleni)
754 break;
755 else if (STRINGP (this))
756 {
757 int c;
758 if (STRING_MULTIBYTE (this))
759 {
760 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
761 thisindex,
762 thisindex_byte);
763 XSETFASTINT (elt, c);
764 }
765 else
766 {
767 XSETFASTINT (elt, SREF (this, thisindex++));
768 if (some_multibyte
769 && (XINT (elt) >= 0240
770 || (XINT (elt) >= 0200
771 && ! NILP (Vnonascii_translation_table)))
772 && XINT (elt) < 0400)
773 {
774 c = unibyte_char_to_multibyte (XINT (elt));
775 XSETINT (elt, c);
776 }
777 }
778 }
779 else if (BOOL_VECTOR_P (this))
780 {
781 int byte;
782 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
783 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
784 elt = Qt;
785 else
786 elt = Qnil;
787 thisindex++;
788 }
789 else
790 elt = XVECTOR (this)->contents[thisindex++];
791
792 /* Store this element into the result. */
793 if (toindex < 0)
794 {
795 XSETCAR (tail, elt);
796 prev = tail;
797 tail = XCDR (tail);
798 }
799 else if (VECTORP (val))
800 XVECTOR (val)->contents[toindex++] = elt;
801 else
802 {
803 CHECK_NUMBER (elt);
804 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
805 {
806 if (some_multibyte)
807 toindex_byte
808 += CHAR_STRING (XINT (elt),
809 SDATA (val) + toindex_byte);
810 else
811 SSET (val, toindex_byte++, XINT (elt));
812 if (some_multibyte
813 && toindex_byte > 0
814 && count_combining (SDATA (val),
815 toindex_byte, toindex_byte - 1))
816 STRING_SET_CHARS (val, SCHARS (val) - 1);
817 else
818 toindex++;
819 }
820 else
821 /* If we have any multibyte characters,
822 we already decided to make a multibyte string. */
823 {
824 int c = XINT (elt);
825 /* P exists as a variable
826 to avoid a bug on the Masscomp C compiler. */
827 unsigned char *p = SDATA (val) + toindex_byte;
828
829 toindex_byte += CHAR_STRING (c, p);
830 toindex++;
831 }
832 }
833 }
834 }
835 if (!NILP (prev))
836 XSETCDR (prev, last_tail);
837
838 if (num_textprops > 0)
839 {
840 Lisp_Object props;
841 int last_to_end = -1;
842
843 for (argnum = 0; argnum < num_textprops; argnum++)
844 {
845 this = args[textprops[argnum].argnum];
846 props = text_property_list (this,
847 make_number (0),
848 make_number (SCHARS (this)),
849 Qnil);
850 /* If successive arguments have properites, be sure that the
851 value of `composition' property be the copy. */
852 if (last_to_end == textprops[argnum].to)
853 make_composition_value_copy (props);
854 add_text_properties_from_list (val, props,
855 make_number (textprops[argnum].to));
856 last_to_end = textprops[argnum].to + SCHARS (this);
857 }
858 }
859 return val;
860 }
861 \f
862 static Lisp_Object string_char_byte_cache_string;
863 static int string_char_byte_cache_charpos;
864 static int string_char_byte_cache_bytepos;
865
866 void
867 clear_string_char_byte_cache ()
868 {
869 string_char_byte_cache_string = Qnil;
870 }
871
872 /* Return the character index corresponding to CHAR_INDEX in STRING. */
873
874 int
875 string_char_to_byte (string, char_index)
876 Lisp_Object string;
877 int char_index;
878 {
879 int i, i_byte;
880 int best_below, best_below_byte;
881 int best_above, best_above_byte;
882
883 if (! STRING_MULTIBYTE (string))
884 return char_index;
885
886 best_below = best_below_byte = 0;
887 best_above = SCHARS (string);
888 best_above_byte = SBYTES (string);
889
890 if (EQ (string, string_char_byte_cache_string))
891 {
892 if (string_char_byte_cache_charpos < char_index)
893 {
894 best_below = string_char_byte_cache_charpos;
895 best_below_byte = string_char_byte_cache_bytepos;
896 }
897 else
898 {
899 best_above = string_char_byte_cache_charpos;
900 best_above_byte = string_char_byte_cache_bytepos;
901 }
902 }
903
904 if (char_index - best_below < best_above - char_index)
905 {
906 while (best_below < char_index)
907 {
908 int c;
909 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
910 best_below, best_below_byte);
911 }
912 i = best_below;
913 i_byte = best_below_byte;
914 }
915 else
916 {
917 while (best_above > char_index)
918 {
919 unsigned char *pend = SDATA (string) + best_above_byte;
920 unsigned char *pbeg = pend - best_above_byte;
921 unsigned char *p = pend - 1;
922 int bytes;
923
924 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
925 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
926 if (bytes == pend - p)
927 best_above_byte -= bytes;
928 else if (bytes > pend - p)
929 best_above_byte -= (pend - p);
930 else
931 best_above_byte--;
932 best_above--;
933 }
934 i = best_above;
935 i_byte = best_above_byte;
936 }
937
938 string_char_byte_cache_bytepos = i_byte;
939 string_char_byte_cache_charpos = i;
940 string_char_byte_cache_string = string;
941
942 return i_byte;
943 }
944 \f
945 /* Return the character index corresponding to BYTE_INDEX in STRING. */
946
947 int
948 string_byte_to_char (string, byte_index)
949 Lisp_Object string;
950 int byte_index;
951 {
952 int i, i_byte;
953 int best_below, best_below_byte;
954 int best_above, best_above_byte;
955
956 if (! STRING_MULTIBYTE (string))
957 return byte_index;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962
963 if (EQ (string, string_char_byte_cache_string))
964 {
965 if (string_char_byte_cache_bytepos < byte_index)
966 {
967 best_below = string_char_byte_cache_charpos;
968 best_below_byte = string_char_byte_cache_bytepos;
969 }
970 else
971 {
972 best_above = string_char_byte_cache_charpos;
973 best_above_byte = string_char_byte_cache_bytepos;
974 }
975 }
976
977 if (byte_index - best_below_byte < best_above_byte - byte_index)
978 {
979 while (best_below_byte < byte_index)
980 {
981 int c;
982 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
983 best_below, best_below_byte);
984 }
985 i = best_below;
986 i_byte = best_below_byte;
987 }
988 else
989 {
990 while (best_above_byte > byte_index)
991 {
992 unsigned char *pend = SDATA (string) + best_above_byte;
993 unsigned char *pbeg = pend - best_above_byte;
994 unsigned char *p = pend - 1;
995 int bytes;
996
997 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
998 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
999 if (bytes == pend - p)
1000 best_above_byte -= bytes;
1001 else if (bytes > pend - p)
1002 best_above_byte -= (pend - p);
1003 else
1004 best_above_byte--;
1005 best_above--;
1006 }
1007 i = best_above;
1008 i_byte = best_above_byte;
1009 }
1010
1011 string_char_byte_cache_bytepos = i_byte;
1012 string_char_byte_cache_charpos = i;
1013 string_char_byte_cache_string = string;
1014
1015 return i;
1016 }
1017 \f
1018 /* Convert STRING to a multibyte string.
1019 Single-byte characters 0240 through 0377 are converted
1020 by adding nonascii_insert_offset to each. */
1021
1022 Lisp_Object
1023 string_make_multibyte (string)
1024 Lisp_Object string;
1025 {
1026 unsigned char *buf;
1027 int nbytes;
1028
1029 if (STRING_MULTIBYTE (string))
1030 return string;
1031
1032 nbytes = count_size_as_multibyte (SDATA (string),
1033 SCHARS (string));
1034 /* If all the chars are ASCII, they won't need any more bytes
1035 once converted. In that case, we can return STRING itself. */
1036 if (nbytes == SBYTES (string))
1037 return string;
1038
1039 buf = (unsigned char *) alloca (nbytes);
1040 copy_text (SDATA (string), buf, SBYTES (string),
1041 0, 1);
1042
1043 return make_multibyte_string (buf, SCHARS (string), nbytes);
1044 }
1045
1046
1047 /* Convert STRING to a multibyte string without changing each
1048 character codes. Thus, characters 0200 trough 0237 are converted
1049 to eight-bit-control characters, and characters 0240 through 0377
1050 are converted eight-bit-graphic characters. */
1051
1052 Lisp_Object
1053 string_to_multibyte (string)
1054 Lisp_Object string;
1055 {
1056 unsigned char *buf;
1057 int nbytes;
1058
1059 if (STRING_MULTIBYTE (string))
1060 return string;
1061
1062 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1063 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1064 any more bytes once converted. */
1065 if (nbytes == SBYTES (string))
1066 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1067
1068 buf = (unsigned char *) alloca (nbytes);
1069 bcopy (SDATA (string), buf, SBYTES (string));
1070 str_to_multibyte (buf, nbytes, SBYTES (string));
1071
1072 return make_multibyte_string (buf, SCHARS (string), nbytes);
1073 }
1074
1075
1076 /* Convert STRING to a single-byte string. */
1077
1078 Lisp_Object
1079 string_make_unibyte (string)
1080 Lisp_Object string;
1081 {
1082 unsigned char *buf;
1083
1084 if (! STRING_MULTIBYTE (string))
1085 return string;
1086
1087 buf = (unsigned char *) alloca (SCHARS (string));
1088
1089 copy_text (SDATA (string), buf, SBYTES (string),
1090 1, 0);
1091
1092 return make_unibyte_string (buf, SCHARS (string));
1093 }
1094
1095 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1096 1, 1, 0,
1097 doc: /* Return the multibyte equivalent of STRING.
1098 The function `unibyte-char-to-multibyte' is used to convert
1099 each unibyte character to a multibyte character. */)
1100 (string)
1101 Lisp_Object string;
1102 {
1103 CHECK_STRING (string);
1104
1105 return string_make_multibyte (string);
1106 }
1107
1108 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1109 1, 1, 0,
1110 doc: /* Return the unibyte equivalent of STRING.
1111 Multibyte character codes are converted to unibyte according to
1112 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1113 If the lookup in the translation table fails, this function takes just
1114 the low 8 bits of each character. */)
1115 (string)
1116 Lisp_Object string;
1117 {
1118 CHECK_STRING (string);
1119
1120 return string_make_unibyte (string);
1121 }
1122
1123 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1124 1, 1, 0,
1125 doc: /* Return a unibyte string with the same individual bytes as STRING.
1126 If STRING is unibyte, the result is STRING itself.
1127 Otherwise it is a newly created string, with no text properties.
1128 If STRING is multibyte and contains a character of charset
1129 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1130 corresponding single byte. */)
1131 (string)
1132 Lisp_Object string;
1133 {
1134 CHECK_STRING (string);
1135
1136 if (STRING_MULTIBYTE (string))
1137 {
1138 int bytes = SBYTES (string);
1139 unsigned char *str = (unsigned char *) xmalloc (bytes);
1140
1141 bcopy (SDATA (string), str, bytes);
1142 bytes = str_as_unibyte (str, bytes);
1143 string = make_unibyte_string (str, bytes);
1144 xfree (str);
1145 }
1146 return string;
1147 }
1148
1149 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1150 1, 1, 0,
1151 doc: /* Return a multibyte string with the same individual bytes as STRING.
1152 If STRING is multibyte, the result is STRING itself.
1153 Otherwise it is a newly created string, with no text properties.
1154 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1155 part of a multibyte form), it is converted to the corresponding
1156 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1157 (string)
1158 Lisp_Object string;
1159 {
1160 CHECK_STRING (string);
1161
1162 if (! STRING_MULTIBYTE (string))
1163 {
1164 Lisp_Object new_string;
1165 int nchars, nbytes;
1166
1167 parse_str_as_multibyte (SDATA (string),
1168 SBYTES (string),
1169 &nchars, &nbytes);
1170 new_string = make_uninit_multibyte_string (nchars, nbytes);
1171 bcopy (SDATA (string), SDATA (new_string),
1172 SBYTES (string));
1173 if (nbytes != SBYTES (string))
1174 str_as_multibyte (SDATA (new_string), nbytes,
1175 SBYTES (string), NULL);
1176 string = new_string;
1177 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1178 }
1179 return string;
1180 }
1181
1182 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1183 1, 1, 0,
1184 doc: /* Return a multibyte string with the same individual chars as STRING.
1185 If STRING is multibyte, the result is STRING itself.
1186 Otherwise it is a newly created string, with no text properties.
1187 Characters 0200 through 0237 are converted to eight-bit-control
1188 characters of the same character code. Characters 0240 through 0377
1189 are converted to eight-bit-control characters of the same character
1190 codes. */)
1191 (string)
1192 Lisp_Object string;
1193 {
1194 CHECK_STRING (string);
1195
1196 return string_to_multibyte (string);
1197 }
1198
1199 \f
1200 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1201 doc: /* Return a copy of ALIST.
1202 This is an alist which represents the same mapping from objects to objects,
1203 but does not share the alist structure with ALIST.
1204 The objects mapped (cars and cdrs of elements of the alist)
1205 are shared, however.
1206 Elements of ALIST that are not conses are also shared. */)
1207 (alist)
1208 Lisp_Object alist;
1209 {
1210 register Lisp_Object tem;
1211
1212 CHECK_LIST (alist);
1213 if (NILP (alist))
1214 return alist;
1215 alist = concat (1, &alist, Lisp_Cons, 0);
1216 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1217 {
1218 register Lisp_Object car;
1219 car = XCAR (tem);
1220
1221 if (CONSP (car))
1222 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1223 }
1224 return alist;
1225 }
1226
1227 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1228 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1229 TO may be nil or omitted; then the substring runs to the end of STRING.
1230 FROM and TO start at 0. If either is negative, it counts from the end.
1231
1232 This function allows vectors as well as strings. */)
1233 (string, from, to)
1234 Lisp_Object string;
1235 register Lisp_Object from, to;
1236 {
1237 Lisp_Object res;
1238 int size;
1239 int size_byte = 0;
1240 int from_char, to_char;
1241 int from_byte = 0, to_byte = 0;
1242
1243 if (! (STRINGP (string) || VECTORP (string)))
1244 wrong_type_argument (Qarrayp, string);
1245
1246 CHECK_NUMBER (from);
1247
1248 if (STRINGP (string))
1249 {
1250 size = SCHARS (string);
1251 size_byte = SBYTES (string);
1252 }
1253 else
1254 size = XVECTOR (string)->size;
1255
1256 if (NILP (to))
1257 {
1258 to_char = size;
1259 to_byte = size_byte;
1260 }
1261 else
1262 {
1263 CHECK_NUMBER (to);
1264
1265 to_char = XINT (to);
1266 if (to_char < 0)
1267 to_char += size;
1268
1269 if (STRINGP (string))
1270 to_byte = string_char_to_byte (string, to_char);
1271 }
1272
1273 from_char = XINT (from);
1274 if (from_char < 0)
1275 from_char += size;
1276 if (STRINGP (string))
1277 from_byte = string_char_to_byte (string, from_char);
1278
1279 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1280 args_out_of_range_3 (string, make_number (from_char),
1281 make_number (to_char));
1282
1283 if (STRINGP (string))
1284 {
1285 res = make_specified_string (SDATA (string) + from_byte,
1286 to_char - from_char, to_byte - from_byte,
1287 STRING_MULTIBYTE (string));
1288 copy_text_properties (make_number (from_char), make_number (to_char),
1289 string, make_number (0), res, Qnil);
1290 }
1291 else
1292 res = Fvector (to_char - from_char,
1293 XVECTOR (string)->contents + from_char);
1294
1295 return res;
1296 }
1297
1298
1299 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1300 doc: /* Return a substring of STRING, without text properties.
1301 It starts at index FROM and ending before TO.
1302 TO may be nil or omitted; then the substring runs to the end of STRING.
1303 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1304 If FROM or TO is negative, it counts from the end.
1305
1306 With one argument, just copy STRING without its properties. */)
1307 (string, from, to)
1308 Lisp_Object string;
1309 register Lisp_Object from, to;
1310 {
1311 int size, size_byte;
1312 int from_char, to_char;
1313 int from_byte, to_byte;
1314
1315 CHECK_STRING (string);
1316
1317 size = SCHARS (string);
1318 size_byte = SBYTES (string);
1319
1320 if (NILP (from))
1321 from_char = from_byte = 0;
1322 else
1323 {
1324 CHECK_NUMBER (from);
1325 from_char = XINT (from);
1326 if (from_char < 0)
1327 from_char += size;
1328
1329 from_byte = string_char_to_byte (string, from_char);
1330 }
1331
1332 if (NILP (to))
1333 {
1334 to_char = size;
1335 to_byte = size_byte;
1336 }
1337 else
1338 {
1339 CHECK_NUMBER (to);
1340
1341 to_char = XINT (to);
1342 if (to_char < 0)
1343 to_char += size;
1344
1345 to_byte = string_char_to_byte (string, to_char);
1346 }
1347
1348 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1349 args_out_of_range_3 (string, make_number (from_char),
1350 make_number (to_char));
1351
1352 return make_specified_string (SDATA (string) + from_byte,
1353 to_char - from_char, to_byte - from_byte,
1354 STRING_MULTIBYTE (string));
1355 }
1356
1357 /* Extract a substring of STRING, giving start and end positions
1358 both in characters and in bytes. */
1359
1360 Lisp_Object
1361 substring_both (string, from, from_byte, to, to_byte)
1362 Lisp_Object string;
1363 int from, from_byte, to, to_byte;
1364 {
1365 Lisp_Object res;
1366 int size;
1367 int size_byte;
1368
1369 if (! (STRINGP (string) || VECTORP (string)))
1370 wrong_type_argument (Qarrayp, string);
1371
1372 if (STRINGP (string))
1373 {
1374 size = SCHARS (string);
1375 size_byte = SBYTES (string);
1376 }
1377 else
1378 size = XVECTOR (string)->size;
1379
1380 if (!(0 <= from && from <= to && to <= size))
1381 args_out_of_range_3 (string, make_number (from), make_number (to));
1382
1383 if (STRINGP (string))
1384 {
1385 res = make_specified_string (SDATA (string) + from_byte,
1386 to - from, to_byte - from_byte,
1387 STRING_MULTIBYTE (string));
1388 copy_text_properties (make_number (from), make_number (to),
1389 string, make_number (0), res, Qnil);
1390 }
1391 else
1392 res = Fvector (to - from,
1393 XVECTOR (string)->contents + from);
1394
1395 return res;
1396 }
1397 \f
1398 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1399 doc: /* Take cdr N times on LIST, returns the result. */)
1400 (n, list)
1401 Lisp_Object n;
1402 register Lisp_Object list;
1403 {
1404 register int i, num;
1405 CHECK_NUMBER (n);
1406 num = XINT (n);
1407 for (i = 0; i < num && !NILP (list); i++)
1408 {
1409 QUIT;
1410 if (! CONSP (list))
1411 wrong_type_argument (Qlistp, list);
1412 list = XCDR (list);
1413 }
1414 return list;
1415 }
1416
1417 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1418 doc: /* Return the Nth element of LIST.
1419 N counts from zero. If LIST is not that long, nil is returned. */)
1420 (n, list)
1421 Lisp_Object n, list;
1422 {
1423 return Fcar (Fnthcdr (n, list));
1424 }
1425
1426 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1427 doc: /* Return element of SEQUENCE at index N. */)
1428 (sequence, n)
1429 register Lisp_Object sequence, n;
1430 {
1431 CHECK_NUMBER (n);
1432 while (1)
1433 {
1434 if (CONSP (sequence) || NILP (sequence))
1435 return Fcar (Fnthcdr (n, sequence));
1436 else if (STRINGP (sequence) || VECTORP (sequence)
1437 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1438 return Faref (sequence, n);
1439 else
1440 sequence = wrong_type_argument (Qsequencep, sequence);
1441 }
1442 }
1443
1444 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1445 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1446 The value is actually the tail of LIST whose car is ELT. */)
1447 (elt, list)
1448 register Lisp_Object elt;
1449 Lisp_Object list;
1450 {
1451 register Lisp_Object tail;
1452 for (tail = list; !NILP (tail); tail = XCDR (tail))
1453 {
1454 register Lisp_Object tem;
1455 if (! CONSP (tail))
1456 wrong_type_argument (Qlistp, list);
1457 tem = XCAR (tail);
1458 if (! NILP (Fequal (elt, tem)))
1459 return tail;
1460 QUIT;
1461 }
1462 return Qnil;
1463 }
1464
1465 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1466 doc: /* Return non-nil if ELT is an element of LIST.
1467 Comparison done with EQ. The value is actually the tail of LIST
1468 whose car is ELT. */)
1469 (elt, list)
1470 Lisp_Object elt, list;
1471 {
1472 while (1)
1473 {
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list) || EQ (XCAR (list), elt))
1479 break;
1480
1481 list = XCDR (list);
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 QUIT;
1487 }
1488
1489 if (!CONSP (list) && !NILP (list))
1490 list = wrong_type_argument (Qlistp, list);
1491
1492 return list;
1493 }
1494
1495 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1496 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1497 The value is actually the element of LIST whose car is KEY.
1498 Elements of LIST that are not conses are ignored. */)
1499 (key, list)
1500 Lisp_Object key, list;
1501 {
1502 Lisp_Object result;
1503
1504 while (1)
1505 {
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCAR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && EQ (XCAR (XCAR (list)), key)))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && EQ (XCAR (XCAR (list)), key)))
1521 break;
1522
1523 list = XCDR (list);
1524 QUIT;
1525 }
1526
1527 if (CONSP (list))
1528 result = XCAR (list);
1529 else if (NILP (list))
1530 result = Qnil;
1531 else
1532 result = wrong_type_argument (Qlistp, list);
1533
1534 return result;
1535 }
1536
1537 /* Like Fassq but never report an error and do not allow quits.
1538 Use only on lists known never to be circular. */
1539
1540 Lisp_Object
1541 assq_no_quit (key, list)
1542 Lisp_Object key, list;
1543 {
1544 while (CONSP (list)
1545 && (!CONSP (XCAR (list))
1546 || !EQ (XCAR (XCAR (list)), key)))
1547 list = XCDR (list);
1548
1549 return CONSP (list) ? XCAR (list) : Qnil;
1550 }
1551
1552 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1553 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1554 The value is actually the element of LIST whose car equals KEY. */)
1555 (key, list)
1556 Lisp_Object key, list;
1557 {
1558 Lisp_Object result, car;
1559
1560 while (1)
1561 {
1562 if (!CONSP (list)
1563 || (CONSP (XCAR (list))
1564 && (car = XCAR (XCAR (list)),
1565 EQ (car, key) || !NILP (Fequal (car, key)))))
1566 break;
1567
1568 list = XCDR (list);
1569 if (!CONSP (list)
1570 || (CONSP (XCAR (list))
1571 && (car = XCAR (XCAR (list)),
1572 EQ (car, key) || !NILP (Fequal (car, key)))))
1573 break;
1574
1575 list = XCDR (list);
1576 if (!CONSP (list)
1577 || (CONSP (XCAR (list))
1578 && (car = XCAR (XCAR (list)),
1579 EQ (car, key) || !NILP (Fequal (car, key)))))
1580 break;
1581
1582 list = XCDR (list);
1583 QUIT;
1584 }
1585
1586 if (CONSP (list))
1587 result = XCAR (list);
1588 else if (NILP (list))
1589 result = Qnil;
1590 else
1591 result = wrong_type_argument (Qlistp, list);
1592
1593 return result;
1594 }
1595
1596 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1597 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1598 The value is actually the element of LIST whose cdr is KEY. */)
1599 (key, list)
1600 register Lisp_Object key;
1601 Lisp_Object list;
1602 {
1603 Lisp_Object result;
1604
1605 while (1)
1606 {
1607 if (!CONSP (list)
1608 || (CONSP (XCAR (list))
1609 && EQ (XCDR (XCAR (list)), key)))
1610 break;
1611
1612 list = XCDR (list);
1613 if (!CONSP (list)
1614 || (CONSP (XCAR (list))
1615 && EQ (XCDR (XCAR (list)), key)))
1616 break;
1617
1618 list = XCDR (list);
1619 if (!CONSP (list)
1620 || (CONSP (XCAR (list))
1621 && EQ (XCDR (XCAR (list)), key)))
1622 break;
1623
1624 list = XCDR (list);
1625 QUIT;
1626 }
1627
1628 if (NILP (list))
1629 result = Qnil;
1630 else if (CONSP (list))
1631 result = XCAR (list);
1632 else
1633 result = wrong_type_argument (Qlistp, list);
1634
1635 return result;
1636 }
1637
1638 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1639 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1640 The value is actually the element of LIST whose cdr equals KEY. */)
1641 (key, list)
1642 Lisp_Object key, list;
1643 {
1644 Lisp_Object result, cdr;
1645
1646 while (1)
1647 {
1648 if (!CONSP (list)
1649 || (CONSP (XCAR (list))
1650 && (cdr = XCDR (XCAR (list)),
1651 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1652 break;
1653
1654 list = XCDR (list);
1655 if (!CONSP (list)
1656 || (CONSP (XCAR (list))
1657 && (cdr = XCDR (XCAR (list)),
1658 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1659 break;
1660
1661 list = XCDR (list);
1662 if (!CONSP (list)
1663 || (CONSP (XCAR (list))
1664 && (cdr = XCDR (XCAR (list)),
1665 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1666 break;
1667
1668 list = XCDR (list);
1669 QUIT;
1670 }
1671
1672 if (CONSP (list))
1673 result = XCAR (list);
1674 else if (NILP (list))
1675 result = Qnil;
1676 else
1677 result = wrong_type_argument (Qlistp, list);
1678
1679 return result;
1680 }
1681 \f
1682 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1683 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1684 The modified LIST is returned. Comparison is done with `eq'.
1685 If the first member of LIST is ELT, there is no way to remove it by side effect;
1686 therefore, write `(setq foo (delq element foo))'
1687 to be sure of changing the value of `foo'. */)
1688 (elt, list)
1689 register Lisp_Object elt;
1690 Lisp_Object list;
1691 {
1692 register Lisp_Object tail, prev;
1693 register Lisp_Object tem;
1694
1695 tail = list;
1696 prev = Qnil;
1697 while (!NILP (tail))
1698 {
1699 if (! CONSP (tail))
1700 wrong_type_argument (Qlistp, list);
1701 tem = XCAR (tail);
1702 if (EQ (elt, tem))
1703 {
1704 if (NILP (prev))
1705 list = XCDR (tail);
1706 else
1707 Fsetcdr (prev, XCDR (tail));
1708 }
1709 else
1710 prev = tail;
1711 tail = XCDR (tail);
1712 QUIT;
1713 }
1714 return list;
1715 }
1716
1717 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1718 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1719 SEQ must be a list, a vector, or a string.
1720 The modified SEQ is returned. Comparison is done with `equal'.
1721 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1722 is not a side effect; it is simply using a different sequence.
1723 Therefore, write `(setq foo (delete element foo))'
1724 to be sure of changing the value of `foo'. */)
1725 (elt, seq)
1726 Lisp_Object elt, seq;
1727 {
1728 if (VECTORP (seq))
1729 {
1730 EMACS_INT i, n;
1731
1732 for (i = n = 0; i < ASIZE (seq); ++i)
1733 if (NILP (Fequal (AREF (seq, i), elt)))
1734 ++n;
1735
1736 if (n != ASIZE (seq))
1737 {
1738 struct Lisp_Vector *p = allocate_vector (n);
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 p->contents[n++] = AREF (seq, i);
1743
1744 XSETVECTOR (seq, p);
1745 }
1746 }
1747 else if (STRINGP (seq))
1748 {
1749 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1750 int c;
1751
1752 for (i = nchars = nbytes = ibyte = 0;
1753 i < SCHARS (seq);
1754 ++i, ibyte += cbytes)
1755 {
1756 if (STRING_MULTIBYTE (seq))
1757 {
1758 c = STRING_CHAR (SDATA (seq) + ibyte,
1759 SBYTES (seq) - ibyte);
1760 cbytes = CHAR_BYTES (c);
1761 }
1762 else
1763 {
1764 c = SREF (seq, i);
1765 cbytes = 1;
1766 }
1767
1768 if (!INTEGERP (elt) || c != XINT (elt))
1769 {
1770 ++nchars;
1771 nbytes += cbytes;
1772 }
1773 }
1774
1775 if (nchars != SCHARS (seq))
1776 {
1777 Lisp_Object tem;
1778
1779 tem = make_uninit_multibyte_string (nchars, nbytes);
1780 if (!STRING_MULTIBYTE (seq))
1781 STRING_SET_UNIBYTE (tem);
1782
1783 for (i = nchars = nbytes = ibyte = 0;
1784 i < SCHARS (seq);
1785 ++i, ibyte += cbytes)
1786 {
1787 if (STRING_MULTIBYTE (seq))
1788 {
1789 c = STRING_CHAR (SDATA (seq) + ibyte,
1790 SBYTES (seq) - ibyte);
1791 cbytes = CHAR_BYTES (c);
1792 }
1793 else
1794 {
1795 c = SREF (seq, i);
1796 cbytes = 1;
1797 }
1798
1799 if (!INTEGERP (elt) || c != XINT (elt))
1800 {
1801 unsigned char *from = SDATA (seq) + ibyte;
1802 unsigned char *to = SDATA (tem) + nbytes;
1803 EMACS_INT n;
1804
1805 ++nchars;
1806 nbytes += cbytes;
1807
1808 for (n = cbytes; n--; )
1809 *to++ = *from++;
1810 }
1811 }
1812
1813 seq = tem;
1814 }
1815 }
1816 else
1817 {
1818 Lisp_Object tail, prev;
1819
1820 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1821 {
1822 if (!CONSP (tail))
1823 wrong_type_argument (Qlistp, seq);
1824
1825 if (!NILP (Fequal (elt, XCAR (tail))))
1826 {
1827 if (NILP (prev))
1828 seq = XCDR (tail);
1829 else
1830 Fsetcdr (prev, XCDR (tail));
1831 }
1832 else
1833 prev = tail;
1834 QUIT;
1835 }
1836 }
1837
1838 return seq;
1839 }
1840
1841 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1842 doc: /* Reverse LIST by modifying cdr pointers.
1843 Returns the beginning of the reversed list. */)
1844 (list)
1845 Lisp_Object list;
1846 {
1847 register Lisp_Object prev, tail, next;
1848
1849 if (NILP (list)) return list;
1850 prev = Qnil;
1851 tail = list;
1852 while (!NILP (tail))
1853 {
1854 QUIT;
1855 if (! CONSP (tail))
1856 wrong_type_argument (Qlistp, list);
1857 next = XCDR (tail);
1858 Fsetcdr (tail, prev);
1859 prev = tail;
1860 tail = next;
1861 }
1862 return prev;
1863 }
1864
1865 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1866 doc: /* Reverse LIST, copying. Returns the beginning of the reversed list.
1867 See also the function `nreverse', which is used more often. */)
1868 (list)
1869 Lisp_Object list;
1870 {
1871 Lisp_Object new;
1872
1873 for (new = Qnil; CONSP (list); list = XCDR (list))
1874 {
1875 QUIT;
1876 new = Fcons (XCAR (list), new);
1877 }
1878 if (!NILP (list))
1879 wrong_type_argument (Qconsp, list);
1880 return new;
1881 }
1882 \f
1883 Lisp_Object merge ();
1884
1885 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1886 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1887 Returns the sorted list. LIST is modified by side effects.
1888 PREDICATE is called with two elements of LIST, and should return t
1889 if the first element is "less" than the second. */)
1890 (list, predicate)
1891 Lisp_Object list, predicate;
1892 {
1893 Lisp_Object front, back;
1894 register Lisp_Object len, tem;
1895 struct gcpro gcpro1, gcpro2;
1896 register int length;
1897
1898 front = list;
1899 len = Flength (list);
1900 length = XINT (len);
1901 if (length < 2)
1902 return list;
1903
1904 XSETINT (len, (length / 2) - 1);
1905 tem = Fnthcdr (len, list);
1906 back = Fcdr (tem);
1907 Fsetcdr (tem, Qnil);
1908
1909 GCPRO2 (front, back);
1910 front = Fsort (front, predicate);
1911 back = Fsort (back, predicate);
1912 UNGCPRO;
1913 return merge (front, back, predicate);
1914 }
1915
1916 Lisp_Object
1917 merge (org_l1, org_l2, pred)
1918 Lisp_Object org_l1, org_l2;
1919 Lisp_Object pred;
1920 {
1921 Lisp_Object value;
1922 register Lisp_Object tail;
1923 Lisp_Object tem;
1924 register Lisp_Object l1, l2;
1925 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1926
1927 l1 = org_l1;
1928 l2 = org_l2;
1929 tail = Qnil;
1930 value = Qnil;
1931
1932 /* It is sufficient to protect org_l1 and org_l2.
1933 When l1 and l2 are updated, we copy the new values
1934 back into the org_ vars. */
1935 GCPRO4 (org_l1, org_l2, pred, value);
1936
1937 while (1)
1938 {
1939 if (NILP (l1))
1940 {
1941 UNGCPRO;
1942 if (NILP (tail))
1943 return l2;
1944 Fsetcdr (tail, l2);
1945 return value;
1946 }
1947 if (NILP (l2))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l1;
1952 Fsetcdr (tail, l1);
1953 return value;
1954 }
1955 tem = call2 (pred, Fcar (l2), Fcar (l1));
1956 if (NILP (tem))
1957 {
1958 tem = l1;
1959 l1 = Fcdr (l1);
1960 org_l1 = l1;
1961 }
1962 else
1963 {
1964 tem = l2;
1965 l2 = Fcdr (l2);
1966 org_l2 = l2;
1967 }
1968 if (NILP (tail))
1969 value = tem;
1970 else
1971 Fsetcdr (tail, tem);
1972 tail = tem;
1973 }
1974 }
1975
1976 \f
1977 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1978 doc: /* Extract a value from a property list.
1979 PLIST is a property list, which is a list of the form
1980 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1981 corresponding to the given PROP, or nil if PROP is not
1982 one of the properties on the list. */)
1983 (plist, prop)
1984 Lisp_Object plist;
1985 Lisp_Object prop;
1986 {
1987 Lisp_Object tail;
1988
1989 for (tail = plist;
1990 CONSP (tail) && CONSP (XCDR (tail));
1991 tail = XCDR (XCDR (tail)))
1992 {
1993 if (EQ (prop, XCAR (tail)))
1994 return XCAR (XCDR (tail));
1995
1996 /* This function can be called asynchronously
1997 (setup_coding_system). Don't QUIT in that case. */
1998 if (!interrupt_input_blocked)
1999 QUIT;
2000 }
2001
2002 if (!NILP (tail))
2003 wrong_type_argument (Qlistp, prop);
2004
2005 return Qnil;
2006 }
2007
2008 DEFUN ("get", Fget, Sget, 2, 2, 0,
2009 doc: /* Return the value of SYMBOL's PROPNAME property.
2010 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2011 (symbol, propname)
2012 Lisp_Object symbol, propname;
2013 {
2014 CHECK_SYMBOL (symbol);
2015 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2016 }
2017
2018 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2019 doc: /* Change value in PLIST of PROP to VAL.
2020 PLIST is a property list, which is a list of the form
2021 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2022 If PROP is already a property on the list, its value is set to VAL,
2023 otherwise the new PROP VAL pair is added. The new plist is returned;
2024 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2025 The PLIST is modified by side effects. */)
2026 (plist, prop, val)
2027 Lisp_Object plist;
2028 register Lisp_Object prop;
2029 Lisp_Object val;
2030 {
2031 register Lisp_Object tail, prev;
2032 Lisp_Object newcell;
2033 prev = Qnil;
2034 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2035 tail = XCDR (XCDR (tail)))
2036 {
2037 if (EQ (prop, XCAR (tail)))
2038 {
2039 Fsetcar (XCDR (tail), val);
2040 return plist;
2041 }
2042
2043 prev = tail;
2044 QUIT;
2045 }
2046 newcell = Fcons (prop, Fcons (val, Qnil));
2047 if (NILP (prev))
2048 return newcell;
2049 else
2050 Fsetcdr (XCDR (prev), newcell);
2051 return plist;
2052 }
2053
2054 DEFUN ("put", Fput, Sput, 3, 3, 0,
2055 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2056 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2057 (symbol, propname, value)
2058 Lisp_Object symbol, propname, value;
2059 {
2060 CHECK_SYMBOL (symbol);
2061 XSYMBOL (symbol)->plist
2062 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2063 return value;
2064 }
2065 \f
2066 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2067 doc: /* Extract a value from a property list, comparing with `equal'.
2068 PLIST is a property list, which is a list of the form
2069 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2070 corresponding to the given PROP, or nil if PROP is not
2071 one of the properties on the list. */)
2072 (plist, prop)
2073 Lisp_Object plist;
2074 Lisp_Object prop;
2075 {
2076 Lisp_Object tail;
2077
2078 for (tail = plist;
2079 CONSP (tail) && CONSP (XCDR (tail));
2080 tail = XCDR (XCDR (tail)))
2081 {
2082 if (! NILP (Fequal (prop, XCAR (tail))))
2083 return XCAR (XCDR (tail));
2084
2085 QUIT;
2086 }
2087
2088 if (!NILP (tail))
2089 wrong_type_argument (Qlistp, prop);
2090
2091 return Qnil;
2092 }
2093
2094 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2095 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2096 PLIST is a property list, which is a list of the form
2097 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2098 If PROP is already a property on the list, its value is set to VAL,
2099 otherwise the new PROP VAL pair is added. The new plist is returned;
2100 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2101 The PLIST is modified by side effects. */)
2102 (plist, prop, val)
2103 Lisp_Object plist;
2104 register Lisp_Object prop;
2105 Lisp_Object val;
2106 {
2107 register Lisp_Object tail, prev;
2108 Lisp_Object newcell;
2109 prev = Qnil;
2110 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2111 tail = XCDR (XCDR (tail)))
2112 {
2113 if (! NILP (Fequal (prop, XCAR (tail))))
2114 {
2115 Fsetcar (XCDR (tail), val);
2116 return plist;
2117 }
2118
2119 prev = tail;
2120 QUIT;
2121 }
2122 newcell = Fcons (prop, Fcons (val, Qnil));
2123 if (NILP (prev))
2124 return newcell;
2125 else
2126 Fsetcdr (XCDR (prev), newcell);
2127 return plist;
2128 }
2129 \f
2130 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2131 doc: /* Return t if two Lisp objects have similar structure and contents.
2132 They must have the same data type.
2133 Conses are compared by comparing the cars and the cdrs.
2134 Vectors and strings are compared element by element.
2135 Numbers are compared by value, but integers cannot equal floats.
2136 (Use `=' if you want integers and floats to be able to be equal.)
2137 Symbols must match exactly. */)
2138 (o1, o2)
2139 register Lisp_Object o1, o2;
2140 {
2141 return internal_equal (o1, o2, 0) ? Qt : Qnil;
2142 }
2143
2144 static int
2145 internal_equal (o1, o2, depth)
2146 register Lisp_Object o1, o2;
2147 int depth;
2148 {
2149 if (depth > 200)
2150 error ("Stack overflow in equal");
2151
2152 tail_recurse:
2153 QUIT;
2154 if (EQ (o1, o2))
2155 return 1;
2156 if (XTYPE (o1) != XTYPE (o2))
2157 return 0;
2158
2159 switch (XTYPE (o1))
2160 {
2161 case Lisp_Float:
2162 return (extract_float (o1) == extract_float (o2));
2163
2164 case Lisp_Cons:
2165 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
2166 return 0;
2167 o1 = XCDR (o1);
2168 o2 = XCDR (o2);
2169 goto tail_recurse;
2170
2171 case Lisp_Misc:
2172 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2173 return 0;
2174 if (OVERLAYP (o1))
2175 {
2176 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2177 depth + 1)
2178 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2179 depth + 1))
2180 return 0;
2181 o1 = XOVERLAY (o1)->plist;
2182 o2 = XOVERLAY (o2)->plist;
2183 goto tail_recurse;
2184 }
2185 if (MARKERP (o1))
2186 {
2187 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2188 && (XMARKER (o1)->buffer == 0
2189 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2190 }
2191 break;
2192
2193 case Lisp_Vectorlike:
2194 {
2195 register int i, size;
2196 size = XVECTOR (o1)->size;
2197 /* Pseudovectors have the type encoded in the size field, so this test
2198 actually checks that the objects have the same type as well as the
2199 same size. */
2200 if (XVECTOR (o2)->size != size)
2201 return 0;
2202 /* Boolvectors are compared much like strings. */
2203 if (BOOL_VECTOR_P (o1))
2204 {
2205 int size_in_chars
2206 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2207
2208 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2209 return 0;
2210 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2211 size_in_chars))
2212 return 0;
2213 return 1;
2214 }
2215 if (WINDOW_CONFIGURATIONP (o1))
2216 return compare_window_configurations (o1, o2, 0);
2217
2218 /* Aside from them, only true vectors, char-tables, and compiled
2219 functions are sensible to compare, so eliminate the others now. */
2220 if (size & PSEUDOVECTOR_FLAG)
2221 {
2222 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2223 return 0;
2224 size &= PSEUDOVECTOR_SIZE_MASK;
2225 }
2226 for (i = 0; i < size; i++)
2227 {
2228 Lisp_Object v1, v2;
2229 v1 = XVECTOR (o1)->contents [i];
2230 v2 = XVECTOR (o2)->contents [i];
2231 if (!internal_equal (v1, v2, depth + 1))
2232 return 0;
2233 }
2234 return 1;
2235 }
2236 break;
2237
2238 case Lisp_String:
2239 if (SCHARS (o1) != SCHARS (o2))
2240 return 0;
2241 if (SBYTES (o1) != SBYTES (o2))
2242 return 0;
2243 if (bcmp (SDATA (o1), SDATA (o2),
2244 SBYTES (o1)))
2245 return 0;
2246 return 1;
2247
2248 case Lisp_Int:
2249 case Lisp_Symbol:
2250 case Lisp_Type_Limit:
2251 break;
2252 }
2253
2254 return 0;
2255 }
2256 \f
2257 extern Lisp_Object Fmake_char_internal ();
2258
2259 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2260 doc: /* Store each element of ARRAY with ITEM.
2261 ARRAY is a vector, string, char-table, or bool-vector. */)
2262 (array, item)
2263 Lisp_Object array, item;
2264 {
2265 register int size, index, charval;
2266 retry:
2267 if (VECTORP (array))
2268 {
2269 register Lisp_Object *p = XVECTOR (array)->contents;
2270 size = XVECTOR (array)->size;
2271 for (index = 0; index < size; index++)
2272 p[index] = item;
2273 }
2274 else if (CHAR_TABLE_P (array))
2275 {
2276 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2277 size = CHAR_TABLE_ORDINARY_SLOTS;
2278 for (index = 0; index < size; index++)
2279 p[index] = item;
2280 XCHAR_TABLE (array)->defalt = Qnil;
2281 }
2282 else if (STRINGP (array))
2283 {
2284 register unsigned char *p = SDATA (array);
2285 CHECK_NUMBER (item);
2286 charval = XINT (item);
2287 size = SCHARS (array);
2288 if (STRING_MULTIBYTE (array))
2289 {
2290 unsigned char str[MAX_MULTIBYTE_LENGTH];
2291 int len = CHAR_STRING (charval, str);
2292 int size_byte = SBYTES (array);
2293 unsigned char *p1 = p, *endp = p + size_byte;
2294 int i;
2295
2296 if (size != size_byte)
2297 while (p1 < endp)
2298 {
2299 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2300 if (len != this_len)
2301 error ("Attempt to change byte length of a string");
2302 p1 += this_len;
2303 }
2304 for (i = 0; i < size_byte; i++)
2305 *p++ = str[i % len];
2306 }
2307 else
2308 for (index = 0; index < size; index++)
2309 p[index] = charval;
2310 }
2311 else if (BOOL_VECTOR_P (array))
2312 {
2313 register unsigned char *p = XBOOL_VECTOR (array)->data;
2314 int size_in_chars
2315 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2316
2317 charval = (! NILP (item) ? -1 : 0);
2318 for (index = 0; index < size_in_chars; index++)
2319 p[index] = charval;
2320 }
2321 else
2322 {
2323 array = wrong_type_argument (Qarrayp, array);
2324 goto retry;
2325 }
2326 return array;
2327 }
2328 \f
2329 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2330 1, 1, 0,
2331 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2332 (char_table)
2333 Lisp_Object char_table;
2334 {
2335 CHECK_CHAR_TABLE (char_table);
2336
2337 return XCHAR_TABLE (char_table)->purpose;
2338 }
2339
2340 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2341 1, 1, 0,
2342 doc: /* Return the parent char-table of CHAR-TABLE.
2343 The value is either nil or another char-table.
2344 If CHAR-TABLE holds nil for a given character,
2345 then the actual applicable value is inherited from the parent char-table
2346 \(or from its parents, if necessary). */)
2347 (char_table)
2348 Lisp_Object char_table;
2349 {
2350 CHECK_CHAR_TABLE (char_table);
2351
2352 return XCHAR_TABLE (char_table)->parent;
2353 }
2354
2355 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2356 2, 2, 0,
2357 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2358 PARENT must be either nil or another char-table. */)
2359 (char_table, parent)
2360 Lisp_Object char_table, parent;
2361 {
2362 Lisp_Object temp;
2363
2364 CHECK_CHAR_TABLE (char_table);
2365
2366 if (!NILP (parent))
2367 {
2368 CHECK_CHAR_TABLE (parent);
2369
2370 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2371 if (EQ (temp, char_table))
2372 error ("Attempt to make a chartable be its own parent");
2373 }
2374
2375 XCHAR_TABLE (char_table)->parent = parent;
2376
2377 return parent;
2378 }
2379
2380 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2381 2, 2, 0,
2382 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2383 (char_table, n)
2384 Lisp_Object char_table, n;
2385 {
2386 CHECK_CHAR_TABLE (char_table);
2387 CHECK_NUMBER (n);
2388 if (XINT (n) < 0
2389 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2390 args_out_of_range (char_table, n);
2391
2392 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2393 }
2394
2395 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2396 Sset_char_table_extra_slot,
2397 3, 3, 0,
2398 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2399 (char_table, n, value)
2400 Lisp_Object char_table, n, value;
2401 {
2402 CHECK_CHAR_TABLE (char_table);
2403 CHECK_NUMBER (n);
2404 if (XINT (n) < 0
2405 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2406 args_out_of_range (char_table, n);
2407
2408 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2409 }
2410 \f
2411 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2412 2, 2, 0,
2413 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2414 RANGE should be nil (for the default value)
2415 a vector which identifies a character set or a row of a character set,
2416 a character set name, or a character code. */)
2417 (char_table, range)
2418 Lisp_Object char_table, range;
2419 {
2420 CHECK_CHAR_TABLE (char_table);
2421
2422 if (EQ (range, Qnil))
2423 return XCHAR_TABLE (char_table)->defalt;
2424 else if (INTEGERP (range))
2425 return Faref (char_table, range);
2426 else if (SYMBOLP (range))
2427 {
2428 Lisp_Object charset_info;
2429
2430 charset_info = Fget (range, Qcharset);
2431 CHECK_VECTOR (charset_info);
2432
2433 return Faref (char_table,
2434 make_number (XINT (XVECTOR (charset_info)->contents[0])
2435 + 128));
2436 }
2437 else if (VECTORP (range))
2438 {
2439 if (XVECTOR (range)->size == 1)
2440 return Faref (char_table,
2441 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2442 else
2443 {
2444 int size = XVECTOR (range)->size;
2445 Lisp_Object *val = XVECTOR (range)->contents;
2446 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2447 size <= 1 ? Qnil : val[1],
2448 size <= 2 ? Qnil : val[2]);
2449 return Faref (char_table, ch);
2450 }
2451 }
2452 else
2453 error ("Invalid RANGE argument to `char-table-range'");
2454 return Qt;
2455 }
2456
2457 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2458 3, 3, 0,
2459 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2460 RANGE should be t (for all characters), nil (for the default value)
2461 a vector which identifies a character set or a row of a character set,
2462 a coding system, or a character code. */)
2463 (char_table, range, value)
2464 Lisp_Object char_table, range, value;
2465 {
2466 int i;
2467
2468 CHECK_CHAR_TABLE (char_table);
2469
2470 if (EQ (range, Qt))
2471 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2472 XCHAR_TABLE (char_table)->contents[i] = value;
2473 else if (EQ (range, Qnil))
2474 XCHAR_TABLE (char_table)->defalt = value;
2475 else if (SYMBOLP (range))
2476 {
2477 Lisp_Object charset_info;
2478
2479 charset_info = Fget (range, Qcharset);
2480 CHECK_VECTOR (charset_info);
2481
2482 return Faset (char_table,
2483 make_number (XINT (XVECTOR (charset_info)->contents[0])
2484 + 128),
2485 value);
2486 }
2487 else if (INTEGERP (range))
2488 Faset (char_table, range, value);
2489 else if (VECTORP (range))
2490 {
2491 if (XVECTOR (range)->size == 1)
2492 return Faset (char_table,
2493 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2494 value);
2495 else
2496 {
2497 int size = XVECTOR (range)->size;
2498 Lisp_Object *val = XVECTOR (range)->contents;
2499 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2500 size <= 1 ? Qnil : val[1],
2501 size <= 2 ? Qnil : val[2]);
2502 return Faset (char_table, ch, value);
2503 }
2504 }
2505 else
2506 error ("Invalid RANGE argument to `set-char-table-range'");
2507
2508 return value;
2509 }
2510
2511 DEFUN ("set-char-table-default", Fset_char_table_default,
2512 Sset_char_table_default, 3, 3, 0,
2513 doc: /* Set the default value in CHAR-TABLE for a generic character CHAR to VALUE.
2514 The generic character specifies the group of characters.
2515 See also the documentation of make-char. */)
2516 (char_table, ch, value)
2517 Lisp_Object char_table, ch, value;
2518 {
2519 int c, charset, code1, code2;
2520 Lisp_Object temp;
2521
2522 CHECK_CHAR_TABLE (char_table);
2523 CHECK_NUMBER (ch);
2524
2525 c = XINT (ch);
2526 SPLIT_CHAR (c, charset, code1, code2);
2527
2528 /* Since we may want to set the default value for a character set
2529 not yet defined, we check only if the character set is in the
2530 valid range or not, instead of it is already defined or not. */
2531 if (! CHARSET_VALID_P (charset))
2532 invalid_character (c);
2533
2534 if (charset == CHARSET_ASCII)
2535 return (XCHAR_TABLE (char_table)->defalt = value);
2536
2537 /* Even if C is not a generic char, we had better behave as if a
2538 generic char is specified. */
2539 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2540 code1 = 0;
2541 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2542 if (!code1)
2543 {
2544 if (SUB_CHAR_TABLE_P (temp))
2545 XCHAR_TABLE (temp)->defalt = value;
2546 else
2547 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2548 return value;
2549 }
2550 if (SUB_CHAR_TABLE_P (temp))
2551 char_table = temp;
2552 else
2553 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2554 = make_sub_char_table (temp));
2555 temp = XCHAR_TABLE (char_table)->contents[code1];
2556 if (SUB_CHAR_TABLE_P (temp))
2557 XCHAR_TABLE (temp)->defalt = value;
2558 else
2559 XCHAR_TABLE (char_table)->contents[code1] = value;
2560 return value;
2561 }
2562
2563 /* Look up the element in TABLE at index CH,
2564 and return it as an integer.
2565 If the element is nil, return CH itself.
2566 (Actually we do that for any non-integer.) */
2567
2568 int
2569 char_table_translate (table, ch)
2570 Lisp_Object table;
2571 int ch;
2572 {
2573 Lisp_Object value;
2574 value = Faref (table, make_number (ch));
2575 if (! INTEGERP (value))
2576 return ch;
2577 return XINT (value);
2578 }
2579
2580 static void
2581 optimize_sub_char_table (table, chars)
2582 Lisp_Object *table;
2583 int chars;
2584 {
2585 Lisp_Object elt;
2586 int from, to;
2587
2588 if (chars == 94)
2589 from = 33, to = 127;
2590 else
2591 from = 32, to = 128;
2592
2593 if (!SUB_CHAR_TABLE_P (*table))
2594 return;
2595 elt = XCHAR_TABLE (*table)->contents[from++];
2596 for (; from < to; from++)
2597 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2598 return;
2599 *table = elt;
2600 }
2601
2602 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2603 1, 1, 0, doc: /* Optimize char table TABLE. */)
2604 (table)
2605 Lisp_Object table;
2606 {
2607 Lisp_Object elt;
2608 int dim;
2609 int i, j;
2610
2611 CHECK_CHAR_TABLE (table);
2612
2613 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2614 {
2615 elt = XCHAR_TABLE (table)->contents[i];
2616 if (!SUB_CHAR_TABLE_P (elt))
2617 continue;
2618 dim = CHARSET_DIMENSION (i - 128);
2619 if (dim == 2)
2620 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2621 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2622 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2623 }
2624 return Qnil;
2625 }
2626
2627 \f
2628 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2629 character or group of characters that share a value.
2630 DEPTH is the current depth in the originally specified
2631 chartable, and INDICES contains the vector indices
2632 for the levels our callers have descended.
2633
2634 ARG is passed to C_FUNCTION when that is called. */
2635
2636 void
2637 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2638 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2639 Lisp_Object function, table, subtable, arg, *indices;
2640 int depth;
2641 {
2642 int i, to;
2643
2644 if (depth == 0)
2645 {
2646 /* At first, handle ASCII and 8-bit European characters. */
2647 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2648 {
2649 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2650 if (NILP (elt))
2651 elt = XCHAR_TABLE (subtable)->defalt;
2652 if (NILP (elt))
2653 elt = Faref (subtable, make_number (i));
2654 if (c_function)
2655 (*c_function) (arg, make_number (i), elt);
2656 else
2657 call2 (function, make_number (i), elt);
2658 }
2659 #if 0 /* If the char table has entries for higher characters,
2660 we should report them. */
2661 if (NILP (current_buffer->enable_multibyte_characters))
2662 return;
2663 #endif
2664 to = CHAR_TABLE_ORDINARY_SLOTS;
2665 }
2666 else
2667 {
2668 int charset = XFASTINT (indices[0]) - 128;
2669
2670 i = 32;
2671 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2672 if (CHARSET_CHARS (charset) == 94)
2673 i++, to--;
2674 }
2675
2676 for (; i < to; i++)
2677 {
2678 Lisp_Object elt;
2679 int charset;
2680
2681 elt = XCHAR_TABLE (subtable)->contents[i];
2682 XSETFASTINT (indices[depth], i);
2683 charset = XFASTINT (indices[0]) - 128;
2684 if (depth == 0
2685 && (!CHARSET_DEFINED_P (charset)
2686 || charset == CHARSET_8_BIT_CONTROL
2687 || charset == CHARSET_8_BIT_GRAPHIC))
2688 continue;
2689
2690 if (SUB_CHAR_TABLE_P (elt))
2691 {
2692 if (depth >= 3)
2693 error ("Too deep char table");
2694 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2695 }
2696 else
2697 {
2698 int c1, c2, c;
2699
2700 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2701 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2702 c = MAKE_CHAR (charset, c1, c2);
2703
2704 if (NILP (elt))
2705 elt = XCHAR_TABLE (subtable)->defalt;
2706 if (NILP (elt))
2707 elt = Faref (table, make_number (c));
2708
2709 if (c_function)
2710 (*c_function) (arg, make_number (c), elt);
2711 else
2712 call2 (function, make_number (c), elt);
2713 }
2714 }
2715 }
2716
2717 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2718 static void
2719 void_call2 (a, b, c)
2720 Lisp_Object a, b, c;
2721 {
2722 call2 (a, b, c);
2723 }
2724
2725 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2726 2, 2, 0,
2727 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2728 FUNCTION is called with two arguments--a key and a value.
2729 The key is always a possible IDX argument to `aref'. */)
2730 (function, char_table)
2731 Lisp_Object function, char_table;
2732 {
2733 /* The depth of char table is at most 3. */
2734 Lisp_Object indices[3];
2735
2736 CHECK_CHAR_TABLE (char_table);
2737
2738 /* When Lisp_Object is represented as a union, `call2' cannot directly
2739 be passed to map_char_table because it returns a Lisp_Object rather
2740 than returning nothing.
2741 Casting leads to crashes on some architectures. -stef */
2742 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2743 return Qnil;
2744 }
2745
2746 /* Return a value for character C in char-table TABLE. Store the
2747 actual index for that value in *IDX. Ignore the default value of
2748 TABLE. */
2749
2750 Lisp_Object
2751 char_table_ref_and_index (table, c, idx)
2752 Lisp_Object table;
2753 int c, *idx;
2754 {
2755 int charset, c1, c2;
2756 Lisp_Object elt;
2757
2758 if (SINGLE_BYTE_CHAR_P (c))
2759 {
2760 *idx = c;
2761 return XCHAR_TABLE (table)->contents[c];
2762 }
2763 SPLIT_CHAR (c, charset, c1, c2);
2764 elt = XCHAR_TABLE (table)->contents[charset + 128];
2765 *idx = MAKE_CHAR (charset, 0, 0);
2766 if (!SUB_CHAR_TABLE_P (elt))
2767 return elt;
2768 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2769 return XCHAR_TABLE (elt)->defalt;
2770 elt = XCHAR_TABLE (elt)->contents[c1];
2771 *idx = MAKE_CHAR (charset, c1, 0);
2772 if (!SUB_CHAR_TABLE_P (elt))
2773 return elt;
2774 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2775 return XCHAR_TABLE (elt)->defalt;
2776 *idx = c;
2777 return XCHAR_TABLE (elt)->contents[c2];
2778 }
2779
2780 \f
2781 /* ARGSUSED */
2782 Lisp_Object
2783 nconc2 (s1, s2)
2784 Lisp_Object s1, s2;
2785 {
2786 #ifdef NO_ARG_ARRAY
2787 Lisp_Object args[2];
2788 args[0] = s1;
2789 args[1] = s2;
2790 return Fnconc (2, args);
2791 #else
2792 return Fnconc (2, &s1);
2793 #endif /* NO_ARG_ARRAY */
2794 }
2795
2796 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2797 doc: /* Concatenate any number of lists by altering them.
2798 Only the last argument is not altered, and need not be a list.
2799 usage: (nconc &rest LISTS) */)
2800 (nargs, args)
2801 int nargs;
2802 Lisp_Object *args;
2803 {
2804 register int argnum;
2805 register Lisp_Object tail, tem, val;
2806
2807 val = tail = Qnil;
2808
2809 for (argnum = 0; argnum < nargs; argnum++)
2810 {
2811 tem = args[argnum];
2812 if (NILP (tem)) continue;
2813
2814 if (NILP (val))
2815 val = tem;
2816
2817 if (argnum + 1 == nargs) break;
2818
2819 if (!CONSP (tem))
2820 tem = wrong_type_argument (Qlistp, tem);
2821
2822 while (CONSP (tem))
2823 {
2824 tail = tem;
2825 tem = XCDR (tail);
2826 QUIT;
2827 }
2828
2829 tem = args[argnum + 1];
2830 Fsetcdr (tail, tem);
2831 if (NILP (tem))
2832 args[argnum + 1] = tail;
2833 }
2834
2835 return val;
2836 }
2837 \f
2838 /* This is the guts of all mapping functions.
2839 Apply FN to each element of SEQ, one by one,
2840 storing the results into elements of VALS, a C vector of Lisp_Objects.
2841 LENI is the length of VALS, which should also be the length of SEQ. */
2842
2843 static void
2844 mapcar1 (leni, vals, fn, seq)
2845 int leni;
2846 Lisp_Object *vals;
2847 Lisp_Object fn, seq;
2848 {
2849 register Lisp_Object tail;
2850 Lisp_Object dummy;
2851 register int i;
2852 struct gcpro gcpro1, gcpro2, gcpro3;
2853
2854 if (vals)
2855 {
2856 /* Don't let vals contain any garbage when GC happens. */
2857 for (i = 0; i < leni; i++)
2858 vals[i] = Qnil;
2859
2860 GCPRO3 (dummy, fn, seq);
2861 gcpro1.var = vals;
2862 gcpro1.nvars = leni;
2863 }
2864 else
2865 GCPRO2 (fn, seq);
2866 /* We need not explicitly protect `tail' because it is used only on lists, and
2867 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2868
2869 if (VECTORP (seq))
2870 {
2871 for (i = 0; i < leni; i++)
2872 {
2873 dummy = XVECTOR (seq)->contents[i];
2874 dummy = call1 (fn, dummy);
2875 if (vals)
2876 vals[i] = dummy;
2877 }
2878 }
2879 else if (BOOL_VECTOR_P (seq))
2880 {
2881 for (i = 0; i < leni; i++)
2882 {
2883 int byte;
2884 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2885 if (byte & (1 << (i % BITS_PER_CHAR)))
2886 dummy = Qt;
2887 else
2888 dummy = Qnil;
2889
2890 dummy = call1 (fn, dummy);
2891 if (vals)
2892 vals[i] = dummy;
2893 }
2894 }
2895 else if (STRINGP (seq))
2896 {
2897 int i_byte;
2898
2899 for (i = 0, i_byte = 0; i < leni;)
2900 {
2901 int c;
2902 int i_before = i;
2903
2904 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2905 XSETFASTINT (dummy, c);
2906 dummy = call1 (fn, dummy);
2907 if (vals)
2908 vals[i_before] = dummy;
2909 }
2910 }
2911 else /* Must be a list, since Flength did not get an error */
2912 {
2913 tail = seq;
2914 for (i = 0; i < leni; i++)
2915 {
2916 dummy = call1 (fn, Fcar (tail));
2917 if (vals)
2918 vals[i] = dummy;
2919 tail = XCDR (tail);
2920 }
2921 }
2922
2923 UNGCPRO;
2924 }
2925
2926 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2927 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2928 In between each pair of results, stick in SEPARATOR. Thus, " " as
2929 SEPARATOR results in spaces between the values returned by FUNCTION.
2930 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2931 (function, sequence, separator)
2932 Lisp_Object function, sequence, separator;
2933 {
2934 Lisp_Object len;
2935 register int leni;
2936 int nargs;
2937 register Lisp_Object *args;
2938 register int i;
2939 struct gcpro gcpro1;
2940
2941 len = Flength (sequence);
2942 leni = XINT (len);
2943 nargs = leni + leni - 1;
2944 if (nargs < 0) return build_string ("");
2945
2946 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
2947
2948 GCPRO1 (separator);
2949 mapcar1 (leni, args, function, sequence);
2950 UNGCPRO;
2951
2952 for (i = leni - 1; i >= 0; i--)
2953 args[i + i] = args[i];
2954
2955 for (i = 1; i < nargs; i += 2)
2956 args[i] = separator;
2957
2958 return Fconcat (nargs, args);
2959 }
2960
2961 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2962 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2963 The result is a list just as long as SEQUENCE.
2964 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2965 (function, sequence)
2966 Lisp_Object function, sequence;
2967 {
2968 register Lisp_Object len;
2969 register int leni;
2970 register Lisp_Object *args;
2971
2972 len = Flength (sequence);
2973 leni = XFASTINT (len);
2974 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
2975
2976 mapcar1 (leni, args, function, sequence);
2977
2978 return Flist (leni, args);
2979 }
2980
2981 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2982 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2983 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2984 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2985 (function, sequence)
2986 Lisp_Object function, sequence;
2987 {
2988 register int leni;
2989
2990 leni = XFASTINT (Flength (sequence));
2991 mapcar1 (leni, 0, function, sequence);
2992
2993 return sequence;
2994 }
2995 \f
2996 /* Anything that calls this function must protect from GC! */
2997
2998 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2999 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3000 Takes one argument, which is the string to display to ask the question.
3001 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3002 No confirmation of the answer is requested; a single character is enough.
3003 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3004 the bindings in `query-replace-map'; see the documentation of that variable
3005 for more information. In this case, the useful bindings are `act', `skip',
3006 `recenter', and `quit'.\)
3007
3008 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3009 is nil and `use-dialog-box' is non-nil. */)
3010 (prompt)
3011 Lisp_Object prompt;
3012 {
3013 register Lisp_Object obj, key, def, map;
3014 register int answer;
3015 Lisp_Object xprompt;
3016 Lisp_Object args[2];
3017 struct gcpro gcpro1, gcpro2;
3018 int count = SPECPDL_INDEX ();
3019
3020 specbind (Qcursor_in_echo_area, Qt);
3021
3022 map = Fsymbol_value (intern ("query-replace-map"));
3023
3024 CHECK_STRING (prompt);
3025 xprompt = prompt;
3026 GCPRO2 (prompt, xprompt);
3027
3028 #ifdef HAVE_X_WINDOWS
3029 if (display_hourglass_p)
3030 cancel_hourglass ();
3031 #endif
3032
3033 while (1)
3034 {
3035
3036 #ifdef HAVE_MENUS
3037 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3038 && use_dialog_box
3039 && have_menus_p ())
3040 {
3041 Lisp_Object pane, menu;
3042 redisplay_preserve_echo_area (3);
3043 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3044 Fcons (Fcons (build_string ("No"), Qnil),
3045 Qnil));
3046 menu = Fcons (prompt, pane);
3047 obj = Fx_popup_dialog (Qt, menu);
3048 answer = !NILP (obj);
3049 break;
3050 }
3051 #endif /* HAVE_MENUS */
3052 cursor_in_echo_area = 1;
3053 choose_minibuf_frame ();
3054
3055 {
3056 Lisp_Object pargs[3];
3057
3058 /* Colorize prompt according to `minibuffer-prompt' face. */
3059 pargs[0] = build_string ("%s(y or n) ");
3060 pargs[1] = intern ("face");
3061 pargs[2] = intern ("minibuffer-prompt");
3062 args[0] = Fpropertize (3, pargs);
3063 args[1] = xprompt;
3064 Fmessage (2, args);
3065 }
3066
3067 if (minibuffer_auto_raise)
3068 {
3069 Lisp_Object mini_frame;
3070
3071 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3072
3073 Fraise_frame (mini_frame);
3074 }
3075
3076 obj = read_filtered_event (1, 0, 0, 0);
3077 cursor_in_echo_area = 0;
3078 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3079 QUIT;
3080
3081 key = Fmake_vector (make_number (1), obj);
3082 def = Flookup_key (map, key, Qt);
3083
3084 if (EQ (def, intern ("skip")))
3085 {
3086 answer = 0;
3087 break;
3088 }
3089 else if (EQ (def, intern ("act")))
3090 {
3091 answer = 1;
3092 break;
3093 }
3094 else if (EQ (def, intern ("recenter")))
3095 {
3096 Frecenter (Qnil);
3097 xprompt = prompt;
3098 continue;
3099 }
3100 else if (EQ (def, intern ("quit")))
3101 Vquit_flag = Qt;
3102 /* We want to exit this command for exit-prefix,
3103 and this is the only way to do it. */
3104 else if (EQ (def, intern ("exit-prefix")))
3105 Vquit_flag = Qt;
3106
3107 QUIT;
3108
3109 /* If we don't clear this, then the next call to read_char will
3110 return quit_char again, and we'll enter an infinite loop. */
3111 Vquit_flag = Qnil;
3112
3113 Fding (Qnil);
3114 Fdiscard_input ();
3115 if (EQ (xprompt, prompt))
3116 {
3117 args[0] = build_string ("Please answer y or n. ");
3118 args[1] = prompt;
3119 xprompt = Fconcat (2, args);
3120 }
3121 }
3122 UNGCPRO;
3123
3124 if (! noninteractive)
3125 {
3126 cursor_in_echo_area = -1;
3127 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3128 xprompt, 0);
3129 }
3130
3131 unbind_to (count, Qnil);
3132 return answer ? Qt : Qnil;
3133 }
3134 \f
3135 /* This is how C code calls `yes-or-no-p' and allows the user
3136 to redefined it.
3137
3138 Anything that calls this function must protect from GC! */
3139
3140 Lisp_Object
3141 do_yes_or_no_p (prompt)
3142 Lisp_Object prompt;
3143 {
3144 return call1 (intern ("yes-or-no-p"), prompt);
3145 }
3146
3147 /* Anything that calls this function must protect from GC! */
3148
3149 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3150 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3151 Takes one argument, which is the string to display to ask the question.
3152 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3153 The user must confirm the answer with RET,
3154 and can edit it until it has been confirmed.
3155
3156 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3157 is nil, and `use-dialog-box' is non-nil. */)
3158 (prompt)
3159 Lisp_Object prompt;
3160 {
3161 register Lisp_Object ans;
3162 Lisp_Object args[2];
3163 struct gcpro gcpro1;
3164
3165 CHECK_STRING (prompt);
3166
3167 #ifdef HAVE_MENUS
3168 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3169 && use_dialog_box
3170 && have_menus_p ())
3171 {
3172 Lisp_Object pane, menu, obj;
3173 redisplay_preserve_echo_area (4);
3174 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3175 Fcons (Fcons (build_string ("No"), Qnil),
3176 Qnil));
3177 GCPRO1 (pane);
3178 menu = Fcons (prompt, pane);
3179 obj = Fx_popup_dialog (Qt, menu);
3180 UNGCPRO;
3181 return obj;
3182 }
3183 #endif /* HAVE_MENUS */
3184
3185 args[0] = prompt;
3186 args[1] = build_string ("(yes or no) ");
3187 prompt = Fconcat (2, args);
3188
3189 GCPRO1 (prompt);
3190
3191 while (1)
3192 {
3193 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3194 Qyes_or_no_p_history, Qnil,
3195 Qnil));
3196 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3197 {
3198 UNGCPRO;
3199 return Qt;
3200 }
3201 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3202 {
3203 UNGCPRO;
3204 return Qnil;
3205 }
3206
3207 Fding (Qnil);
3208 Fdiscard_input ();
3209 message ("Please answer yes or no.");
3210 Fsleep_for (make_number (2), Qnil);
3211 }
3212 }
3213 \f
3214 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3215 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3216
3217 Each of the three load averages is multiplied by 100, then converted
3218 to integer.
3219
3220 When USE-FLOATS is non-nil, floats will be used instead of integers.
3221 These floats are not multiplied by 100.
3222
3223 If the 5-minute or 15-minute load averages are not available, return a
3224 shortened list, containing only those averages which are available. */)
3225 (use_floats)
3226 Lisp_Object use_floats;
3227 {
3228 double load_ave[3];
3229 int loads = getloadavg (load_ave, 3);
3230 Lisp_Object ret = Qnil;
3231
3232 if (loads < 0)
3233 error ("load-average not implemented for this operating system");
3234
3235 while (loads-- > 0)
3236 {
3237 Lisp_Object load = (NILP (use_floats) ?
3238 make_number ((int) (100.0 * load_ave[loads]))
3239 : make_float (load_ave[loads]));
3240 ret = Fcons (load, ret);
3241 }
3242
3243 return ret;
3244 }
3245 \f
3246 Lisp_Object Vfeatures, Qsubfeatures;
3247 extern Lisp_Object Vafter_load_alist;
3248
3249 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3250 doc: /* Returns t if FEATURE is present in this Emacs.
3251
3252 Use this to conditionalize execution of lisp code based on the
3253 presence or absence of emacs or environment extensions.
3254 Use `provide' to declare that a feature is available. This function
3255 looks at the value of the variable `features'. The optional argument
3256 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3257 (feature, subfeature)
3258 Lisp_Object feature, subfeature;
3259 {
3260 register Lisp_Object tem;
3261 CHECK_SYMBOL (feature);
3262 tem = Fmemq (feature, Vfeatures);
3263 if (!NILP (tem) && !NILP (subfeature))
3264 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3265 return (NILP (tem)) ? Qnil : Qt;
3266 }
3267
3268 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3269 doc: /* Announce that FEATURE is a feature of the current Emacs.
3270 The optional argument SUBFEATURES should be a list of symbols listing
3271 particular subfeatures supported in this version of FEATURE. */)
3272 (feature, subfeatures)
3273 Lisp_Object feature, subfeatures;
3274 {
3275 register Lisp_Object tem;
3276 CHECK_SYMBOL (feature);
3277 CHECK_LIST (subfeatures);
3278 if (!NILP (Vautoload_queue))
3279 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3280 tem = Fmemq (feature, Vfeatures);
3281 if (NILP (tem))
3282 Vfeatures = Fcons (feature, Vfeatures);
3283 if (!NILP (subfeatures))
3284 Fput (feature, Qsubfeatures, subfeatures);
3285 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3286
3287 /* Run any load-hooks for this file. */
3288 tem = Fassq (feature, Vafter_load_alist);
3289 if (CONSP (tem))
3290 Fprogn (XCDR (tem));
3291
3292 return feature;
3293 }
3294 \f
3295 /* `require' and its subroutines. */
3296
3297 /* List of features currently being require'd, innermost first. */
3298
3299 Lisp_Object require_nesting_list;
3300
3301 Lisp_Object
3302 require_unwind (old_value)
3303 Lisp_Object old_value;
3304 {
3305 return require_nesting_list = old_value;
3306 }
3307
3308 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3309 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3310 If FEATURE is not a member of the list `features', then the feature
3311 is not loaded; so load the file FILENAME.
3312 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3313 and `load' will try to load this name appended with the suffix `.elc',
3314 `.el' or the unmodified name, in that order.
3315 If the optional third argument NOERROR is non-nil,
3316 then return nil if the file is not found instead of signaling an error.
3317 Normally the return value is FEATURE.
3318 The normal messages at start and end of loading FILENAME are suppressed. */)
3319 (feature, filename, noerror)
3320 Lisp_Object feature, filename, noerror;
3321 {
3322 register Lisp_Object tem;
3323 struct gcpro gcpro1, gcpro2;
3324
3325 CHECK_SYMBOL (feature);
3326
3327 tem = Fmemq (feature, Vfeatures);
3328
3329 if (NILP (tem))
3330 {
3331 int count = SPECPDL_INDEX ();
3332 int nesting = 0;
3333
3334 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3335
3336 /* This is to make sure that loadup.el gives a clear picture
3337 of what files are preloaded and when. */
3338 if (! NILP (Vpurify_flag))
3339 error ("(require %s) while preparing to dump",
3340 SDATA (SYMBOL_NAME (feature)));
3341
3342 /* A certain amount of recursive `require' is legitimate,
3343 but if we require the same feature recursively 3 times,
3344 signal an error. */
3345 tem = require_nesting_list;
3346 while (! NILP (tem))
3347 {
3348 if (! NILP (Fequal (feature, XCAR (tem))))
3349 nesting++;
3350 tem = XCDR (tem);
3351 }
3352 if (nesting > 3)
3353 error ("Recursive `require' for feature `%s'",
3354 SDATA (SYMBOL_NAME (feature)));
3355
3356 /* Update the list for any nested `require's that occur. */
3357 record_unwind_protect (require_unwind, require_nesting_list);
3358 require_nesting_list = Fcons (feature, require_nesting_list);
3359
3360 /* Value saved here is to be restored into Vautoload_queue */
3361 record_unwind_protect (un_autoload, Vautoload_queue);
3362 Vautoload_queue = Qt;
3363
3364 /* Load the file. */
3365 GCPRO2 (feature, filename);
3366 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3367 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3368 UNGCPRO;
3369
3370 /* If load failed entirely, return nil. */
3371 if (NILP (tem))
3372 return unbind_to (count, Qnil);
3373
3374 tem = Fmemq (feature, Vfeatures);
3375 if (NILP (tem))
3376 error ("Required feature `%s' was not provided",
3377 SDATA (SYMBOL_NAME (feature)));
3378
3379 /* Once loading finishes, don't undo it. */
3380 Vautoload_queue = Qt;
3381 feature = unbind_to (count, feature);
3382 }
3383
3384 return feature;
3385 }
3386 \f
3387 /* Primitives for work of the "widget" library.
3388 In an ideal world, this section would not have been necessary.
3389 However, lisp function calls being as slow as they are, it turns
3390 out that some functions in the widget library (wid-edit.el) are the
3391 bottleneck of Widget operation. Here is their translation to C,
3392 for the sole reason of efficiency. */
3393
3394 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3395 doc: /* Return non-nil if PLIST has the property PROP.
3396 PLIST is a property list, which is a list of the form
3397 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3398 Unlike `plist-get', this allows you to distinguish between a missing
3399 property and a property with the value nil.
3400 The value is actually the tail of PLIST whose car is PROP. */)
3401 (plist, prop)
3402 Lisp_Object plist, prop;
3403 {
3404 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3405 {
3406 QUIT;
3407 plist = XCDR (plist);
3408 plist = CDR (plist);
3409 }
3410 return plist;
3411 }
3412
3413 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3414 doc: /* In WIDGET, set PROPERTY to VALUE.
3415 The value can later be retrieved with `widget-get'. */)
3416 (widget, property, value)
3417 Lisp_Object widget, property, value;
3418 {
3419 CHECK_CONS (widget);
3420 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3421 return value;
3422 }
3423
3424 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3425 doc: /* In WIDGET, get the value of PROPERTY.
3426 The value could either be specified when the widget was created, or
3427 later with `widget-put'. */)
3428 (widget, property)
3429 Lisp_Object widget, property;
3430 {
3431 Lisp_Object tmp;
3432
3433 while (1)
3434 {
3435 if (NILP (widget))
3436 return Qnil;
3437 CHECK_CONS (widget);
3438 tmp = Fplist_member (XCDR (widget), property);
3439 if (CONSP (tmp))
3440 {
3441 tmp = XCDR (tmp);
3442 return CAR (tmp);
3443 }
3444 tmp = XCAR (widget);
3445 if (NILP (tmp))
3446 return Qnil;
3447 widget = Fget (tmp, Qwidget_type);
3448 }
3449 }
3450
3451 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3452 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3453 ARGS are passed as extra arguments to the function.
3454 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3455 (nargs, args)
3456 int nargs;
3457 Lisp_Object *args;
3458 {
3459 /* This function can GC. */
3460 Lisp_Object newargs[3];
3461 struct gcpro gcpro1, gcpro2;
3462 Lisp_Object result;
3463
3464 newargs[0] = Fwidget_get (args[0], args[1]);
3465 newargs[1] = args[0];
3466 newargs[2] = Flist (nargs - 2, args + 2);
3467 GCPRO2 (newargs[0], newargs[2]);
3468 result = Fapply (3, newargs);
3469 UNGCPRO;
3470 return result;
3471 }
3472
3473 #ifdef HAVE_LANGINFO_CODESET
3474 #include <langinfo.h>
3475 #endif
3476
3477 DEFUN ("langinfo", Flanginfo, Slanginfo, 1, 1, 0,
3478 doc: /* Access locale data ITEM, if available.
3479
3480 ITEM may be one of the following:
3481 `codeset', returning the character set as a string (locale item CODESET);
3482 `days', returning a 7-element vector of day names (locale items DAY_n);
3483 `months', returning a 12-element vector of month names (locale items MON_n);
3484 `paper', returning a list (WIDTH, HEIGHT) for the default paper size,
3485 where the width and height are in mm (locale items PAPER_WIDTH,
3486 PAPER_HEIGHT).
3487
3488 If the system can't provide such information through a call to
3489 nl_langinfo(3), return nil.
3490
3491 See also Info node `(libc)Locales'.
3492
3493 The data read from the system are decoded using `locale-coding-system'. */)
3494 (item)
3495 Lisp_Object item;
3496 {
3497 char *str = NULL;
3498 #ifdef HAVE_LANGINFO_CODESET
3499 Lisp_Object val;
3500 if (EQ (item, Qcodeset))
3501 {
3502 str = nl_langinfo (CODESET);
3503 return build_string (str);
3504 }
3505 #ifdef DAY_1
3506 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3507 {
3508 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3509 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3510 int i;
3511 synchronize_system_time_locale ();
3512 for (i = 0; i < 7; i++)
3513 {
3514 str = nl_langinfo (days[i]);
3515 val = make_unibyte_string (str, strlen (str));
3516 /* Fixme: Is this coding system necessarily right, even if
3517 it is consistent with CODESET? If not, what to do? */
3518 Faset (v, make_number (i),
3519 code_convert_string_norecord (val, Vlocale_coding_system,
3520 0));
3521 }
3522 return v;
3523 }
3524 #endif /* DAY_1 */
3525 #ifdef MON_1
3526 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3527 {
3528 struct Lisp_Vector *p = allocate_vector (12);
3529 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3530 MON_8, MON_9, MON_10, MON_11, MON_12};
3531 int i;
3532 synchronize_system_time_locale ();
3533 for (i = 0; i < 12; i++)
3534 {
3535 str = nl_langinfo (months[i]);
3536 val = make_unibyte_string (str, strlen (str));
3537 p->contents[i] =
3538 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3539 }
3540 XSETVECTOR (val, p);
3541 return val;
3542 }
3543 #endif /* MON_1 */
3544 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3545 but is in the locale files. This could be used by ps-print. */
3546 #ifdef PAPER_WIDTH
3547 else if (EQ (item, Qpaper))
3548 {
3549 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3550 make_number (nl_langinfo (PAPER_HEIGHT)));
3551 }
3552 #endif /* PAPER_WIDTH */
3553 #endif /* HAVE_LANGINFO_CODESET*/
3554 return Qnil;
3555 }
3556 \f
3557 /* base64 encode/decode functions (RFC 2045).
3558 Based on code from GNU recode. */
3559
3560 #define MIME_LINE_LENGTH 76
3561
3562 #define IS_ASCII(Character) \
3563 ((Character) < 128)
3564 #define IS_BASE64(Character) \
3565 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3566 #define IS_BASE64_IGNORABLE(Character) \
3567 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3568 || (Character) == '\f' || (Character) == '\r')
3569
3570 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3571 character or return retval if there are no characters left to
3572 process. */
3573 #define READ_QUADRUPLET_BYTE(retval) \
3574 do \
3575 { \
3576 if (i == length) \
3577 { \
3578 if (nchars_return) \
3579 *nchars_return = nchars; \
3580 return (retval); \
3581 } \
3582 c = from[i++]; \
3583 } \
3584 while (IS_BASE64_IGNORABLE (c))
3585
3586 /* Don't use alloca for regions larger than this, lest we overflow
3587 their stack. */
3588 #define MAX_ALLOCA 16*1024
3589
3590 /* Table of characters coding the 64 values. */
3591 static char base64_value_to_char[64] =
3592 {
3593 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3594 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3595 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3596 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3597 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3598 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3599 '8', '9', '+', '/' /* 60-63 */
3600 };
3601
3602 /* Table of base64 values for first 128 characters. */
3603 static short base64_char_to_value[128] =
3604 {
3605 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3606 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3607 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3608 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3609 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3610 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3611 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3612 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3613 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3614 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3615 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3616 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3617 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3618 };
3619
3620 /* The following diagram shows the logical steps by which three octets
3621 get transformed into four base64 characters.
3622
3623 .--------. .--------. .--------.
3624 |aaaaaabb| |bbbbcccc| |ccdddddd|
3625 `--------' `--------' `--------'
3626 6 2 4 4 2 6
3627 .--------+--------+--------+--------.
3628 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3629 `--------+--------+--------+--------'
3630
3631 .--------+--------+--------+--------.
3632 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3633 `--------+--------+--------+--------'
3634
3635 The octets are divided into 6 bit chunks, which are then encoded into
3636 base64 characters. */
3637
3638
3639 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3640 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3641
3642 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3643 2, 3, "r",
3644 doc: /* Base64-encode the region between BEG and END.
3645 Return the length of the encoded text.
3646 Optional third argument NO-LINE-BREAK means do not break long lines
3647 into shorter lines. */)
3648 (beg, end, no_line_break)
3649 Lisp_Object beg, end, no_line_break;
3650 {
3651 char *encoded;
3652 int allength, length;
3653 int ibeg, iend, encoded_length;
3654 int old_pos = PT;
3655
3656 validate_region (&beg, &end);
3657
3658 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3659 iend = CHAR_TO_BYTE (XFASTINT (end));
3660 move_gap_both (XFASTINT (beg), ibeg);
3661
3662 /* We need to allocate enough room for encoding the text.
3663 We need 33 1/3% more space, plus a newline every 76
3664 characters, and then we round up. */
3665 length = iend - ibeg;
3666 allength = length + length/3 + 1;
3667 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3668
3669 if (allength <= MAX_ALLOCA)
3670 encoded = (char *) alloca (allength);
3671 else
3672 encoded = (char *) xmalloc (allength);
3673 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3674 NILP (no_line_break),
3675 !NILP (current_buffer->enable_multibyte_characters));
3676 if (encoded_length > allength)
3677 abort ();
3678
3679 if (encoded_length < 0)
3680 {
3681 /* The encoding wasn't possible. */
3682 if (length > MAX_ALLOCA)
3683 xfree (encoded);
3684 error ("Multibyte character in data for base64 encoding");
3685 }
3686
3687 /* Now we have encoded the region, so we insert the new contents
3688 and delete the old. (Insert first in order to preserve markers.) */
3689 SET_PT_BOTH (XFASTINT (beg), ibeg);
3690 insert (encoded, encoded_length);
3691 if (allength > MAX_ALLOCA)
3692 xfree (encoded);
3693 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3694
3695 /* If point was outside of the region, restore it exactly; else just
3696 move to the beginning of the region. */
3697 if (old_pos >= XFASTINT (end))
3698 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3699 else if (old_pos > XFASTINT (beg))
3700 old_pos = XFASTINT (beg);
3701 SET_PT (old_pos);
3702
3703 /* We return the length of the encoded text. */
3704 return make_number (encoded_length);
3705 }
3706
3707 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3708 1, 2, 0,
3709 doc: /* Base64-encode STRING and return the result.
3710 Optional second argument NO-LINE-BREAK means do not break long lines
3711 into shorter lines. */)
3712 (string, no_line_break)
3713 Lisp_Object string, no_line_break;
3714 {
3715 int allength, length, encoded_length;
3716 char *encoded;
3717 Lisp_Object encoded_string;
3718
3719 CHECK_STRING (string);
3720
3721 /* We need to allocate enough room for encoding the text.
3722 We need 33 1/3% more space, plus a newline every 76
3723 characters, and then we round up. */
3724 length = SBYTES (string);
3725 allength = length + length/3 + 1;
3726 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3727
3728 /* We need to allocate enough room for decoding the text. */
3729 if (allength <= MAX_ALLOCA)
3730 encoded = (char *) alloca (allength);
3731 else
3732 encoded = (char *) xmalloc (allength);
3733
3734 encoded_length = base64_encode_1 (SDATA (string),
3735 encoded, length, NILP (no_line_break),
3736 STRING_MULTIBYTE (string));
3737 if (encoded_length > allength)
3738 abort ();
3739
3740 if (encoded_length < 0)
3741 {
3742 /* The encoding wasn't possible. */
3743 if (length > MAX_ALLOCA)
3744 xfree (encoded);
3745 error ("Multibyte character in data for base64 encoding");
3746 }
3747
3748 encoded_string = make_unibyte_string (encoded, encoded_length);
3749 if (allength > MAX_ALLOCA)
3750 xfree (encoded);
3751
3752 return encoded_string;
3753 }
3754
3755 static int
3756 base64_encode_1 (from, to, length, line_break, multibyte)
3757 const char *from;
3758 char *to;
3759 int length;
3760 int line_break;
3761 int multibyte;
3762 {
3763 int counter = 0, i = 0;
3764 char *e = to;
3765 int c;
3766 unsigned int value;
3767 int bytes;
3768
3769 while (i < length)
3770 {
3771 if (multibyte)
3772 {
3773 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3774 if (c >= 256)
3775 return -1;
3776 i += bytes;
3777 }
3778 else
3779 c = from[i++];
3780
3781 /* Wrap line every 76 characters. */
3782
3783 if (line_break)
3784 {
3785 if (counter < MIME_LINE_LENGTH / 4)
3786 counter++;
3787 else
3788 {
3789 *e++ = '\n';
3790 counter = 1;
3791 }
3792 }
3793
3794 /* Process first byte of a triplet. */
3795
3796 *e++ = base64_value_to_char[0x3f & c >> 2];
3797 value = (0x03 & c) << 4;
3798
3799 /* Process second byte of a triplet. */
3800
3801 if (i == length)
3802 {
3803 *e++ = base64_value_to_char[value];
3804 *e++ = '=';
3805 *e++ = '=';
3806 break;
3807 }
3808
3809 if (multibyte)
3810 {
3811 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3812 if (c >= 256)
3813 return -1;
3814 i += bytes;
3815 }
3816 else
3817 c = from[i++];
3818
3819 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3820 value = (0x0f & c) << 2;
3821
3822 /* Process third byte of a triplet. */
3823
3824 if (i == length)
3825 {
3826 *e++ = base64_value_to_char[value];
3827 *e++ = '=';
3828 break;
3829 }
3830
3831 if (multibyte)
3832 {
3833 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3834 if (c >= 256)
3835 return -1;
3836 i += bytes;
3837 }
3838 else
3839 c = from[i++];
3840
3841 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3842 *e++ = base64_value_to_char[0x3f & c];
3843 }
3844
3845 return e - to;
3846 }
3847
3848
3849 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3850 2, 2, "r",
3851 doc: /* Base64-decode the region between BEG and END.
3852 Return the length of the decoded text.
3853 If the region can't be decoded, signal an error and don't modify the buffer. */)
3854 (beg, end)
3855 Lisp_Object beg, end;
3856 {
3857 int ibeg, iend, length, allength;
3858 char *decoded;
3859 int old_pos = PT;
3860 int decoded_length;
3861 int inserted_chars;
3862 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3863
3864 validate_region (&beg, &end);
3865
3866 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3867 iend = CHAR_TO_BYTE (XFASTINT (end));
3868
3869 length = iend - ibeg;
3870
3871 /* We need to allocate enough room for decoding the text. If we are
3872 working on a multibyte buffer, each decoded code may occupy at
3873 most two bytes. */
3874 allength = multibyte ? length * 2 : length;
3875 if (allength <= MAX_ALLOCA)
3876 decoded = (char *) alloca (allength);
3877 else
3878 decoded = (char *) xmalloc (allength);
3879
3880 move_gap_both (XFASTINT (beg), ibeg);
3881 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3882 multibyte, &inserted_chars);
3883 if (decoded_length > allength)
3884 abort ();
3885
3886 if (decoded_length < 0)
3887 {
3888 /* The decoding wasn't possible. */
3889 if (allength > MAX_ALLOCA)
3890 xfree (decoded);
3891 error ("Invalid base64 data");
3892 }
3893
3894 /* Now we have decoded the region, so we insert the new contents
3895 and delete the old. (Insert first in order to preserve markers.) */
3896 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3897 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3898 if (allength > MAX_ALLOCA)
3899 xfree (decoded);
3900 /* Delete the original text. */
3901 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3902 iend + decoded_length, 1);
3903
3904 /* If point was outside of the region, restore it exactly; else just
3905 move to the beginning of the region. */
3906 if (old_pos >= XFASTINT (end))
3907 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3908 else if (old_pos > XFASTINT (beg))
3909 old_pos = XFASTINT (beg);
3910 SET_PT (old_pos > ZV ? ZV : old_pos);
3911
3912 return make_number (inserted_chars);
3913 }
3914
3915 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3916 1, 1, 0,
3917 doc: /* Base64-decode STRING and return the result. */)
3918 (string)
3919 Lisp_Object string;
3920 {
3921 char *decoded;
3922 int length, decoded_length;
3923 Lisp_Object decoded_string;
3924
3925 CHECK_STRING (string);
3926
3927 length = SBYTES (string);
3928 /* We need to allocate enough room for decoding the text. */
3929 if (length <= MAX_ALLOCA)
3930 decoded = (char *) alloca (length);
3931 else
3932 decoded = (char *) xmalloc (length);
3933
3934 /* The decoded result should be unibyte. */
3935 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3936 0, NULL);
3937 if (decoded_length > length)
3938 abort ();
3939 else if (decoded_length >= 0)
3940 decoded_string = make_unibyte_string (decoded, decoded_length);
3941 else
3942 decoded_string = Qnil;
3943
3944 if (length > MAX_ALLOCA)
3945 xfree (decoded);
3946 if (!STRINGP (decoded_string))
3947 error ("Invalid base64 data");
3948
3949 return decoded_string;
3950 }
3951
3952 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3953 MULTIBYTE is nonzero, the decoded result should be in multibyte
3954 form. If NCHARS_RETRUN is not NULL, store the number of produced
3955 characters in *NCHARS_RETURN. */
3956
3957 static int
3958 base64_decode_1 (from, to, length, multibyte, nchars_return)
3959 const char *from;
3960 char *to;
3961 int length;
3962 int multibyte;
3963 int *nchars_return;
3964 {
3965 int i = 0;
3966 char *e = to;
3967 unsigned char c;
3968 unsigned long value;
3969 int nchars = 0;
3970
3971 while (1)
3972 {
3973 /* Process first byte of a quadruplet. */
3974
3975 READ_QUADRUPLET_BYTE (e-to);
3976
3977 if (!IS_BASE64 (c))
3978 return -1;
3979 value = base64_char_to_value[c] << 18;
3980
3981 /* Process second byte of a quadruplet. */
3982
3983 READ_QUADRUPLET_BYTE (-1);
3984
3985 if (!IS_BASE64 (c))
3986 return -1;
3987 value |= base64_char_to_value[c] << 12;
3988
3989 c = (unsigned char) (value >> 16);
3990 if (multibyte)
3991 e += CHAR_STRING (c, e);
3992 else
3993 *e++ = c;
3994 nchars++;
3995
3996 /* Process third byte of a quadruplet. */
3997
3998 READ_QUADRUPLET_BYTE (-1);
3999
4000 if (c == '=')
4001 {
4002 READ_QUADRUPLET_BYTE (-1);
4003
4004 if (c != '=')
4005 return -1;
4006 continue;
4007 }
4008
4009 if (!IS_BASE64 (c))
4010 return -1;
4011 value |= base64_char_to_value[c] << 6;
4012
4013 c = (unsigned char) (0xff & value >> 8);
4014 if (multibyte)
4015 e += CHAR_STRING (c, e);
4016 else
4017 *e++ = c;
4018 nchars++;
4019
4020 /* Process fourth byte of a quadruplet. */
4021
4022 READ_QUADRUPLET_BYTE (-1);
4023
4024 if (c == '=')
4025 continue;
4026
4027 if (!IS_BASE64 (c))
4028 return -1;
4029 value |= base64_char_to_value[c];
4030
4031 c = (unsigned char) (0xff & value);
4032 if (multibyte)
4033 e += CHAR_STRING (c, e);
4034 else
4035 *e++ = c;
4036 nchars++;
4037 }
4038 }
4039
4040
4041 \f
4042 /***********************************************************************
4043 ***** *****
4044 ***** Hash Tables *****
4045 ***** *****
4046 ***********************************************************************/
4047
4048 /* Implemented by gerd@gnu.org. This hash table implementation was
4049 inspired by CMUCL hash tables. */
4050
4051 /* Ideas:
4052
4053 1. For small tables, association lists are probably faster than
4054 hash tables because they have lower overhead.
4055
4056 For uses of hash tables where the O(1) behavior of table
4057 operations is not a requirement, it might therefore be a good idea
4058 not to hash. Instead, we could just do a linear search in the
4059 key_and_value vector of the hash table. This could be done
4060 if a `:linear-search t' argument is given to make-hash-table. */
4061
4062
4063 /* The list of all weak hash tables. Don't staticpro this one. */
4064
4065 Lisp_Object Vweak_hash_tables;
4066
4067 /* Various symbols. */
4068
4069 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4070 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4071 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4072
4073 /* Function prototypes. */
4074
4075 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4076 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4077 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4078 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4079 Lisp_Object, unsigned));
4080 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4081 Lisp_Object, unsigned));
4082 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4083 unsigned, Lisp_Object, unsigned));
4084 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4085 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4086 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4087 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4088 Lisp_Object));
4089 static unsigned sxhash_string P_ ((unsigned char *, int));
4090 static unsigned sxhash_list P_ ((Lisp_Object, int));
4091 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4092 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4093 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4094
4095
4096 \f
4097 /***********************************************************************
4098 Utilities
4099 ***********************************************************************/
4100
4101 /* If OBJ is a Lisp hash table, return a pointer to its struct
4102 Lisp_Hash_Table. Otherwise, signal an error. */
4103
4104 static struct Lisp_Hash_Table *
4105 check_hash_table (obj)
4106 Lisp_Object obj;
4107 {
4108 CHECK_HASH_TABLE (obj);
4109 return XHASH_TABLE (obj);
4110 }
4111
4112
4113 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4114 number. */
4115
4116 int
4117 next_almost_prime (n)
4118 int n;
4119 {
4120 if (n % 2 == 0)
4121 n += 1;
4122 if (n % 3 == 0)
4123 n += 2;
4124 if (n % 7 == 0)
4125 n += 4;
4126 return n;
4127 }
4128
4129
4130 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4131 which USED[I] is non-zero. If found at index I in ARGS, set
4132 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4133 -1. This function is used to extract a keyword/argument pair from
4134 a DEFUN parameter list. */
4135
4136 static int
4137 get_key_arg (key, nargs, args, used)
4138 Lisp_Object key;
4139 int nargs;
4140 Lisp_Object *args;
4141 char *used;
4142 {
4143 int i;
4144
4145 for (i = 0; i < nargs - 1; ++i)
4146 if (!used[i] && EQ (args[i], key))
4147 break;
4148
4149 if (i >= nargs - 1)
4150 i = -1;
4151 else
4152 {
4153 used[i++] = 1;
4154 used[i] = 1;
4155 }
4156
4157 return i;
4158 }
4159
4160
4161 /* Return a Lisp vector which has the same contents as VEC but has
4162 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4163 vector that are not copied from VEC are set to INIT. */
4164
4165 Lisp_Object
4166 larger_vector (vec, new_size, init)
4167 Lisp_Object vec;
4168 int new_size;
4169 Lisp_Object init;
4170 {
4171 struct Lisp_Vector *v;
4172 int i, old_size;
4173
4174 xassert (VECTORP (vec));
4175 old_size = XVECTOR (vec)->size;
4176 xassert (new_size >= old_size);
4177
4178 v = allocate_vector (new_size);
4179 bcopy (XVECTOR (vec)->contents, v->contents,
4180 old_size * sizeof *v->contents);
4181 for (i = old_size; i < new_size; ++i)
4182 v->contents[i] = init;
4183 XSETVECTOR (vec, v);
4184 return vec;
4185 }
4186
4187
4188 /***********************************************************************
4189 Low-level Functions
4190 ***********************************************************************/
4191
4192 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4193 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4194 KEY2 are the same. */
4195
4196 static int
4197 cmpfn_eql (h, key1, hash1, key2, hash2)
4198 struct Lisp_Hash_Table *h;
4199 Lisp_Object key1, key2;
4200 unsigned hash1, hash2;
4201 {
4202 return (FLOATP (key1)
4203 && FLOATP (key2)
4204 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4205 }
4206
4207
4208 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4209 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4210 KEY2 are the same. */
4211
4212 static int
4213 cmpfn_equal (h, key1, hash1, key2, hash2)
4214 struct Lisp_Hash_Table *h;
4215 Lisp_Object key1, key2;
4216 unsigned hash1, hash2;
4217 {
4218 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4219 }
4220
4221
4222 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4223 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4224 if KEY1 and KEY2 are the same. */
4225
4226 static int
4227 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4228 struct Lisp_Hash_Table *h;
4229 Lisp_Object key1, key2;
4230 unsigned hash1, hash2;
4231 {
4232 if (hash1 == hash2)
4233 {
4234 Lisp_Object args[3];
4235
4236 args[0] = h->user_cmp_function;
4237 args[1] = key1;
4238 args[2] = key2;
4239 return !NILP (Ffuncall (3, args));
4240 }
4241 else
4242 return 0;
4243 }
4244
4245
4246 /* Value is a hash code for KEY for use in hash table H which uses
4247 `eq' to compare keys. The hash code returned is guaranteed to fit
4248 in a Lisp integer. */
4249
4250 static unsigned
4251 hashfn_eq (h, key)
4252 struct Lisp_Hash_Table *h;
4253 Lisp_Object key;
4254 {
4255 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4256 xassert ((hash & ~VALMASK) == 0);
4257 return hash;
4258 }
4259
4260
4261 /* Value is a hash code for KEY for use in hash table H which uses
4262 `eql' to compare keys. The hash code returned is guaranteed to fit
4263 in a Lisp integer. */
4264
4265 static unsigned
4266 hashfn_eql (h, key)
4267 struct Lisp_Hash_Table *h;
4268 Lisp_Object key;
4269 {
4270 unsigned hash;
4271 if (FLOATP (key))
4272 hash = sxhash (key, 0);
4273 else
4274 hash = XUINT (key) ^ XGCTYPE (key);
4275 xassert ((hash & ~VALMASK) == 0);
4276 return hash;
4277 }
4278
4279
4280 /* Value is a hash code for KEY for use in hash table H which uses
4281 `equal' to compare keys. The hash code returned is guaranteed to fit
4282 in a Lisp integer. */
4283
4284 static unsigned
4285 hashfn_equal (h, key)
4286 struct Lisp_Hash_Table *h;
4287 Lisp_Object key;
4288 {
4289 unsigned hash = sxhash (key, 0);
4290 xassert ((hash & ~VALMASK) == 0);
4291 return hash;
4292 }
4293
4294
4295 /* Value is a hash code for KEY for use in hash table H which uses as
4296 user-defined function to compare keys. The hash code returned is
4297 guaranteed to fit in a Lisp integer. */
4298
4299 static unsigned
4300 hashfn_user_defined (h, key)
4301 struct Lisp_Hash_Table *h;
4302 Lisp_Object key;
4303 {
4304 Lisp_Object args[2], hash;
4305
4306 args[0] = h->user_hash_function;
4307 args[1] = key;
4308 hash = Ffuncall (2, args);
4309 if (!INTEGERP (hash))
4310 Fsignal (Qerror,
4311 list2 (build_string ("Invalid hash code returned from \
4312 user-supplied hash function"),
4313 hash));
4314 return XUINT (hash);
4315 }
4316
4317
4318 /* Create and initialize a new hash table.
4319
4320 TEST specifies the test the hash table will use to compare keys.
4321 It must be either one of the predefined tests `eq', `eql' or
4322 `equal' or a symbol denoting a user-defined test named TEST with
4323 test and hash functions USER_TEST and USER_HASH.
4324
4325 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4326
4327 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4328 new size when it becomes full is computed by adding REHASH_SIZE to
4329 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4330 table's new size is computed by multiplying its old size with
4331 REHASH_SIZE.
4332
4333 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4334 be resized when the ratio of (number of entries in the table) /
4335 (table size) is >= REHASH_THRESHOLD.
4336
4337 WEAK specifies the weakness of the table. If non-nil, it must be
4338 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4339
4340 Lisp_Object
4341 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4342 user_test, user_hash)
4343 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4344 Lisp_Object user_test, user_hash;
4345 {
4346 struct Lisp_Hash_Table *h;
4347 Lisp_Object table;
4348 int index_size, i, sz;
4349
4350 /* Preconditions. */
4351 xassert (SYMBOLP (test));
4352 xassert (INTEGERP (size) && XINT (size) >= 0);
4353 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4354 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4355 xassert (FLOATP (rehash_threshold)
4356 && XFLOATINT (rehash_threshold) > 0
4357 && XFLOATINT (rehash_threshold) <= 1.0);
4358
4359 if (XFASTINT (size) == 0)
4360 size = make_number (1);
4361
4362 /* Allocate a table and initialize it. */
4363 h = allocate_hash_table ();
4364
4365 /* Initialize hash table slots. */
4366 sz = XFASTINT (size);
4367
4368 h->test = test;
4369 if (EQ (test, Qeql))
4370 {
4371 h->cmpfn = cmpfn_eql;
4372 h->hashfn = hashfn_eql;
4373 }
4374 else if (EQ (test, Qeq))
4375 {
4376 h->cmpfn = NULL;
4377 h->hashfn = hashfn_eq;
4378 }
4379 else if (EQ (test, Qequal))
4380 {
4381 h->cmpfn = cmpfn_equal;
4382 h->hashfn = hashfn_equal;
4383 }
4384 else
4385 {
4386 h->user_cmp_function = user_test;
4387 h->user_hash_function = user_hash;
4388 h->cmpfn = cmpfn_user_defined;
4389 h->hashfn = hashfn_user_defined;
4390 }
4391
4392 h->weak = weak;
4393 h->rehash_threshold = rehash_threshold;
4394 h->rehash_size = rehash_size;
4395 h->count = make_number (0);
4396 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4397 h->hash = Fmake_vector (size, Qnil);
4398 h->next = Fmake_vector (size, Qnil);
4399 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4400 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4401 h->index = Fmake_vector (make_number (index_size), Qnil);
4402
4403 /* Set up the free list. */
4404 for (i = 0; i < sz - 1; ++i)
4405 HASH_NEXT (h, i) = make_number (i + 1);
4406 h->next_free = make_number (0);
4407
4408 XSET_HASH_TABLE (table, h);
4409 xassert (HASH_TABLE_P (table));
4410 xassert (XHASH_TABLE (table) == h);
4411
4412 /* Maybe add this hash table to the list of all weak hash tables. */
4413 if (NILP (h->weak))
4414 h->next_weak = Qnil;
4415 else
4416 {
4417 h->next_weak = Vweak_hash_tables;
4418 Vweak_hash_tables = table;
4419 }
4420
4421 return table;
4422 }
4423
4424
4425 /* Return a copy of hash table H1. Keys and values are not copied,
4426 only the table itself is. */
4427
4428 Lisp_Object
4429 copy_hash_table (h1)
4430 struct Lisp_Hash_Table *h1;
4431 {
4432 Lisp_Object table;
4433 struct Lisp_Hash_Table *h2;
4434 struct Lisp_Vector *next;
4435
4436 h2 = allocate_hash_table ();
4437 next = h2->vec_next;
4438 bcopy (h1, h2, sizeof *h2);
4439 h2->vec_next = next;
4440 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4441 h2->hash = Fcopy_sequence (h1->hash);
4442 h2->next = Fcopy_sequence (h1->next);
4443 h2->index = Fcopy_sequence (h1->index);
4444 XSET_HASH_TABLE (table, h2);
4445
4446 /* Maybe add this hash table to the list of all weak hash tables. */
4447 if (!NILP (h2->weak))
4448 {
4449 h2->next_weak = Vweak_hash_tables;
4450 Vweak_hash_tables = table;
4451 }
4452
4453 return table;
4454 }
4455
4456
4457 /* Resize hash table H if it's too full. If H cannot be resized
4458 because it's already too large, throw an error. */
4459
4460 static INLINE void
4461 maybe_resize_hash_table (h)
4462 struct Lisp_Hash_Table *h;
4463 {
4464 if (NILP (h->next_free))
4465 {
4466 int old_size = HASH_TABLE_SIZE (h);
4467 int i, new_size, index_size;
4468
4469 if (INTEGERP (h->rehash_size))
4470 new_size = old_size + XFASTINT (h->rehash_size);
4471 else
4472 new_size = old_size * XFLOATINT (h->rehash_size);
4473 new_size = max (old_size + 1, new_size);
4474 index_size = next_almost_prime ((int)
4475 (new_size
4476 / XFLOATINT (h->rehash_threshold)));
4477 if (max (index_size, 2 * new_size) & ~VALMASK)
4478 error ("Hash table too large to resize");
4479
4480 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4481 h->next = larger_vector (h->next, new_size, Qnil);
4482 h->hash = larger_vector (h->hash, new_size, Qnil);
4483 h->index = Fmake_vector (make_number (index_size), Qnil);
4484
4485 /* Update the free list. Do it so that new entries are added at
4486 the end of the free list. This makes some operations like
4487 maphash faster. */
4488 for (i = old_size; i < new_size - 1; ++i)
4489 HASH_NEXT (h, i) = make_number (i + 1);
4490
4491 if (!NILP (h->next_free))
4492 {
4493 Lisp_Object last, next;
4494
4495 last = h->next_free;
4496 while (next = HASH_NEXT (h, XFASTINT (last)),
4497 !NILP (next))
4498 last = next;
4499
4500 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4501 }
4502 else
4503 XSETFASTINT (h->next_free, old_size);
4504
4505 /* Rehash. */
4506 for (i = 0; i < old_size; ++i)
4507 if (!NILP (HASH_HASH (h, i)))
4508 {
4509 unsigned hash_code = XUINT (HASH_HASH (h, i));
4510 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4511 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4512 HASH_INDEX (h, start_of_bucket) = make_number (i);
4513 }
4514 }
4515 }
4516
4517
4518 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4519 the hash code of KEY. Value is the index of the entry in H
4520 matching KEY, or -1 if not found. */
4521
4522 int
4523 hash_lookup (h, key, hash)
4524 struct Lisp_Hash_Table *h;
4525 Lisp_Object key;
4526 unsigned *hash;
4527 {
4528 unsigned hash_code;
4529 int start_of_bucket;
4530 Lisp_Object idx;
4531
4532 hash_code = h->hashfn (h, key);
4533 if (hash)
4534 *hash = hash_code;
4535
4536 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4537 idx = HASH_INDEX (h, start_of_bucket);
4538
4539 /* We need not gcpro idx since it's either an integer or nil. */
4540 while (!NILP (idx))
4541 {
4542 int i = XFASTINT (idx);
4543 if (EQ (key, HASH_KEY (h, i))
4544 || (h->cmpfn
4545 && h->cmpfn (h, key, hash_code,
4546 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4547 break;
4548 idx = HASH_NEXT (h, i);
4549 }
4550
4551 return NILP (idx) ? -1 : XFASTINT (idx);
4552 }
4553
4554
4555 /* Put an entry into hash table H that associates KEY with VALUE.
4556 HASH is a previously computed hash code of KEY.
4557 Value is the index of the entry in H matching KEY. */
4558
4559 int
4560 hash_put (h, key, value, hash)
4561 struct Lisp_Hash_Table *h;
4562 Lisp_Object key, value;
4563 unsigned hash;
4564 {
4565 int start_of_bucket, i;
4566
4567 xassert ((hash & ~VALMASK) == 0);
4568
4569 /* Increment count after resizing because resizing may fail. */
4570 maybe_resize_hash_table (h);
4571 h->count = make_number (XFASTINT (h->count) + 1);
4572
4573 /* Store key/value in the key_and_value vector. */
4574 i = XFASTINT (h->next_free);
4575 h->next_free = HASH_NEXT (h, i);
4576 HASH_KEY (h, i) = key;
4577 HASH_VALUE (h, i) = value;
4578
4579 /* Remember its hash code. */
4580 HASH_HASH (h, i) = make_number (hash);
4581
4582 /* Add new entry to its collision chain. */
4583 start_of_bucket = hash % XVECTOR (h->index)->size;
4584 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4585 HASH_INDEX (h, start_of_bucket) = make_number (i);
4586 return i;
4587 }
4588
4589
4590 /* Remove the entry matching KEY from hash table H, if there is one. */
4591
4592 void
4593 hash_remove (h, key)
4594 struct Lisp_Hash_Table *h;
4595 Lisp_Object key;
4596 {
4597 unsigned hash_code;
4598 int start_of_bucket;
4599 Lisp_Object idx, prev;
4600
4601 hash_code = h->hashfn (h, key);
4602 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4603 idx = HASH_INDEX (h, start_of_bucket);
4604 prev = Qnil;
4605
4606 /* We need not gcpro idx, prev since they're either integers or nil. */
4607 while (!NILP (idx))
4608 {
4609 int i = XFASTINT (idx);
4610
4611 if (EQ (key, HASH_KEY (h, i))
4612 || (h->cmpfn
4613 && h->cmpfn (h, key, hash_code,
4614 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4615 {
4616 /* Take entry out of collision chain. */
4617 if (NILP (prev))
4618 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4619 else
4620 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4621
4622 /* Clear slots in key_and_value and add the slots to
4623 the free list. */
4624 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4625 HASH_NEXT (h, i) = h->next_free;
4626 h->next_free = make_number (i);
4627 h->count = make_number (XFASTINT (h->count) - 1);
4628 xassert (XINT (h->count) >= 0);
4629 break;
4630 }
4631 else
4632 {
4633 prev = idx;
4634 idx = HASH_NEXT (h, i);
4635 }
4636 }
4637 }
4638
4639
4640 /* Clear hash table H. */
4641
4642 void
4643 hash_clear (h)
4644 struct Lisp_Hash_Table *h;
4645 {
4646 if (XFASTINT (h->count) > 0)
4647 {
4648 int i, size = HASH_TABLE_SIZE (h);
4649
4650 for (i = 0; i < size; ++i)
4651 {
4652 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4653 HASH_KEY (h, i) = Qnil;
4654 HASH_VALUE (h, i) = Qnil;
4655 HASH_HASH (h, i) = Qnil;
4656 }
4657
4658 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4659 XVECTOR (h->index)->contents[i] = Qnil;
4660
4661 h->next_free = make_number (0);
4662 h->count = make_number (0);
4663 }
4664 }
4665
4666
4667 \f
4668 /************************************************************************
4669 Weak Hash Tables
4670 ************************************************************************/
4671
4672 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4673 entries from the table that don't survive the current GC.
4674 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4675 non-zero if anything was marked. */
4676
4677 static int
4678 sweep_weak_table (h, remove_entries_p)
4679 struct Lisp_Hash_Table *h;
4680 int remove_entries_p;
4681 {
4682 int bucket, n, marked;
4683
4684 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4685 marked = 0;
4686
4687 for (bucket = 0; bucket < n; ++bucket)
4688 {
4689 Lisp_Object idx, next, prev;
4690
4691 /* Follow collision chain, removing entries that
4692 don't survive this garbage collection. */
4693 prev = Qnil;
4694 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4695 {
4696 int i = XFASTINT (idx);
4697 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4698 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4699 int remove_p;
4700
4701 if (EQ (h->weak, Qkey))
4702 remove_p = !key_known_to_survive_p;
4703 else if (EQ (h->weak, Qvalue))
4704 remove_p = !value_known_to_survive_p;
4705 else if (EQ (h->weak, Qkey_or_value))
4706 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4707 else if (EQ (h->weak, Qkey_and_value))
4708 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4709 else
4710 abort ();
4711
4712 next = HASH_NEXT (h, i);
4713
4714 if (remove_entries_p)
4715 {
4716 if (remove_p)
4717 {
4718 /* Take out of collision chain. */
4719 if (GC_NILP (prev))
4720 HASH_INDEX (h, bucket) = next;
4721 else
4722 HASH_NEXT (h, XFASTINT (prev)) = next;
4723
4724 /* Add to free list. */
4725 HASH_NEXT (h, i) = h->next_free;
4726 h->next_free = idx;
4727
4728 /* Clear key, value, and hash. */
4729 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4730 HASH_HASH (h, i) = Qnil;
4731
4732 h->count = make_number (XFASTINT (h->count) - 1);
4733 }
4734 }
4735 else
4736 {
4737 if (!remove_p)
4738 {
4739 /* Make sure key and value survive. */
4740 if (!key_known_to_survive_p)
4741 {
4742 mark_object (&HASH_KEY (h, i));
4743 marked = 1;
4744 }
4745
4746 if (!value_known_to_survive_p)
4747 {
4748 mark_object (&HASH_VALUE (h, i));
4749 marked = 1;
4750 }
4751 }
4752 }
4753 }
4754 }
4755
4756 return marked;
4757 }
4758
4759 /* Remove elements from weak hash tables that don't survive the
4760 current garbage collection. Remove weak tables that don't survive
4761 from Vweak_hash_tables. Called from gc_sweep. */
4762
4763 void
4764 sweep_weak_hash_tables ()
4765 {
4766 Lisp_Object table, used, next;
4767 struct Lisp_Hash_Table *h;
4768 int marked;
4769
4770 /* Mark all keys and values that are in use. Keep on marking until
4771 there is no more change. This is necessary for cases like
4772 value-weak table A containing an entry X -> Y, where Y is used in a
4773 key-weak table B, Z -> Y. If B comes after A in the list of weak
4774 tables, X -> Y might be removed from A, although when looking at B
4775 one finds that it shouldn't. */
4776 do
4777 {
4778 marked = 0;
4779 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4780 {
4781 h = XHASH_TABLE (table);
4782 if (h->size & ARRAY_MARK_FLAG)
4783 marked |= sweep_weak_table (h, 0);
4784 }
4785 }
4786 while (marked);
4787
4788 /* Remove tables and entries that aren't used. */
4789 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4790 {
4791 h = XHASH_TABLE (table);
4792 next = h->next_weak;
4793
4794 if (h->size & ARRAY_MARK_FLAG)
4795 {
4796 /* TABLE is marked as used. Sweep its contents. */
4797 if (XFASTINT (h->count) > 0)
4798 sweep_weak_table (h, 1);
4799
4800 /* Add table to the list of used weak hash tables. */
4801 h->next_weak = used;
4802 used = table;
4803 }
4804 }
4805
4806 Vweak_hash_tables = used;
4807 }
4808
4809
4810 \f
4811 /***********************************************************************
4812 Hash Code Computation
4813 ***********************************************************************/
4814
4815 /* Maximum depth up to which to dive into Lisp structures. */
4816
4817 #define SXHASH_MAX_DEPTH 3
4818
4819 /* Maximum length up to which to take list and vector elements into
4820 account. */
4821
4822 #define SXHASH_MAX_LEN 7
4823
4824 /* Combine two integers X and Y for hashing. */
4825
4826 #define SXHASH_COMBINE(X, Y) \
4827 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4828 + (unsigned)(Y))
4829
4830
4831 /* Return a hash for string PTR which has length LEN. The hash
4832 code returned is guaranteed to fit in a Lisp integer. */
4833
4834 static unsigned
4835 sxhash_string (ptr, len)
4836 unsigned char *ptr;
4837 int len;
4838 {
4839 unsigned char *p = ptr;
4840 unsigned char *end = p + len;
4841 unsigned char c;
4842 unsigned hash = 0;
4843
4844 while (p != end)
4845 {
4846 c = *p++;
4847 if (c >= 0140)
4848 c -= 40;
4849 hash = ((hash << 3) + (hash >> 28) + c);
4850 }
4851
4852 return hash & VALMASK;
4853 }
4854
4855
4856 /* Return a hash for list LIST. DEPTH is the current depth in the
4857 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4858
4859 static unsigned
4860 sxhash_list (list, depth)
4861 Lisp_Object list;
4862 int depth;
4863 {
4864 unsigned hash = 0;
4865 int i;
4866
4867 if (depth < SXHASH_MAX_DEPTH)
4868 for (i = 0;
4869 CONSP (list) && i < SXHASH_MAX_LEN;
4870 list = XCDR (list), ++i)
4871 {
4872 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4873 hash = SXHASH_COMBINE (hash, hash2);
4874 }
4875
4876 return hash;
4877 }
4878
4879
4880 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4881 the Lisp structure. */
4882
4883 static unsigned
4884 sxhash_vector (vec, depth)
4885 Lisp_Object vec;
4886 int depth;
4887 {
4888 unsigned hash = XVECTOR (vec)->size;
4889 int i, n;
4890
4891 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4892 for (i = 0; i < n; ++i)
4893 {
4894 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4895 hash = SXHASH_COMBINE (hash, hash2);
4896 }
4897
4898 return hash;
4899 }
4900
4901
4902 /* Return a hash for bool-vector VECTOR. */
4903
4904 static unsigned
4905 sxhash_bool_vector (vec)
4906 Lisp_Object vec;
4907 {
4908 unsigned hash = XBOOL_VECTOR (vec)->size;
4909 int i, n;
4910
4911 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4912 for (i = 0; i < n; ++i)
4913 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4914
4915 return hash;
4916 }
4917
4918
4919 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4920 structure. Value is an unsigned integer clipped to VALMASK. */
4921
4922 unsigned
4923 sxhash (obj, depth)
4924 Lisp_Object obj;
4925 int depth;
4926 {
4927 unsigned hash;
4928
4929 if (depth > SXHASH_MAX_DEPTH)
4930 return 0;
4931
4932 switch (XTYPE (obj))
4933 {
4934 case Lisp_Int:
4935 hash = XUINT (obj);
4936 break;
4937
4938 case Lisp_Symbol:
4939 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
4940 SCHARS (SYMBOL_NAME (obj)));
4941 break;
4942
4943 case Lisp_Misc:
4944 hash = XUINT (obj);
4945 break;
4946
4947 case Lisp_String:
4948 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4949 break;
4950
4951 /* This can be everything from a vector to an overlay. */
4952 case Lisp_Vectorlike:
4953 if (VECTORP (obj))
4954 /* According to the CL HyperSpec, two arrays are equal only if
4955 they are `eq', except for strings and bit-vectors. In
4956 Emacs, this works differently. We have to compare element
4957 by element. */
4958 hash = sxhash_vector (obj, depth);
4959 else if (BOOL_VECTOR_P (obj))
4960 hash = sxhash_bool_vector (obj);
4961 else
4962 /* Others are `equal' if they are `eq', so let's take their
4963 address as hash. */
4964 hash = XUINT (obj);
4965 break;
4966
4967 case Lisp_Cons:
4968 hash = sxhash_list (obj, depth);
4969 break;
4970
4971 case Lisp_Float:
4972 {
4973 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
4974 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
4975 for (hash = 0; p < e; ++p)
4976 hash = SXHASH_COMBINE (hash, *p);
4977 break;
4978 }
4979
4980 default:
4981 abort ();
4982 }
4983
4984 return hash & VALMASK;
4985 }
4986
4987
4988 \f
4989 /***********************************************************************
4990 Lisp Interface
4991 ***********************************************************************/
4992
4993
4994 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4995 doc: /* Compute a hash code for OBJ and return it as integer. */)
4996 (obj)
4997 Lisp_Object obj;
4998 {
4999 unsigned hash = sxhash (obj, 0);;
5000 return make_number (hash);
5001 }
5002
5003
5004 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5005 doc: /* Create and return a new hash table.
5006
5007 Arguments are specified as keyword/argument pairs. The following
5008 arguments are defined:
5009
5010 :test TEST -- TEST must be a symbol that specifies how to compare
5011 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5012 `equal'. User-supplied test and hash functions can be specified via
5013 `define-hash-table-test'.
5014
5015 :size SIZE -- A hint as to how many elements will be put in the table.
5016 Default is 65.
5017
5018 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5019 fills up. If REHASH-SIZE is an integer, add that many space. If it
5020 is a float, it must be > 1.0, and the new size is computed by
5021 multiplying the old size with that factor. Default is 1.5.
5022
5023 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5024 Resize the hash table when ratio of the number of entries in the
5025 table. Default is 0.8.
5026
5027 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5028 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5029 returned is a weak table. Key/value pairs are removed from a weak
5030 hash table when there are no non-weak references pointing to their
5031 key, value, one of key or value, or both key and value, depending on
5032 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5033 is nil.
5034
5035 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5036 (nargs, args)
5037 int nargs;
5038 Lisp_Object *args;
5039 {
5040 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5041 Lisp_Object user_test, user_hash;
5042 char *used;
5043 int i;
5044
5045 /* The vector `used' is used to keep track of arguments that
5046 have been consumed. */
5047 used = (char *) alloca (nargs * sizeof *used);
5048 bzero (used, nargs * sizeof *used);
5049
5050 /* See if there's a `:test TEST' among the arguments. */
5051 i = get_key_arg (QCtest, nargs, args, used);
5052 test = i < 0 ? Qeql : args[i];
5053 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5054 {
5055 /* See if it is a user-defined test. */
5056 Lisp_Object prop;
5057
5058 prop = Fget (test, Qhash_table_test);
5059 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5060 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5061 test));
5062 user_test = XCAR (prop);
5063 user_hash = XCAR (XCDR (prop));
5064 }
5065 else
5066 user_test = user_hash = Qnil;
5067
5068 /* See if there's a `:size SIZE' argument. */
5069 i = get_key_arg (QCsize, nargs, args, used);
5070 size = i < 0 ? Qnil : args[i];
5071 if (NILP (size))
5072 size = make_number (DEFAULT_HASH_SIZE);
5073 else if (!INTEGERP (size) || XINT (size) < 0)
5074 Fsignal (Qerror,
5075 list2 (build_string ("Invalid hash table size"),
5076 size));
5077
5078 /* Look for `:rehash-size SIZE'. */
5079 i = get_key_arg (QCrehash_size, nargs, args, used);
5080 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5081 if (!NUMBERP (rehash_size)
5082 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5083 || XFLOATINT (rehash_size) <= 1.0)
5084 Fsignal (Qerror,
5085 list2 (build_string ("Invalid hash table rehash size"),
5086 rehash_size));
5087
5088 /* Look for `:rehash-threshold THRESHOLD'. */
5089 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5090 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5091 if (!FLOATP (rehash_threshold)
5092 || XFLOATINT (rehash_threshold) <= 0.0
5093 || XFLOATINT (rehash_threshold) > 1.0)
5094 Fsignal (Qerror,
5095 list2 (build_string ("Invalid hash table rehash threshold"),
5096 rehash_threshold));
5097
5098 /* Look for `:weakness WEAK'. */
5099 i = get_key_arg (QCweakness, nargs, args, used);
5100 weak = i < 0 ? Qnil : args[i];
5101 if (EQ (weak, Qt))
5102 weak = Qkey_and_value;
5103 if (!NILP (weak)
5104 && !EQ (weak, Qkey)
5105 && !EQ (weak, Qvalue)
5106 && !EQ (weak, Qkey_or_value)
5107 && !EQ (weak, Qkey_and_value))
5108 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5109 weak));
5110
5111 /* Now, all args should have been used up, or there's a problem. */
5112 for (i = 0; i < nargs; ++i)
5113 if (!used[i])
5114 Fsignal (Qerror,
5115 list2 (build_string ("Invalid argument list"), args[i]));
5116
5117 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5118 user_test, user_hash);
5119 }
5120
5121
5122 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5123 doc: /* Return a copy of hash table TABLE. */)
5124 (table)
5125 Lisp_Object table;
5126 {
5127 return copy_hash_table (check_hash_table (table));
5128 }
5129
5130
5131 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5132 doc: /* Return the number of elements in TABLE. */)
5133 (table)
5134 Lisp_Object table;
5135 {
5136 return check_hash_table (table)->count;
5137 }
5138
5139
5140 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5141 Shash_table_rehash_size, 1, 1, 0,
5142 doc: /* Return the current rehash size of TABLE. */)
5143 (table)
5144 Lisp_Object table;
5145 {
5146 return check_hash_table (table)->rehash_size;
5147 }
5148
5149
5150 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5151 Shash_table_rehash_threshold, 1, 1, 0,
5152 doc: /* Return the current rehash threshold of TABLE. */)
5153 (table)
5154 Lisp_Object table;
5155 {
5156 return check_hash_table (table)->rehash_threshold;
5157 }
5158
5159
5160 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5161 doc: /* Return the size of TABLE.
5162 The size can be used as an argument to `make-hash-table' to create
5163 a hash table than can hold as many elements of TABLE holds
5164 without need for resizing. */)
5165 (table)
5166 Lisp_Object table;
5167 {
5168 struct Lisp_Hash_Table *h = check_hash_table (table);
5169 return make_number (HASH_TABLE_SIZE (h));
5170 }
5171
5172
5173 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5174 doc: /* Return the test TABLE uses. */)
5175 (table)
5176 Lisp_Object table;
5177 {
5178 return check_hash_table (table)->test;
5179 }
5180
5181
5182 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5183 1, 1, 0,
5184 doc: /* Return the weakness of TABLE. */)
5185 (table)
5186 Lisp_Object table;
5187 {
5188 return check_hash_table (table)->weak;
5189 }
5190
5191
5192 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5193 doc: /* Return t if OBJ is a Lisp hash table object. */)
5194 (obj)
5195 Lisp_Object obj;
5196 {
5197 return HASH_TABLE_P (obj) ? Qt : Qnil;
5198 }
5199
5200
5201 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5202 doc: /* Clear hash table TABLE. */)
5203 (table)
5204 Lisp_Object table;
5205 {
5206 hash_clear (check_hash_table (table));
5207 return Qnil;
5208 }
5209
5210
5211 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5212 doc: /* Look up KEY in TABLE and return its associated value.
5213 If KEY is not found, return DFLT which defaults to nil. */)
5214 (key, table, dflt)
5215 Lisp_Object key, table, dflt;
5216 {
5217 struct Lisp_Hash_Table *h = check_hash_table (table);
5218 int i = hash_lookup (h, key, NULL);
5219 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5220 }
5221
5222
5223 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5224 doc: /* Associate KEY with VALUE in hash table TABLE.
5225 If KEY is already present in table, replace its current value with
5226 VALUE. */)
5227 (key, value, table)
5228 Lisp_Object key, value, table;
5229 {
5230 struct Lisp_Hash_Table *h = check_hash_table (table);
5231 int i;
5232 unsigned hash;
5233
5234 i = hash_lookup (h, key, &hash);
5235 if (i >= 0)
5236 HASH_VALUE (h, i) = value;
5237 else
5238 hash_put (h, key, value, hash);
5239
5240 return value;
5241 }
5242
5243
5244 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5245 doc: /* Remove KEY from TABLE. */)
5246 (key, table)
5247 Lisp_Object key, table;
5248 {
5249 struct Lisp_Hash_Table *h = check_hash_table (table);
5250 hash_remove (h, key);
5251 return Qnil;
5252 }
5253
5254
5255 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5256 doc: /* Call FUNCTION for all entries in hash table TABLE.
5257 FUNCTION is called with 2 arguments KEY and VALUE. */)
5258 (function, table)
5259 Lisp_Object function, table;
5260 {
5261 struct Lisp_Hash_Table *h = check_hash_table (table);
5262 Lisp_Object args[3];
5263 int i;
5264
5265 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5266 if (!NILP (HASH_HASH (h, i)))
5267 {
5268 args[0] = function;
5269 args[1] = HASH_KEY (h, i);
5270 args[2] = HASH_VALUE (h, i);
5271 Ffuncall (3, args);
5272 }
5273
5274 return Qnil;
5275 }
5276
5277
5278 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5279 Sdefine_hash_table_test, 3, 3, 0,
5280 doc: /* Define a new hash table test with name NAME, a symbol.
5281
5282 In hash tables created with NAME specified as test, use TEST to
5283 compare keys, and HASH for computing hash codes of keys.
5284
5285 TEST must be a function taking two arguments and returning non-nil if
5286 both arguments are the same. HASH must be a function taking one
5287 argument and return an integer that is the hash code of the argument.
5288 Hash code computation should use the whole value range of integers,
5289 including negative integers. */)
5290 (name, test, hash)
5291 Lisp_Object name, test, hash;
5292 {
5293 return Fput (name, Qhash_table_test, list2 (test, hash));
5294 }
5295
5296
5297 \f
5298 /************************************************************************
5299 MD5
5300 ************************************************************************/
5301
5302 #include "md5.h"
5303 #include "coding.h"
5304
5305 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5306 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5307
5308 A message digest is a cryptographic checksum of a document, and the
5309 algorithm to calculate it is defined in RFC 1321.
5310
5311 The two optional arguments START and END are character positions
5312 specifying for which part of OBJECT the message digest should be
5313 computed. If nil or omitted, the digest is computed for the whole
5314 OBJECT.
5315
5316 The MD5 message digest is computed from the result of encoding the
5317 text in a coding system, not directly from the internal Emacs form of
5318 the text. The optional fourth argument CODING-SYSTEM specifies which
5319 coding system to encode the text with. It should be the same coding
5320 system that you used or will use when actually writing the text into a
5321 file.
5322
5323 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5324 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5325 system would be chosen by default for writing this text into a file.
5326
5327 If OBJECT is a string, the most preferred coding system (see the
5328 command `prefer-coding-system') is used.
5329
5330 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5331 guesswork fails. Normally, an error is signaled in such case. */)
5332 (object, start, end, coding_system, noerror)
5333 Lisp_Object object, start, end, coding_system, noerror;
5334 {
5335 unsigned char digest[16];
5336 unsigned char value[33];
5337 int i;
5338 int size;
5339 int size_byte = 0;
5340 int start_char = 0, end_char = 0;
5341 int start_byte = 0, end_byte = 0;
5342 register int b, e;
5343 register struct buffer *bp;
5344 int temp;
5345
5346 if (STRINGP (object))
5347 {
5348 if (NILP (coding_system))
5349 {
5350 /* Decide the coding-system to encode the data with. */
5351
5352 if (STRING_MULTIBYTE (object))
5353 /* use default, we can't guess correct value */
5354 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5355 else
5356 coding_system = Qraw_text;
5357 }
5358
5359 if (NILP (Fcoding_system_p (coding_system)))
5360 {
5361 /* Invalid coding system. */
5362
5363 if (!NILP (noerror))
5364 coding_system = Qraw_text;
5365 else
5366 while (1)
5367 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5368 }
5369
5370 if (STRING_MULTIBYTE (object))
5371 object = code_convert_string1 (object, coding_system, Qnil, 1);
5372
5373 size = SCHARS (object);
5374 size_byte = SBYTES (object);
5375
5376 if (!NILP (start))
5377 {
5378 CHECK_NUMBER (start);
5379
5380 start_char = XINT (start);
5381
5382 if (start_char < 0)
5383 start_char += size;
5384
5385 start_byte = string_char_to_byte (object, start_char);
5386 }
5387
5388 if (NILP (end))
5389 {
5390 end_char = size;
5391 end_byte = size_byte;
5392 }
5393 else
5394 {
5395 CHECK_NUMBER (end);
5396
5397 end_char = XINT (end);
5398
5399 if (end_char < 0)
5400 end_char += size;
5401
5402 end_byte = string_char_to_byte (object, end_char);
5403 }
5404
5405 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5406 args_out_of_range_3 (object, make_number (start_char),
5407 make_number (end_char));
5408 }
5409 else
5410 {
5411 CHECK_BUFFER (object);
5412
5413 bp = XBUFFER (object);
5414
5415 if (NILP (start))
5416 b = BUF_BEGV (bp);
5417 else
5418 {
5419 CHECK_NUMBER_COERCE_MARKER (start);
5420 b = XINT (start);
5421 }
5422
5423 if (NILP (end))
5424 e = BUF_ZV (bp);
5425 else
5426 {
5427 CHECK_NUMBER_COERCE_MARKER (end);
5428 e = XINT (end);
5429 }
5430
5431 if (b > e)
5432 temp = b, b = e, e = temp;
5433
5434 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
5435 args_out_of_range (start, end);
5436
5437 if (NILP (coding_system))
5438 {
5439 /* Decide the coding-system to encode the data with.
5440 See fileio.c:Fwrite-region */
5441
5442 if (!NILP (Vcoding_system_for_write))
5443 coding_system = Vcoding_system_for_write;
5444 else
5445 {
5446 int force_raw_text = 0;
5447
5448 coding_system = XBUFFER (object)->buffer_file_coding_system;
5449 if (NILP (coding_system)
5450 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5451 {
5452 coding_system = Qnil;
5453 if (NILP (current_buffer->enable_multibyte_characters))
5454 force_raw_text = 1;
5455 }
5456
5457 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5458 {
5459 /* Check file-coding-system-alist. */
5460 Lisp_Object args[4], val;
5461
5462 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5463 args[3] = Fbuffer_file_name(object);
5464 val = Ffind_operation_coding_system (4, args);
5465 if (CONSP (val) && !NILP (XCDR (val)))
5466 coding_system = XCDR (val);
5467 }
5468
5469 if (NILP (coding_system)
5470 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5471 {
5472 /* If we still have not decided a coding system, use the
5473 default value of buffer-file-coding-system. */
5474 coding_system = XBUFFER (object)->buffer_file_coding_system;
5475 }
5476
5477 if (!force_raw_text
5478 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5479 /* Confirm that VAL can surely encode the current region. */
5480 coding_system = call4 (Vselect_safe_coding_system_function,
5481 make_number (b), make_number (e),
5482 coding_system, Qnil);
5483
5484 if (force_raw_text)
5485 coding_system = Qraw_text;
5486 }
5487
5488 if (NILP (Fcoding_system_p (coding_system)))
5489 {
5490 /* Invalid coding system. */
5491
5492 if (!NILP (noerror))
5493 coding_system = Qraw_text;
5494 else
5495 while (1)
5496 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5497 }
5498 }
5499
5500 object = make_buffer_string (b, e, 0);
5501
5502 if (STRING_MULTIBYTE (object))
5503 object = code_convert_string1 (object, coding_system, Qnil, 1);
5504 }
5505
5506 md5_buffer (SDATA (object) + start_byte,
5507 SBYTES (object) - (size_byte - end_byte),
5508 digest);
5509
5510 for (i = 0; i < 16; i++)
5511 sprintf (&value[2 * i], "%02x", digest[i]);
5512 value[32] = '\0';
5513
5514 return make_string (value, 32);
5515 }
5516
5517 \f
5518 void
5519 syms_of_fns ()
5520 {
5521 /* Hash table stuff. */
5522 Qhash_table_p = intern ("hash-table-p");
5523 staticpro (&Qhash_table_p);
5524 Qeq = intern ("eq");
5525 staticpro (&Qeq);
5526 Qeql = intern ("eql");
5527 staticpro (&Qeql);
5528 Qequal = intern ("equal");
5529 staticpro (&Qequal);
5530 QCtest = intern (":test");
5531 staticpro (&QCtest);
5532 QCsize = intern (":size");
5533 staticpro (&QCsize);
5534 QCrehash_size = intern (":rehash-size");
5535 staticpro (&QCrehash_size);
5536 QCrehash_threshold = intern (":rehash-threshold");
5537 staticpro (&QCrehash_threshold);
5538 QCweakness = intern (":weakness");
5539 staticpro (&QCweakness);
5540 Qkey = intern ("key");
5541 staticpro (&Qkey);
5542 Qvalue = intern ("value");
5543 staticpro (&Qvalue);
5544 Qhash_table_test = intern ("hash-table-test");
5545 staticpro (&Qhash_table_test);
5546 Qkey_or_value = intern ("key-or-value");
5547 staticpro (&Qkey_or_value);
5548 Qkey_and_value = intern ("key-and-value");
5549 staticpro (&Qkey_and_value);
5550
5551 defsubr (&Ssxhash);
5552 defsubr (&Smake_hash_table);
5553 defsubr (&Scopy_hash_table);
5554 defsubr (&Shash_table_count);
5555 defsubr (&Shash_table_rehash_size);
5556 defsubr (&Shash_table_rehash_threshold);
5557 defsubr (&Shash_table_size);
5558 defsubr (&Shash_table_test);
5559 defsubr (&Shash_table_weakness);
5560 defsubr (&Shash_table_p);
5561 defsubr (&Sclrhash);
5562 defsubr (&Sgethash);
5563 defsubr (&Sputhash);
5564 defsubr (&Sremhash);
5565 defsubr (&Smaphash);
5566 defsubr (&Sdefine_hash_table_test);
5567
5568 Qstring_lessp = intern ("string-lessp");
5569 staticpro (&Qstring_lessp);
5570 Qprovide = intern ("provide");
5571 staticpro (&Qprovide);
5572 Qrequire = intern ("require");
5573 staticpro (&Qrequire);
5574 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5575 staticpro (&Qyes_or_no_p_history);
5576 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5577 staticpro (&Qcursor_in_echo_area);
5578 Qwidget_type = intern ("widget-type");
5579 staticpro (&Qwidget_type);
5580
5581 staticpro (&string_char_byte_cache_string);
5582 string_char_byte_cache_string = Qnil;
5583
5584 require_nesting_list = Qnil;
5585 staticpro (&require_nesting_list);
5586
5587 Fset (Qyes_or_no_p_history, Qnil);
5588
5589 DEFVAR_LISP ("features", &Vfeatures,
5590 doc: /* A list of symbols which are the features of the executing emacs.
5591 Used by `featurep' and `require', and altered by `provide'. */);
5592 Vfeatures = Qnil;
5593 Qsubfeatures = intern ("subfeatures");
5594 staticpro (&Qsubfeatures);
5595
5596 #ifdef HAVE_LANGINFO_CODESET
5597 Qcodeset = intern ("codeset");
5598 staticpro (&Qcodeset);
5599 Qdays = intern ("days");
5600 staticpro (&Qdays);
5601 Qmonths = intern ("months");
5602 staticpro (&Qmonths);
5603 Qpaper = intern ("paper");
5604 staticpro (&Qpaper);
5605 #endif /* HAVE_LANGINFO_CODESET */
5606
5607 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5608 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5609 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5610 invoked by mouse clicks and mouse menu items. */);
5611 use_dialog_box = 1;
5612
5613 defsubr (&Sidentity);
5614 defsubr (&Srandom);
5615 defsubr (&Slength);
5616 defsubr (&Ssafe_length);
5617 defsubr (&Sstring_bytes);
5618 defsubr (&Sstring_equal);
5619 defsubr (&Scompare_strings);
5620 defsubr (&Sstring_lessp);
5621 defsubr (&Sappend);
5622 defsubr (&Sconcat);
5623 defsubr (&Svconcat);
5624 defsubr (&Scopy_sequence);
5625 defsubr (&Sstring_make_multibyte);
5626 defsubr (&Sstring_make_unibyte);
5627 defsubr (&Sstring_as_multibyte);
5628 defsubr (&Sstring_as_unibyte);
5629 defsubr (&Sstring_to_multibyte);
5630 defsubr (&Scopy_alist);
5631 defsubr (&Ssubstring);
5632 defsubr (&Ssubstring_no_properties);
5633 defsubr (&Snthcdr);
5634 defsubr (&Snth);
5635 defsubr (&Selt);
5636 defsubr (&Smember);
5637 defsubr (&Smemq);
5638 defsubr (&Sassq);
5639 defsubr (&Sassoc);
5640 defsubr (&Srassq);
5641 defsubr (&Srassoc);
5642 defsubr (&Sdelq);
5643 defsubr (&Sdelete);
5644 defsubr (&Snreverse);
5645 defsubr (&Sreverse);
5646 defsubr (&Ssort);
5647 defsubr (&Splist_get);
5648 defsubr (&Sget);
5649 defsubr (&Splist_put);
5650 defsubr (&Sput);
5651 defsubr (&Slax_plist_get);
5652 defsubr (&Slax_plist_put);
5653 defsubr (&Sequal);
5654 defsubr (&Sfillarray);
5655 defsubr (&Schar_table_subtype);
5656 defsubr (&Schar_table_parent);
5657 defsubr (&Sset_char_table_parent);
5658 defsubr (&Schar_table_extra_slot);
5659 defsubr (&Sset_char_table_extra_slot);
5660 defsubr (&Schar_table_range);
5661 defsubr (&Sset_char_table_range);
5662 defsubr (&Sset_char_table_default);
5663 defsubr (&Soptimize_char_table);
5664 defsubr (&Smap_char_table);
5665 defsubr (&Snconc);
5666 defsubr (&Smapcar);
5667 defsubr (&Smapc);
5668 defsubr (&Smapconcat);
5669 defsubr (&Sy_or_n_p);
5670 defsubr (&Syes_or_no_p);
5671 defsubr (&Sload_average);
5672 defsubr (&Sfeaturep);
5673 defsubr (&Srequire);
5674 defsubr (&Sprovide);
5675 defsubr (&Splist_member);
5676 defsubr (&Swidget_put);
5677 defsubr (&Swidget_get);
5678 defsubr (&Swidget_apply);
5679 defsubr (&Sbase64_encode_region);
5680 defsubr (&Sbase64_decode_region);
5681 defsubr (&Sbase64_encode_string);
5682 defsubr (&Sbase64_decode_string);
5683 defsubr (&Smd5);
5684 defsubr (&Slanginfo);
5685 }
5686
5687
5688 void
5689 init_fns ()
5690 {
5691 Vweak_hash_tables = Qnil;
5692 }