]> code.delx.au - gnu-emacs/blob - src/lisp.h
Minor cleanup of recent strlen-avoiding patch.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 #define ID_val (some integer preprocessor expression)
40 #if ENUMABLE (ID_val)
41 DEFINE_GDB_SYMBOL_ENUM (ID)
42 #else
43 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
44 # define ID ID_val
45 DEFINE_GDB_SYMBOL_END (ID)
46 #endif
47
48 This hack is for the benefit of compilers that do not make macro
49 definitions visible to the debugger. It's used for symbols that
50 .gdbinit needs, symbols whose values may not fit in 'int' (where an
51 enum would suffice).
52
53 Some GCC versions before GCC 4.2 omit enums in debugging output;
54 see GCC bug 23336. So don't use enums with older GCC. */
55
56 #if !defined __GNUC__ || 4 < __GNUC__ + (2 <= __GNUC_MINOR__)
57 # define ENUMABLE(val) (INT_MIN <= (val) && (val) <= INT_MAX)
58 #else
59 # define ENUMABLE(val) 0
60 #endif
61
62 #define DEFINE_GDB_SYMBOL_ENUM(id) enum { id = id##_val };
63 #if defined MAIN_PROGRAM
64 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
65 # define DEFINE_GDB_SYMBOL_END(id) = id;
66 #else
67 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
68 # define DEFINE_GDB_SYMBOL_END(val)
69 #endif
70
71 /* The ubiquitous max and min macros. */
72 #undef min
73 #undef max
74 #define max(a, b) ((a) > (b) ? (a) : (b))
75 #define min(a, b) ((a) < (b) ? (a) : (b))
76
77 /* Number of elements in an array. */
78 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
79
80 /* Number of bits in a Lisp_Object tag. */
81 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
82 #define GCTYPEBITS 3
83 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
84
85 /* The number of bits needed in an EMACS_INT over and above the number
86 of bits in a pointer. This is 0 on systems where:
87 1. We can specify multiple-of-8 alignment on static variables.
88 2. We know malloc returns a multiple of 8. */
89 #if (defined alignas \
90 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
91 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
92 || defined CYGWIN))
93 # define NONPOINTER_BITS 0
94 #else
95 # define NONPOINTER_BITS GCTYPEBITS
96 #endif
97
98 /* EMACS_INT - signed integer wide enough to hold an Emacs value
99 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
100 pI - printf length modifier for EMACS_INT
101 EMACS_UINT - unsigned variant of EMACS_INT */
102 #ifndef EMACS_INT_MAX
103 # if INTPTR_MAX <= 0
104 # error "INTPTR_MAX misconfigured"
105 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
106 typedef int EMACS_INT;
107 typedef unsigned int EMACS_UINT;
108 # define EMACS_INT_MAX INT_MAX
109 # define pI ""
110 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
111 typedef long int EMACS_INT;
112 typedef unsigned long EMACS_UINT;
113 # define EMACS_INT_MAX LONG_MAX
114 # define pI "l"
115 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
116 In theory this is not safe, but in practice it seems to be OK. */
117 # elif INTPTR_MAX <= LLONG_MAX
118 typedef long long int EMACS_INT;
119 typedef unsigned long long int EMACS_UINT;
120 # define EMACS_INT_MAX LLONG_MAX
121 # define pI "ll"
122 # else
123 # error "INTPTR_MAX too large"
124 # endif
125 #endif
126
127 /* Number of bits to put in each character in the internal representation
128 of bool vectors. This should not vary across implementations. */
129 enum { BOOL_VECTOR_BITS_PER_CHAR =
130 #define BOOL_VECTOR_BITS_PER_CHAR 8
131 BOOL_VECTOR_BITS_PER_CHAR
132 };
133
134 /* An unsigned integer type representing a fixed-length bit sequence,
135 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
136 for speed, but it is unsigned char on weird platforms. */
137 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
138 typedef size_t bits_word;
139 # define BITS_WORD_MAX SIZE_MAX
140 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
141 #else
142 typedef unsigned char bits_word;
143 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
144 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
145 #endif
146 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
147
148 /* Number of bits in some machine integer types. */
149 enum
150 {
151 BITS_PER_CHAR = CHAR_BIT,
152 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
153 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
154 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
155 };
156
157 /* printmax_t and uprintmax_t are types for printing large integers.
158 These are the widest integers that are supported for printing.
159 pMd etc. are conversions for printing them.
160 On C99 hosts, there's no problem, as even the widest integers work.
161 Fall back on EMACS_INT on pre-C99 hosts. */
162 #ifdef PRIdMAX
163 typedef intmax_t printmax_t;
164 typedef uintmax_t uprintmax_t;
165 # define pMd PRIdMAX
166 # define pMu PRIuMAX
167 #else
168 typedef EMACS_INT printmax_t;
169 typedef EMACS_UINT uprintmax_t;
170 # define pMd pI"d"
171 # define pMu pI"u"
172 #endif
173
174 /* Use pD to format ptrdiff_t values, which suffice for indexes into
175 buffers and strings. Emacs never allocates objects larger than
176 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
177 In C99, pD can always be "t"; configure it here for the sake of
178 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
179 #if PTRDIFF_MAX == INT_MAX
180 # define pD ""
181 #elif PTRDIFF_MAX == LONG_MAX
182 # define pD "l"
183 #elif PTRDIFF_MAX == LLONG_MAX
184 # define pD "ll"
185 #else
186 # define pD "t"
187 #endif
188
189 /* Extra internal type checking? */
190
191 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
192 'assume (COND)'. COND should be free of side effects, as it may or
193 may not be evaluated.
194
195 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
196 defined and suppress_checking is false, and does nothing otherwise.
197 Emacs dies if COND is checked and is false. The suppress_checking
198 variable is initialized to 0 in alloc.c. Set it to 1 using a
199 debugger to temporarily disable aborting on detected internal
200 inconsistencies or error conditions.
201
202 In some cases, a good compiler may be able to optimize away the
203 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
204 uses eassert to test STRINGP (x), but a particular use of XSTRING
205 is invoked only after testing that STRINGP (x) is true, making the
206 test redundant.
207
208 eassume is like eassert except that it also causes the compiler to
209 assume that COND is true afterwards, regardless of whether runtime
210 checking is enabled. This can improve performance in some cases,
211 though it can degrade performance in others. It's often suboptimal
212 for COND to call external functions or access volatile storage. */
213
214 #ifndef ENABLE_CHECKING
215 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
216 # define eassume(cond) assume (cond)
217 #else /* ENABLE_CHECKING */
218
219 extern _Noreturn void die (const char *, const char *, int);
220
221 extern bool suppress_checking EXTERNALLY_VISIBLE;
222
223 # define eassert(cond) \
224 (suppress_checking || (cond) \
225 ? (void) 0 \
226 : die (# cond, __FILE__, __LINE__))
227 # define eassume(cond) \
228 (suppress_checking \
229 ? assume (cond) \
230 : (cond) \
231 ? (void) 0 \
232 : die (# cond, __FILE__, __LINE__))
233 #endif /* ENABLE_CHECKING */
234
235 \f
236 /* Use the configure flag --enable-check-lisp-object-type to make
237 Lisp_Object use a struct type instead of the default int. The flag
238 causes CHECK_LISP_OBJECT_TYPE to be defined. */
239
240 /***** Select the tagging scheme. *****/
241 /* The following option controls the tagging scheme:
242 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
243 always 0, and we can thus use them to hold tag bits, without
244 restricting our addressing space.
245
246 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
247 restricting our possible address range.
248
249 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
250 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
251 on the few static Lisp_Objects used: all the defsubr as well
252 as the two special buffers buffer_defaults and buffer_local_symbols. */
253
254 enum Lisp_Bits
255 {
256 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
257 integer constant, for MSVC. */
258 #define GCALIGNMENT 8
259
260 /* Number of bits in a Lisp_Object value, not counting the tag. */
261 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
262
263 /* Number of bits in a Lisp fixnum tag. */
264 INTTYPEBITS = GCTYPEBITS - 1,
265
266 /* Number of bits in a Lisp fixnum value, not counting the tag. */
267 FIXNUM_BITS = VALBITS + 1
268 };
269
270 #if GCALIGNMENT != 1 << GCTYPEBITS
271 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
272 #endif
273
274 /* The maximum value that can be stored in a EMACS_INT, assuming all
275 bits other than the type bits contribute to a nonnegative signed value.
276 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
277 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
278
279 /* Whether the least-significant bits of an EMACS_INT contain the tag.
280 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
281 a. unnecessary, because the top bits of an EMACS_INT are unused, and
282 b. slower, because it typically requires extra masking.
283 So, USE_LSB_TAG is true only on hosts where it might be useful. */
284 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
285 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
286 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
287
288 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
289 # error "USE_LSB_TAG not supported on this platform; please report this." \
290 "Try 'configure --with-wide-int' to work around the problem."
291 error !;
292 #endif
293
294 #ifndef alignas
295 # define alignas(alignment) /* empty */
296 # if USE_LSB_TAG
297 # error "USE_LSB_TAG requires alignas"
298 # endif
299 #endif
300
301
302 /* Some operations are so commonly executed that they are implemented
303 as macros, not functions, because otherwise runtime performance would
304 suffer too much when compiling with GCC without optimization.
305 There's no need to inline everything, just the operations that
306 would otherwise cause a serious performance problem.
307
308 For each such operation OP, define a macro lisp_h_OP that contains
309 the operation's implementation. That way, OP can be implemented
310 via a macro definition like this:
311
312 #define OP(x) lisp_h_OP (x)
313
314 and/or via a function definition like this:
315
316 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
317
318 which macro-expands to this:
319
320 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
321
322 without worrying about the implementations diverging, since
323 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
324 are intended to be private to this include file, and should not be
325 used elsewhere.
326
327 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
328 functions, once most developers have access to GCC 4.8 or later and
329 can use "gcc -Og" to debug. Maybe in the year 2016. See
330 Bug#11935.
331
332 Commentary for these macros can be found near their corresponding
333 functions, below. */
334
335 #if CHECK_LISP_OBJECT_TYPE
336 # define lisp_h_XLI(o) ((o).i)
337 # define lisp_h_XIL(i) ((Lisp_Object) { i })
338 #else
339 # define lisp_h_XLI(o) (o)
340 # define lisp_h_XIL(i) (i)
341 #endif
342 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
343 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
344 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
345 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
346 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
347 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
348 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
349 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
350 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
351 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
352 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
353 #define lisp_h_NILP(x) EQ (x, Qnil)
354 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
355 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
356 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
357 #define lisp_h_SYMBOL_VAL(sym) \
358 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
359 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
360 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
361 #define lisp_h_XCAR(c) XCONS (c)->car
362 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
363 #define lisp_h_XCONS(a) \
364 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
365 #define lisp_h_XHASH(a) XUINT (a)
366 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
367 #define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
369 #ifndef GC_CHECK_CONS_LIST
370 # define lisp_h_check_cons_list() ((void) 0)
371 #endif
372 #if USE_LSB_TAG
373 # define lisp_h_make_number(n) \
374 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
375 # define lisp_h_XFASTINT(a) XINT (a)
376 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
377 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
378 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
379 #endif
380
381 /* When compiling via gcc -O0, define the key operations as macros, as
382 Emacs is too slow otherwise. To disable this optimization, compile
383 with -DINLINING=false. */
384 #if (defined __NO_INLINE__ \
385 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
386 && ! (defined INLINING && ! INLINING))
387 # define XLI(o) lisp_h_XLI (o)
388 # define XIL(i) lisp_h_XIL (i)
389 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
390 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
391 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
392 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
393 # define CONSP(x) lisp_h_CONSP (x)
394 # define EQ(x, y) lisp_h_EQ (x, y)
395 # define FLOATP(x) lisp_h_FLOATP (x)
396 # define INTEGERP(x) lisp_h_INTEGERP (x)
397 # define MARKERP(x) lisp_h_MARKERP (x)
398 # define MISCP(x) lisp_h_MISCP (x)
399 # define NILP(x) lisp_h_NILP (x)
400 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
401 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
402 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
403 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
404 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
405 # define XCAR(c) lisp_h_XCAR (c)
406 # define XCDR(c) lisp_h_XCDR (c)
407 # define XCONS(a) lisp_h_XCONS (a)
408 # define XHASH(a) lisp_h_XHASH (a)
409 # define XPNTR(a) lisp_h_XPNTR (a)
410 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
411 # ifndef GC_CHECK_CONS_LIST
412 # define check_cons_list() lisp_h_check_cons_list ()
413 # endif
414 # if USE_LSB_TAG
415 # define make_number(n) lisp_h_make_number (n)
416 # define XFASTINT(a) lisp_h_XFASTINT (a)
417 # define XINT(a) lisp_h_XINT (a)
418 # define XTYPE(a) lisp_h_XTYPE (a)
419 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
420 # endif
421 #endif
422
423 /* Define NAME as a lisp.h inline function that returns TYPE and has
424 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
425 ARGS should be parenthesized. Implement the function by calling
426 lisp_h_NAME ARGS. */
427 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
428 INLINE type (name) argdecls { return lisp_h_##name args; }
429
430 /* like LISP_MACRO_DEFUN, except NAME returns void. */
431 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
432 INLINE void (name) argdecls { lisp_h_##name args; }
433
434
435 /* Define the fundamental Lisp data structures. */
436
437 /* This is the set of Lisp data types. If you want to define a new
438 data type, read the comments after Lisp_Fwd_Type definition
439 below. */
440
441 /* Lisp integers use 2 tags, to give them one extra bit, thus
442 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
443 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
444 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
445
446 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
447 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
448 vociferously about them. */
449 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
450 || (defined __SUNPRO_C && __STDC__))
451 #define ENUM_BF(TYPE) unsigned int
452 #else
453 #define ENUM_BF(TYPE) enum TYPE
454 #endif
455
456
457 enum Lisp_Type
458 {
459 /* Integer. XINT (obj) is the integer value. */
460 Lisp_Int0 = 0,
461 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
462
463 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
464 Lisp_Symbol = 2,
465
466 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
467 whose first member indicates the subtype. */
468 Lisp_Misc = 3,
469
470 /* String. XSTRING (object) points to a struct Lisp_String.
471 The length of the string, and its contents, are stored therein. */
472 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
473
474 /* Vector of Lisp objects, or something resembling it.
475 XVECTOR (object) points to a struct Lisp_Vector, which contains
476 the size and contents. The size field also contains the type
477 information, if it's not a real vector object. */
478 Lisp_Vectorlike = 5,
479
480 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
481 Lisp_Cons = 6,
482
483 Lisp_Float = 7
484 };
485
486 /* This is the set of data types that share a common structure.
487 The first member of the structure is a type code from this set.
488 The enum values are arbitrary, but we'll use large numbers to make it
489 more likely that we'll spot the error if a random word in memory is
490 mistakenly interpreted as a Lisp_Misc. */
491 enum Lisp_Misc_Type
492 {
493 Lisp_Misc_Free = 0x5eab,
494 Lisp_Misc_Marker,
495 Lisp_Misc_Overlay,
496 Lisp_Misc_Save_Value,
497 /* Currently floats are not a misc type,
498 but let's define this in case we want to change that. */
499 Lisp_Misc_Float,
500 /* This is not a type code. It is for range checking. */
501 Lisp_Misc_Limit
502 };
503
504 /* These are the types of forwarding objects used in the value slot
505 of symbols for special built-in variables whose value is stored in
506 C variables. */
507 enum Lisp_Fwd_Type
508 {
509 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
510 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
511 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
512 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
513 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
514 };
515
516 /* If you want to define a new Lisp data type, here are some
517 instructions. See the thread at
518 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
519 for more info.
520
521 First, there are already a couple of Lisp types that can be used if
522 your new type does not need to be exposed to Lisp programs nor
523 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
524 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
525 is suitable for temporarily stashing away pointers and integers in
526 a Lisp object. The latter is useful for vector-like Lisp objects
527 that need to be used as part of other objects, but which are never
528 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
529 an example).
530
531 These two types don't look pretty when printed, so they are
532 unsuitable for Lisp objects that can be exposed to users.
533
534 To define a new data type, add one more Lisp_Misc subtype or one
535 more pseudovector subtype. Pseudovectors are more suitable for
536 objects with several slots that need to support fast random access,
537 while Lisp_Misc types are for everything else. A pseudovector object
538 provides one or more slots for Lisp objects, followed by struct
539 members that are accessible only from C. A Lisp_Misc object is a
540 wrapper for a C struct that can contain anything you like.
541
542 Explicit freeing is discouraged for Lisp objects in general. But if
543 you really need to exploit this, use Lisp_Misc (check free_misc in
544 alloc.c to see why). There is no way to free a vectorlike object.
545
546 To add a new pseudovector type, extend the pvec_type enumeration;
547 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
548
549 For a Lisp_Misc, you will also need to add your entry to union
550 Lisp_Misc (but make sure the first word has the same structure as
551 the others, starting with a 16-bit member of the Lisp_Misc_Type
552 enumeration and a 1-bit GC markbit) and make sure the overall size
553 of the union is not increased by your addition.
554
555 For a new pseudovector, it's highly desirable to limit the size
556 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
557 Otherwise you will need to change sweep_vectors (also in alloc.c).
558
559 Then you will need to add switch branches in print.c (in
560 print_object, to print your object, and possibly also in
561 print_preprocess) and to alloc.c, to mark your object (in
562 mark_object) and to free it (in gc_sweep). The latter is also the
563 right place to call any code specific to your data type that needs
564 to run when the object is recycled -- e.g., free any additional
565 resources allocated for it that are not Lisp objects. You can even
566 make a pointer to the function that frees the resources a slot in
567 your object -- this way, the same object could be used to represent
568 several disparate C structures. */
569
570 #ifdef CHECK_LISP_OBJECT_TYPE
571
572 typedef struct { EMACS_INT i; } Lisp_Object;
573
574 #define LISP_INITIALLY_ZERO {0}
575
576 #undef CHECK_LISP_OBJECT_TYPE
577 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
578 #else /* CHECK_LISP_OBJECT_TYPE */
579
580 /* If a struct type is not wanted, define Lisp_Object as just a number. */
581
582 typedef EMACS_INT Lisp_Object;
583 #define LISP_INITIALLY_ZERO 0
584 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
585 #endif /* CHECK_LISP_OBJECT_TYPE */
586
587 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
588 At the machine level, these operations are no-ops. */
589 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
590 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
591
592 /* In the size word of a vector, this bit means the vector has been marked. */
593
594 #define ARRAY_MARK_FLAG_val PTRDIFF_MIN
595 #if ENUMABLE (ARRAY_MARK_FLAG_val)
596 DEFINE_GDB_SYMBOL_ENUM (ARRAY_MARK_FLAG)
597 #else
598 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
599 # define ARRAY_MARK_FLAG ARRAY_MARK_FLAG_val
600 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
601 #endif
602
603 /* In the size word of a struct Lisp_Vector, this bit means it's really
604 some other vector-like object. */
605 #define PSEUDOVECTOR_FLAG_val (PTRDIFF_MAX - PTRDIFF_MAX / 2)
606 #if ENUMABLE (PSEUDOVECTOR_FLAG_val)
607 DEFINE_GDB_SYMBOL_ENUM (PSEUDOVECTOR_FLAG)
608 #else
609 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
610 # define PSEUDOVECTOR_FLAG PSEUDOVECTOR_FLAG_val
611 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
612 #endif
613
614 /* In a pseudovector, the size field actually contains a word with one
615 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
616 with PVEC_TYPE_MASK to indicate the actual type. */
617 enum pvec_type
618 {
619 PVEC_NORMAL_VECTOR,
620 PVEC_FREE,
621 PVEC_PROCESS,
622 PVEC_FRAME,
623 PVEC_WINDOW,
624 PVEC_BOOL_VECTOR,
625 PVEC_BUFFER,
626 PVEC_HASH_TABLE,
627 PVEC_TERMINAL,
628 PVEC_WINDOW_CONFIGURATION,
629 PVEC_SUBR,
630 PVEC_OTHER,
631 /* These should be last, check internal_equal to see why. */
632 PVEC_COMPILED,
633 PVEC_CHAR_TABLE,
634 PVEC_SUB_CHAR_TABLE,
635 PVEC_FONT /* Should be last because it's used for range checking. */
636 };
637
638 enum More_Lisp_Bits
639 {
640 /* For convenience, we also store the number of elements in these bits.
641 Note that this size is not necessarily the memory-footprint size, but
642 only the number of Lisp_Object fields (that need to be traced by GC).
643 The distinction is used, e.g., by Lisp_Process, which places extra
644 non-Lisp_Object fields at the end of the structure. */
645 PSEUDOVECTOR_SIZE_BITS = 12,
646 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
647
648 /* To calculate the memory footprint of the pseudovector, it's useful
649 to store the size of non-Lisp area in word_size units here. */
650 PSEUDOVECTOR_REST_BITS = 12,
651 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
652 << PSEUDOVECTOR_SIZE_BITS),
653
654 /* Used to extract pseudovector subtype information. */
655 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
656 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
657 };
658 \f
659 /* These functions extract various sorts of values from a Lisp_Object.
660 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
661 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
662 that cons. */
663
664 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
665 #define VALMASK_val (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
666 #if ENUMABLE (VALMASK_val)
667 DEFINE_GDB_SYMBOL_ENUM (VALMASK)
668 #else
669 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
670 # define VALMASK VALMASK_val
671 DEFINE_GDB_SYMBOL_END (VALMASK)
672 #endif
673
674 /* Largest and smallest representable fixnum values. These are the C
675 values. They are macros for use in static initializers. */
676 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
677 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
678
679 /* Extract the pointer hidden within A. */
680 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
681
682 #if USE_LSB_TAG
683
684 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
685 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
686 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
687 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
688 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
689
690 #else /* ! USE_LSB_TAG */
691
692 /* Although compiled only if ! USE_LSB_TAG, the following functions
693 also work when USE_LSB_TAG; this is to aid future maintenance when
694 the lisp_h_* macros are eventually removed. */
695
696 /* Make a Lisp integer representing the value of the low order
697 bits of N. */
698 INLINE Lisp_Object
699 make_number (EMACS_INT n)
700 {
701 if (USE_LSB_TAG)
702 {
703 EMACS_UINT u = n;
704 n = u << INTTYPEBITS;
705 }
706 else
707 n &= INTMASK;
708 return XIL (n);
709 }
710
711 /* Extract A's value as a signed integer. */
712 INLINE EMACS_INT
713 XINT (Lisp_Object a)
714 {
715 EMACS_INT i = XLI (a);
716 if (! USE_LSB_TAG)
717 {
718 EMACS_UINT u = i;
719 i = u << INTTYPEBITS;
720 }
721 return i >> INTTYPEBITS;
722 }
723
724 /* Like XINT (A), but may be faster. A must be nonnegative.
725 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
726 integers have zero-bits in their tags. */
727 INLINE EMACS_INT
728 XFASTINT (Lisp_Object a)
729 {
730 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
731 eassert (0 <= n);
732 return n;
733 }
734
735 /* Extract A's type. */
736 INLINE enum Lisp_Type
737 XTYPE (Lisp_Object a)
738 {
739 EMACS_UINT i = XLI (a);
740 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
741 }
742
743 /* Extract A's pointer value, assuming A's type is TYPE. */
744 INLINE void *
745 XUNTAG (Lisp_Object a, int type)
746 {
747 if (USE_LSB_TAG)
748 {
749 intptr_t i = XLI (a) - type;
750 return (void *) i;
751 }
752 return XPNTR (a);
753 }
754
755 #endif /* ! USE_LSB_TAG */
756
757 /* Extract A's value as an unsigned integer. */
758 INLINE EMACS_UINT
759 XUINT (Lisp_Object a)
760 {
761 EMACS_UINT i = XLI (a);
762 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
763 }
764
765 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
766 right now, but XUINT should only be applied to objects we know are
767 integers. */
768 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
769
770 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
771 INLINE Lisp_Object
772 make_natnum (EMACS_INT n)
773 {
774 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
775 return USE_LSB_TAG ? make_number (n) : XIL (n);
776 }
777
778 /* Return true if X and Y are the same object. */
779 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
780
781 /* Value is true if I doesn't fit into a Lisp fixnum. It is
782 written this way so that it also works if I is of unsigned
783 type or if I is a NaN. */
784
785 #define FIXNUM_OVERFLOW_P(i) \
786 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
787
788 INLINE ptrdiff_t
789 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
790 {
791 return num < lower ? lower : num <= upper ? num : upper;
792 }
793 \f
794 /* Forward declarations. */
795
796 /* Defined in this file. */
797 union Lisp_Fwd;
798 INLINE bool BOOL_VECTOR_P (Lisp_Object);
799 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
800 INLINE bool BUFFERP (Lisp_Object);
801 INLINE bool CHAR_TABLE_P (Lisp_Object);
802 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
803 INLINE bool (CONSP) (Lisp_Object);
804 INLINE bool (FLOATP) (Lisp_Object);
805 INLINE bool functionp (Lisp_Object);
806 INLINE bool (INTEGERP) (Lisp_Object);
807 INLINE bool (MARKERP) (Lisp_Object);
808 INLINE bool (MISCP) (Lisp_Object);
809 INLINE bool (NILP) (Lisp_Object);
810 INLINE bool OVERLAYP (Lisp_Object);
811 INLINE bool PROCESSP (Lisp_Object);
812 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
813 INLINE bool SAVE_VALUEP (Lisp_Object);
814 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
815 Lisp_Object);
816 INLINE bool STRINGP (Lisp_Object);
817 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
818 INLINE bool SUBRP (Lisp_Object);
819 INLINE bool (SYMBOLP) (Lisp_Object);
820 INLINE bool (VECTORLIKEP) (Lisp_Object);
821 INLINE bool WINDOWP (Lisp_Object);
822 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
823
824 /* Defined in chartab.c. */
825 extern Lisp_Object char_table_ref (Lisp_Object, int);
826 extern void char_table_set (Lisp_Object, int, Lisp_Object);
827
828 /* Defined in data.c. */
829 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
830 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
831 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
832 extern Lisp_Object Qbool_vector_p;
833 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
834 extern Lisp_Object Qwindow;
835 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
836 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
837
838 /* Defined in emacs.c. */
839 extern bool might_dump;
840 /* True means Emacs has already been initialized.
841 Used during startup to detect startup of dumped Emacs. */
842 extern bool initialized;
843
844 /* Defined in eval.c. */
845 extern Lisp_Object Qautoload;
846
847 /* Defined in floatfns.c. */
848 extern double extract_float (Lisp_Object);
849
850 /* Defined in process.c. */
851 extern Lisp_Object Qprocessp;
852
853 /* Defined in window.c. */
854 extern Lisp_Object Qwindowp;
855
856 /* Defined in xdisp.c. */
857 extern Lisp_Object Qimage;
858 \f
859
860 /* Extract a value or address from a Lisp_Object. */
861
862 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
863
864 INLINE struct Lisp_Vector *
865 XVECTOR (Lisp_Object a)
866 {
867 eassert (VECTORLIKEP (a));
868 return XUNTAG (a, Lisp_Vectorlike);
869 }
870
871 INLINE struct Lisp_String *
872 XSTRING (Lisp_Object a)
873 {
874 eassert (STRINGP (a));
875 return XUNTAG (a, Lisp_String);
876 }
877
878 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
879
880 INLINE struct Lisp_Float *
881 XFLOAT (Lisp_Object a)
882 {
883 eassert (FLOATP (a));
884 return XUNTAG (a, Lisp_Float);
885 }
886
887 /* Pseudovector types. */
888
889 INLINE struct Lisp_Process *
890 XPROCESS (Lisp_Object a)
891 {
892 eassert (PROCESSP (a));
893 return XUNTAG (a, Lisp_Vectorlike);
894 }
895
896 INLINE struct window *
897 XWINDOW (Lisp_Object a)
898 {
899 eassert (WINDOWP (a));
900 return XUNTAG (a, Lisp_Vectorlike);
901 }
902
903 INLINE struct terminal *
904 XTERMINAL (Lisp_Object a)
905 {
906 return XUNTAG (a, Lisp_Vectorlike);
907 }
908
909 INLINE struct Lisp_Subr *
910 XSUBR (Lisp_Object a)
911 {
912 eassert (SUBRP (a));
913 return XUNTAG (a, Lisp_Vectorlike);
914 }
915
916 INLINE struct buffer *
917 XBUFFER (Lisp_Object a)
918 {
919 eassert (BUFFERP (a));
920 return XUNTAG (a, Lisp_Vectorlike);
921 }
922
923 INLINE struct Lisp_Char_Table *
924 XCHAR_TABLE (Lisp_Object a)
925 {
926 eassert (CHAR_TABLE_P (a));
927 return XUNTAG (a, Lisp_Vectorlike);
928 }
929
930 INLINE struct Lisp_Sub_Char_Table *
931 XSUB_CHAR_TABLE (Lisp_Object a)
932 {
933 eassert (SUB_CHAR_TABLE_P (a));
934 return XUNTAG (a, Lisp_Vectorlike);
935 }
936
937 INLINE struct Lisp_Bool_Vector *
938 XBOOL_VECTOR (Lisp_Object a)
939 {
940 eassert (BOOL_VECTOR_P (a));
941 return XUNTAG (a, Lisp_Vectorlike);
942 }
943
944 /* Construct a Lisp_Object from a value or address. */
945
946 INLINE Lisp_Object
947 make_lisp_ptr (void *ptr, enum Lisp_Type type)
948 {
949 EMACS_UINT utype = type;
950 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
951 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
952 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
953 return a;
954 }
955
956 INLINE Lisp_Object
957 make_lisp_proc (struct Lisp_Process *p)
958 {
959 return make_lisp_ptr (p, Lisp_Vectorlike);
960 }
961
962 #define XSETINT(a, b) ((a) = make_number (b))
963 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
964 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
965 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
966 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
967 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
968 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
969 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
970
971 /* Pseudovector types. */
972
973 #define XSETPVECTYPE(v, code) \
974 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
975 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
976 ((v)->header.size = (PSEUDOVECTOR_FLAG \
977 | ((code) << PSEUDOVECTOR_AREA_BITS) \
978 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
979 | (lispsize)))
980
981 /* The cast to struct vectorlike_header * avoids aliasing issues. */
982 #define XSETPSEUDOVECTOR(a, b, code) \
983 XSETTYPED_PSEUDOVECTOR (a, b, \
984 (((struct vectorlike_header *) \
985 XUNTAG (a, Lisp_Vectorlike)) \
986 ->size), \
987 code)
988 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
989 (XSETVECTOR (a, b), \
990 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
991 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
992
993 #define XSETWINDOW_CONFIGURATION(a, b) \
994 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
995 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
996 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
997 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
998 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
999 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1000 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1001 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1002 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1003 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1004
1005 /* Type checking. */
1006
1007 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1008 (int ok, Lisp_Object predicate, Lisp_Object x),
1009 (ok, predicate, x))
1010
1011 /* Deprecated and will be removed soon. */
1012
1013 #define INTERNAL_FIELD(field) field ## _
1014
1015 /* See the macros in intervals.h. */
1016
1017 typedef struct interval *INTERVAL;
1018
1019 struct Lisp_Cons
1020 {
1021 /* Car of this cons cell. */
1022 Lisp_Object car;
1023
1024 union
1025 {
1026 /* Cdr of this cons cell. */
1027 Lisp_Object cdr;
1028
1029 /* Used to chain conses on a free list. */
1030 struct Lisp_Cons *chain;
1031 } u;
1032 };
1033
1034 /* Take the car or cdr of something known to be a cons cell. */
1035 /* The _addr functions shouldn't be used outside of the minimal set
1036 of code that has to know what a cons cell looks like. Other code not
1037 part of the basic lisp implementation should assume that the car and cdr
1038 fields are not accessible. (What if we want to switch to
1039 a copying collector someday? Cached cons cell field addresses may be
1040 invalidated at arbitrary points.) */
1041 INLINE Lisp_Object *
1042 xcar_addr (Lisp_Object c)
1043 {
1044 return &XCONS (c)->car;
1045 }
1046 INLINE Lisp_Object *
1047 xcdr_addr (Lisp_Object c)
1048 {
1049 return &XCONS (c)->u.cdr;
1050 }
1051
1052 /* Use these from normal code. */
1053 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1054 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1055
1056 /* Use these to set the fields of a cons cell.
1057
1058 Note that both arguments may refer to the same object, so 'n'
1059 should not be read after 'c' is first modified. */
1060 INLINE void
1061 XSETCAR (Lisp_Object c, Lisp_Object n)
1062 {
1063 *xcar_addr (c) = n;
1064 }
1065 INLINE void
1066 XSETCDR (Lisp_Object c, Lisp_Object n)
1067 {
1068 *xcdr_addr (c) = n;
1069 }
1070
1071 /* Take the car or cdr of something whose type is not known. */
1072 INLINE Lisp_Object
1073 CAR (Lisp_Object c)
1074 {
1075 return (CONSP (c) ? XCAR (c)
1076 : NILP (c) ? Qnil
1077 : wrong_type_argument (Qlistp, c));
1078 }
1079 INLINE Lisp_Object
1080 CDR (Lisp_Object c)
1081 {
1082 return (CONSP (c) ? XCDR (c)
1083 : NILP (c) ? Qnil
1084 : wrong_type_argument (Qlistp, c));
1085 }
1086
1087 /* Take the car or cdr of something whose type is not known. */
1088 INLINE Lisp_Object
1089 CAR_SAFE (Lisp_Object c)
1090 {
1091 return CONSP (c) ? XCAR (c) : Qnil;
1092 }
1093 INLINE Lisp_Object
1094 CDR_SAFE (Lisp_Object c)
1095 {
1096 return CONSP (c) ? XCDR (c) : Qnil;
1097 }
1098
1099 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1100
1101 struct Lisp_String
1102 {
1103 ptrdiff_t size;
1104 ptrdiff_t size_byte;
1105 INTERVAL intervals; /* Text properties in this string. */
1106 unsigned char *data;
1107 };
1108
1109 /* True if STR is a multibyte string. */
1110 INLINE bool
1111 STRING_MULTIBYTE (Lisp_Object str)
1112 {
1113 return 0 <= XSTRING (str)->size_byte;
1114 }
1115
1116 /* An upper bound on the number of bytes in a Lisp string, not
1117 counting the terminating null. This a tight enough bound to
1118 prevent integer overflow errors that would otherwise occur during
1119 string size calculations. A string cannot contain more bytes than
1120 a fixnum can represent, nor can it be so long that C pointer
1121 arithmetic stops working on the string plus its terminating null.
1122 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1123 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1124 would expose alloc.c internal details that we'd rather keep
1125 private.
1126
1127 This is a macro for use in static initializers. The cast to
1128 ptrdiff_t ensures that the macro is signed. */
1129 #define STRING_BYTES_BOUND \
1130 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1131
1132 /* Mark STR as a unibyte string. */
1133 #define STRING_SET_UNIBYTE(STR) \
1134 do { \
1135 if (EQ (STR, empty_multibyte_string)) \
1136 (STR) = empty_unibyte_string; \
1137 else \
1138 XSTRING (STR)->size_byte = -1; \
1139 } while (false)
1140
1141 /* Mark STR as a multibyte string. Assure that STR contains only
1142 ASCII characters in advance. */
1143 #define STRING_SET_MULTIBYTE(STR) \
1144 do { \
1145 if (EQ (STR, empty_unibyte_string)) \
1146 (STR) = empty_multibyte_string; \
1147 else \
1148 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1149 } while (false)
1150
1151 /* Convenience functions for dealing with Lisp strings. */
1152
1153 INLINE unsigned char *
1154 SDATA (Lisp_Object string)
1155 {
1156 return XSTRING (string)->data;
1157 }
1158 INLINE char *
1159 SSDATA (Lisp_Object string)
1160 {
1161 /* Avoid "differ in sign" warnings. */
1162 return (char *) SDATA (string);
1163 }
1164 INLINE unsigned char
1165 SREF (Lisp_Object string, ptrdiff_t index)
1166 {
1167 return SDATA (string)[index];
1168 }
1169 INLINE void
1170 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1171 {
1172 SDATA (string)[index] = new;
1173 }
1174 INLINE ptrdiff_t
1175 SCHARS (Lisp_Object string)
1176 {
1177 return XSTRING (string)->size;
1178 }
1179
1180 #ifdef GC_CHECK_STRING_BYTES
1181 extern ptrdiff_t string_bytes (struct Lisp_String *);
1182 #endif
1183 INLINE ptrdiff_t
1184 STRING_BYTES (struct Lisp_String *s)
1185 {
1186 #ifdef GC_CHECK_STRING_BYTES
1187 return string_bytes (s);
1188 #else
1189 return s->size_byte < 0 ? s->size : s->size_byte;
1190 #endif
1191 }
1192
1193 INLINE ptrdiff_t
1194 SBYTES (Lisp_Object string)
1195 {
1196 return STRING_BYTES (XSTRING (string));
1197 }
1198 INLINE void
1199 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1200 {
1201 XSTRING (string)->size = newsize;
1202 }
1203
1204 /* Header of vector-like objects. This documents the layout constraints on
1205 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1206 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1207 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1208 because when two such pointers potentially alias, a compiler won't
1209 incorrectly reorder loads and stores to their size fields. See
1210 Bug#8546. */
1211 struct vectorlike_header
1212 {
1213 /* The only field contains various pieces of information:
1214 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1215 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1216 vector (0) or a pseudovector (1).
1217 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1218 of slots) of the vector.
1219 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1220 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1221 - b) number of Lisp_Objects slots at the beginning of the object
1222 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1223 traced by the GC;
1224 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1225 measured in word_size units. Rest fields may also include
1226 Lisp_Objects, but these objects usually needs some special treatment
1227 during GC.
1228 There are some exceptions. For PVEC_FREE, b) is always zero. For
1229 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1230 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1231 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1232 ptrdiff_t size;
1233 };
1234
1235 /* A regular vector is just a header plus an array of Lisp_Objects. */
1236
1237 struct Lisp_Vector
1238 {
1239 struct vectorlike_header header;
1240 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1241 };
1242
1243 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1244 enum
1245 {
1246 ALIGNOF_STRUCT_LISP_VECTOR
1247 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1248 };
1249
1250 /* A boolvector is a kind of vectorlike, with contents like a string. */
1251
1252 struct Lisp_Bool_Vector
1253 {
1254 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1255 just the subtype information. */
1256 struct vectorlike_header header;
1257 /* This is the size in bits. */
1258 EMACS_INT size;
1259 /* The actual bits, packed into bytes.
1260 Zeros fill out the last word if needed.
1261 The bits are in little-endian order in the bytes, and
1262 the bytes are in little-endian order in the words. */
1263 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1264 };
1265
1266 INLINE EMACS_INT
1267 bool_vector_size (Lisp_Object a)
1268 {
1269 EMACS_INT size = XBOOL_VECTOR (a)->size;
1270 eassume (0 <= size);
1271 return size;
1272 }
1273
1274 INLINE bits_word *
1275 bool_vector_data (Lisp_Object a)
1276 {
1277 return XBOOL_VECTOR (a)->data;
1278 }
1279
1280 INLINE unsigned char *
1281 bool_vector_uchar_data (Lisp_Object a)
1282 {
1283 return (unsigned char *) bool_vector_data (a);
1284 }
1285
1286 /* The number of data words and bytes in a bool vector with SIZE bits. */
1287
1288 INLINE EMACS_INT
1289 bool_vector_words (EMACS_INT size)
1290 {
1291 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1292 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1293 }
1294
1295 INLINE EMACS_INT
1296 bool_vector_bytes (EMACS_INT size)
1297 {
1298 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1299 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1300 }
1301
1302 /* True if A's Ith bit is set. */
1303
1304 INLINE bool
1305 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1306 {
1307 eassume (0 <= i && i < bool_vector_size (a));
1308 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1309 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1310 }
1311
1312 INLINE Lisp_Object
1313 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1314 {
1315 return bool_vector_bitref (a, i) ? Qt : Qnil;
1316 }
1317
1318 /* Set A's Ith bit to B. */
1319
1320 INLINE void
1321 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1322 {
1323 unsigned char *addr;
1324
1325 eassume (0 <= i && i < bool_vector_size (a));
1326 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1327
1328 if (b)
1329 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1330 else
1331 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1332 }
1333
1334 /* Some handy constants for calculating sizes
1335 and offsets, mostly of vectorlike objects. */
1336
1337 enum
1338 {
1339 header_size = offsetof (struct Lisp_Vector, contents),
1340 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1341 word_size = sizeof (Lisp_Object)
1342 };
1343
1344 /* Conveniences for dealing with Lisp arrays. */
1345
1346 INLINE Lisp_Object
1347 AREF (Lisp_Object array, ptrdiff_t idx)
1348 {
1349 return XVECTOR (array)->contents[idx];
1350 }
1351
1352 INLINE Lisp_Object *
1353 aref_addr (Lisp_Object array, ptrdiff_t idx)
1354 {
1355 return & XVECTOR (array)->contents[idx];
1356 }
1357
1358 INLINE ptrdiff_t
1359 ASIZE (Lisp_Object array)
1360 {
1361 return XVECTOR (array)->header.size;
1362 }
1363
1364 INLINE void
1365 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1366 {
1367 eassert (0 <= idx && idx < ASIZE (array));
1368 XVECTOR (array)->contents[idx] = val;
1369 }
1370
1371 INLINE void
1372 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1373 {
1374 /* Like ASET, but also can be used in the garbage collector:
1375 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1376 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1377 XVECTOR (array)->contents[idx] = val;
1378 }
1379
1380 /* If a struct is made to look like a vector, this macro returns the length
1381 of the shortest vector that would hold that struct. */
1382
1383 #define VECSIZE(type) \
1384 ((sizeof (type) - header_size + word_size - 1) / word_size)
1385
1386 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1387 at the end and we need to compute the number of Lisp_Object fields (the
1388 ones that the GC needs to trace). */
1389
1390 #define PSEUDOVECSIZE(type, nonlispfield) \
1391 ((offsetof (type, nonlispfield) - header_size) / word_size)
1392
1393 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1394 should be integer expressions. This is not the same as
1395 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1396 returns true. For efficiency, prefer plain unsigned comparison if A
1397 and B's sizes both fit (after integer promotion). */
1398 #define UNSIGNED_CMP(a, op, b) \
1399 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1400 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1401 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1402
1403 /* True iff C is an ASCII character. */
1404 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1405
1406 /* A char-table is a kind of vectorlike, with contents are like a
1407 vector but with a few other slots. For some purposes, it makes
1408 sense to handle a char-table with type struct Lisp_Vector. An
1409 element of a char table can be any Lisp objects, but if it is a sub
1410 char-table, we treat it a table that contains information of a
1411 specific range of characters. A sub char-table is like a vector but
1412 with two integer fields between the header and Lisp data, which means
1413 that it has to be marked with some precautions (see mark_char_table
1414 in alloc.c). A sub char-table appears only in an element of a char-table,
1415 and there's no way to access it directly from Emacs Lisp program. */
1416
1417 enum CHARTAB_SIZE_BITS
1418 {
1419 CHARTAB_SIZE_BITS_0 = 6,
1420 CHARTAB_SIZE_BITS_1 = 4,
1421 CHARTAB_SIZE_BITS_2 = 5,
1422 CHARTAB_SIZE_BITS_3 = 7
1423 };
1424
1425 extern const int chartab_size[4];
1426
1427 struct Lisp_Char_Table
1428 {
1429 /* HEADER.SIZE is the vector's size field, which also holds the
1430 pseudovector type information. It holds the size, too.
1431 The size counts the defalt, parent, purpose, ascii,
1432 contents, and extras slots. */
1433 struct vectorlike_header header;
1434
1435 /* This holds a default value,
1436 which is used whenever the value for a specific character is nil. */
1437 Lisp_Object defalt;
1438
1439 /* This points to another char table, which we inherit from when the
1440 value for a specific character is nil. The `defalt' slot takes
1441 precedence over this. */
1442 Lisp_Object parent;
1443
1444 /* This is a symbol which says what kind of use this char-table is
1445 meant for. */
1446 Lisp_Object purpose;
1447
1448 /* The bottom sub char-table for characters of the range 0..127. It
1449 is nil if none of ASCII character has a specific value. */
1450 Lisp_Object ascii;
1451
1452 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1453
1454 /* These hold additional data. It is a vector. */
1455 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1456 };
1457
1458 struct Lisp_Sub_Char_Table
1459 {
1460 /* HEADER.SIZE is the vector's size field, which also holds the
1461 pseudovector type information. It holds the size, too. */
1462 struct vectorlike_header header;
1463
1464 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1465 char-table of depth 1 contains 16 elements, and each element
1466 covers 4096 (128*32) characters. A sub char-table of depth 2
1467 contains 32 elements, and each element covers 128 characters. A
1468 sub char-table of depth 3 contains 128 elements, and each element
1469 is for one character. */
1470 int depth;
1471
1472 /* Minimum character covered by the sub char-table. */
1473 int min_char;
1474
1475 /* Use set_sub_char_table_contents to set this. */
1476 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1477 };
1478
1479 INLINE Lisp_Object
1480 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1481 {
1482 struct Lisp_Char_Table *tbl = NULL;
1483 Lisp_Object val;
1484 do
1485 {
1486 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1487 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1488 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1489 if (NILP (val))
1490 val = tbl->defalt;
1491 }
1492 while (NILP (val) && ! NILP (tbl->parent));
1493
1494 return val;
1495 }
1496
1497 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1498 characters. Do not check validity of CT. */
1499 INLINE Lisp_Object
1500 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1501 {
1502 return (ASCII_CHAR_P (idx)
1503 ? CHAR_TABLE_REF_ASCII (ct, idx)
1504 : char_table_ref (ct, idx));
1505 }
1506
1507 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1508 8-bit European characters. Do not check validity of CT. */
1509 INLINE void
1510 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1511 {
1512 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1513 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1514 else
1515 char_table_set (ct, idx, val);
1516 }
1517
1518 /* This structure describes a built-in function.
1519 It is generated by the DEFUN macro only.
1520 defsubr makes it into a Lisp object. */
1521
1522 struct Lisp_Subr
1523 {
1524 struct vectorlike_header header;
1525 union {
1526 Lisp_Object (*a0) (void);
1527 Lisp_Object (*a1) (Lisp_Object);
1528 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1529 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1530 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1531 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1532 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1533 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1534 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1535 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1536 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1537 } function;
1538 short min_args, max_args;
1539 const char *symbol_name;
1540 const char *intspec;
1541 const char *doc;
1542 };
1543
1544 enum char_table_specials
1545 {
1546 /* This is the number of slots that every char table must have. This
1547 counts the ordinary slots and the top, defalt, parent, and purpose
1548 slots. */
1549 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1550
1551 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1552 when the latter is treated as an ordinary Lisp_Vector. */
1553 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1554 };
1555
1556 /* Return the number of "extra" slots in the char table CT. */
1557
1558 INLINE int
1559 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1560 {
1561 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1562 - CHAR_TABLE_STANDARD_SLOTS);
1563 }
1564
1565 /* Make sure that sub char-table contents slot
1566 is aligned on a multiple of Lisp_Objects. */
1567 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1568 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1569
1570 /***********************************************************************
1571 Symbols
1572 ***********************************************************************/
1573
1574 /* Interned state of a symbol. */
1575
1576 enum symbol_interned
1577 {
1578 SYMBOL_UNINTERNED = 0,
1579 SYMBOL_INTERNED = 1,
1580 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1581 };
1582
1583 enum symbol_redirect
1584 {
1585 SYMBOL_PLAINVAL = 4,
1586 SYMBOL_VARALIAS = 1,
1587 SYMBOL_LOCALIZED = 2,
1588 SYMBOL_FORWARDED = 3
1589 };
1590
1591 struct Lisp_Symbol
1592 {
1593 bool_bf gcmarkbit : 1;
1594
1595 /* Indicates where the value can be found:
1596 0 : it's a plain var, the value is in the `value' field.
1597 1 : it's a varalias, the value is really in the `alias' symbol.
1598 2 : it's a localized var, the value is in the `blv' object.
1599 3 : it's a forwarding variable, the value is in `forward'. */
1600 ENUM_BF (symbol_redirect) redirect : 3;
1601
1602 /* Non-zero means symbol is constant, i.e. changing its value
1603 should signal an error. If the value is 3, then the var
1604 can be changed, but only by `defconst'. */
1605 unsigned constant : 2;
1606
1607 /* Interned state of the symbol. This is an enumerator from
1608 enum symbol_interned. */
1609 unsigned interned : 2;
1610
1611 /* True means that this variable has been explicitly declared
1612 special (with `defvar' etc), and shouldn't be lexically bound. */
1613 bool_bf declared_special : 1;
1614
1615 /* True if pointed to from purespace and hence can't be GC'd. */
1616 bool_bf pinned : 1;
1617
1618 /* The symbol's name, as a Lisp string. */
1619 Lisp_Object name;
1620
1621 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1622 union is used depends on the `redirect' field above. */
1623 union {
1624 Lisp_Object value;
1625 struct Lisp_Symbol *alias;
1626 struct Lisp_Buffer_Local_Value *blv;
1627 union Lisp_Fwd *fwd;
1628 } val;
1629
1630 /* Function value of the symbol or Qnil if not fboundp. */
1631 Lisp_Object function;
1632
1633 /* The symbol's property list. */
1634 Lisp_Object plist;
1635
1636 /* Next symbol in obarray bucket, if the symbol is interned. */
1637 struct Lisp_Symbol *next;
1638 };
1639
1640 /* Value is name of symbol. */
1641
1642 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1643
1644 INLINE struct Lisp_Symbol *
1645 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1646 {
1647 eassert (sym->redirect == SYMBOL_VARALIAS);
1648 return sym->val.alias;
1649 }
1650 INLINE struct Lisp_Buffer_Local_Value *
1651 SYMBOL_BLV (struct Lisp_Symbol *sym)
1652 {
1653 eassert (sym->redirect == SYMBOL_LOCALIZED);
1654 return sym->val.blv;
1655 }
1656 INLINE union Lisp_Fwd *
1657 SYMBOL_FWD (struct Lisp_Symbol *sym)
1658 {
1659 eassert (sym->redirect == SYMBOL_FORWARDED);
1660 return sym->val.fwd;
1661 }
1662
1663 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1664 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1665
1666 INLINE void
1667 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1668 {
1669 eassert (sym->redirect == SYMBOL_VARALIAS);
1670 sym->val.alias = v;
1671 }
1672 INLINE void
1673 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1674 {
1675 eassert (sym->redirect == SYMBOL_LOCALIZED);
1676 sym->val.blv = v;
1677 }
1678 INLINE void
1679 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1680 {
1681 eassert (sym->redirect == SYMBOL_FORWARDED);
1682 sym->val.fwd = v;
1683 }
1684
1685 INLINE Lisp_Object
1686 SYMBOL_NAME (Lisp_Object sym)
1687 {
1688 return XSYMBOL (sym)->name;
1689 }
1690
1691 /* Value is true if SYM is an interned symbol. */
1692
1693 INLINE bool
1694 SYMBOL_INTERNED_P (Lisp_Object sym)
1695 {
1696 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1697 }
1698
1699 /* Value is true if SYM is interned in initial_obarray. */
1700
1701 INLINE bool
1702 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1703 {
1704 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1705 }
1706
1707 /* Value is non-zero if symbol is considered a constant, i.e. its
1708 value cannot be changed (there is an exception for keyword symbols,
1709 whose value can be set to the keyword symbol itself). */
1710
1711 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1712
1713 #define DEFSYM(sym, name) \
1714 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1715
1716 \f
1717 /***********************************************************************
1718 Hash Tables
1719 ***********************************************************************/
1720
1721 /* The structure of a Lisp hash table. */
1722
1723 struct hash_table_test
1724 {
1725 /* Name of the function used to compare keys. */
1726 Lisp_Object name;
1727
1728 /* User-supplied hash function, or nil. */
1729 Lisp_Object user_hash_function;
1730
1731 /* User-supplied key comparison function, or nil. */
1732 Lisp_Object user_cmp_function;
1733
1734 /* C function to compare two keys. */
1735 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1736
1737 /* C function to compute hash code. */
1738 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1739 };
1740
1741 struct Lisp_Hash_Table
1742 {
1743 /* This is for Lisp; the hash table code does not refer to it. */
1744 struct vectorlike_header header;
1745
1746 /* Nil if table is non-weak. Otherwise a symbol describing the
1747 weakness of the table. */
1748 Lisp_Object weak;
1749
1750 /* When the table is resized, and this is an integer, compute the
1751 new size by adding this to the old size. If a float, compute the
1752 new size by multiplying the old size with this factor. */
1753 Lisp_Object rehash_size;
1754
1755 /* Resize hash table when number of entries/ table size is >= this
1756 ratio, a float. */
1757 Lisp_Object rehash_threshold;
1758
1759 /* Vector of hash codes. If hash[I] is nil, this means that the
1760 I-th entry is unused. */
1761 Lisp_Object hash;
1762
1763 /* Vector used to chain entries. If entry I is free, next[I] is the
1764 entry number of the next free item. If entry I is non-free,
1765 next[I] is the index of the next entry in the collision chain. */
1766 Lisp_Object next;
1767
1768 /* Index of first free entry in free list. */
1769 Lisp_Object next_free;
1770
1771 /* Bucket vector. A non-nil entry is the index of the first item in
1772 a collision chain. This vector's size can be larger than the
1773 hash table size to reduce collisions. */
1774 Lisp_Object index;
1775
1776 /* Only the fields above are traced normally by the GC. The ones below
1777 `count' are special and are either ignored by the GC or traced in
1778 a special way (e.g. because of weakness). */
1779
1780 /* Number of key/value entries in the table. */
1781 ptrdiff_t count;
1782
1783 /* Vector of keys and values. The key of item I is found at index
1784 2 * I, the value is found at index 2 * I + 1.
1785 This is gc_marked specially if the table is weak. */
1786 Lisp_Object key_and_value;
1787
1788 /* The comparison and hash functions. */
1789 struct hash_table_test test;
1790
1791 /* Next weak hash table if this is a weak hash table. The head
1792 of the list is in weak_hash_tables. */
1793 struct Lisp_Hash_Table *next_weak;
1794 };
1795
1796
1797 INLINE struct Lisp_Hash_Table *
1798 XHASH_TABLE (Lisp_Object a)
1799 {
1800 return XUNTAG (a, Lisp_Vectorlike);
1801 }
1802
1803 #define XSET_HASH_TABLE(VAR, PTR) \
1804 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1805
1806 INLINE bool
1807 HASH_TABLE_P (Lisp_Object a)
1808 {
1809 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1810 }
1811
1812 /* Value is the key part of entry IDX in hash table H. */
1813 INLINE Lisp_Object
1814 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1815 {
1816 return AREF (h->key_and_value, 2 * idx);
1817 }
1818
1819 /* Value is the value part of entry IDX in hash table H. */
1820 INLINE Lisp_Object
1821 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1822 {
1823 return AREF (h->key_and_value, 2 * idx + 1);
1824 }
1825
1826 /* Value is the index of the next entry following the one at IDX
1827 in hash table H. */
1828 INLINE Lisp_Object
1829 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1830 {
1831 return AREF (h->next, idx);
1832 }
1833
1834 /* Value is the hash code computed for entry IDX in hash table H. */
1835 INLINE Lisp_Object
1836 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1837 {
1838 return AREF (h->hash, idx);
1839 }
1840
1841 /* Value is the index of the element in hash table H that is the
1842 start of the collision list at index IDX in the index vector of H. */
1843 INLINE Lisp_Object
1844 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1845 {
1846 return AREF (h->index, idx);
1847 }
1848
1849 /* Value is the size of hash table H. */
1850 INLINE ptrdiff_t
1851 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1852 {
1853 return ASIZE (h->next);
1854 }
1855
1856 /* Default size for hash tables if not specified. */
1857
1858 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1859
1860 /* Default threshold specifying when to resize a hash table. The
1861 value gives the ratio of current entries in the hash table and the
1862 size of the hash table. */
1863
1864 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1865
1866 /* Default factor by which to increase the size of a hash table. */
1867
1868 static double const DEFAULT_REHASH_SIZE = 1.5;
1869
1870 /* Combine two integers X and Y for hashing. The result might not fit
1871 into a Lisp integer. */
1872
1873 INLINE EMACS_UINT
1874 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1875 {
1876 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1877 }
1878
1879 /* Hash X, returning a value that fits into a fixnum. */
1880
1881 INLINE EMACS_UINT
1882 SXHASH_REDUCE (EMACS_UINT x)
1883 {
1884 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1885 }
1886
1887 /* These structures are used for various misc types. */
1888
1889 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1890 {
1891 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1892 bool_bf gcmarkbit : 1;
1893 unsigned spacer : 15;
1894 };
1895
1896 struct Lisp_Marker
1897 {
1898 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1899 bool_bf gcmarkbit : 1;
1900 unsigned spacer : 13;
1901 /* This flag is temporarily used in the functions
1902 decode/encode_coding_object to record that the marker position
1903 must be adjusted after the conversion. */
1904 bool_bf need_adjustment : 1;
1905 /* True means normal insertion at the marker's position
1906 leaves the marker after the inserted text. */
1907 bool_bf insertion_type : 1;
1908 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1909 Note: a chain of markers can contain markers pointing into different
1910 buffers (the chain is per buffer_text rather than per buffer, so it's
1911 shared between indirect buffers). */
1912 /* This is used for (other than NULL-checking):
1913 - Fmarker_buffer
1914 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1915 - unchain_marker: to find the list from which to unchain.
1916 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1917 */
1918 struct buffer *buffer;
1919
1920 /* The remaining fields are meaningless in a marker that
1921 does not point anywhere. */
1922
1923 /* For markers that point somewhere,
1924 this is used to chain of all the markers in a given buffer. */
1925 /* We could remove it and use an array in buffer_text instead.
1926 That would also allow to preserve it ordered. */
1927 struct Lisp_Marker *next;
1928 /* This is the char position where the marker points. */
1929 ptrdiff_t charpos;
1930 /* This is the byte position.
1931 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1932 used to implement the functionality of markers, but rather to (ab)use
1933 markers as a cache for char<->byte mappings). */
1934 ptrdiff_t bytepos;
1935 };
1936
1937 /* START and END are markers in the overlay's buffer, and
1938 PLIST is the overlay's property list. */
1939 struct Lisp_Overlay
1940 /* An overlay's real data content is:
1941 - plist
1942 - buffer (really there are two buffer pointers, one per marker,
1943 and both points to the same buffer)
1944 - insertion type of both ends (per-marker fields)
1945 - start & start byte (of start marker)
1946 - end & end byte (of end marker)
1947 - next (singly linked list of overlays)
1948 - next fields of start and end markers (singly linked list of markers).
1949 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1950 */
1951 {
1952 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1953 bool_bf gcmarkbit : 1;
1954 unsigned spacer : 15;
1955 struct Lisp_Overlay *next;
1956 Lisp_Object start;
1957 Lisp_Object end;
1958 Lisp_Object plist;
1959 };
1960
1961 /* Types of data which may be saved in a Lisp_Save_Value. */
1962
1963 enum
1964 {
1965 SAVE_UNUSED,
1966 SAVE_INTEGER,
1967 SAVE_FUNCPOINTER,
1968 SAVE_POINTER,
1969 SAVE_OBJECT
1970 };
1971
1972 /* Number of bits needed to store one of the above values. */
1973 enum { SAVE_SLOT_BITS = 3 };
1974
1975 /* Number of slots in a save value where save_type is nonzero. */
1976 enum { SAVE_VALUE_SLOTS = 4 };
1977
1978 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1979
1980 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1981
1982 enum Lisp_Save_Type
1983 {
1984 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1985 SAVE_TYPE_INT_INT_INT
1986 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1987 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1988 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1989 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1990 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1991 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1992 SAVE_TYPE_INT_OBJ = SAVE_INTEGER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1993 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1994 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1995 SAVE_TYPE_FUNCPTR_PTR_OBJ
1996 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1997
1998 /* This has an extra bit indicating it's raw memory. */
1999 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2000 };
2001
2002 /* Special object used to hold a different values for later use.
2003
2004 This is mostly used to package C integers and pointers to call
2005 record_unwind_protect when two or more values need to be saved.
2006 For example:
2007
2008 ...
2009 struct my_data *md = get_my_data ();
2010 ptrdiff_t mi = get_my_integer ();
2011 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2012 ...
2013
2014 Lisp_Object my_unwind (Lisp_Object arg)
2015 {
2016 struct my_data *md = XSAVE_POINTER (arg, 0);
2017 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2018 ...
2019 }
2020
2021 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2022 saved objects and raise eassert if type of the saved object doesn't match
2023 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2024 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2025 slot 0 is a pointer. */
2026
2027 typedef void (*voidfuncptr) (void);
2028
2029 struct Lisp_Save_Value
2030 {
2031 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2032 bool_bf gcmarkbit : 1;
2033 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2034
2035 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2036 V's data entries are determined by V->save_type. E.g., if
2037 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2038 V->data[1] is an integer, and V's other data entries are unused.
2039
2040 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2041 a memory area containing V->data[1].integer potential Lisp_Objects. */
2042 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2043 union {
2044 void *pointer;
2045 voidfuncptr funcpointer;
2046 ptrdiff_t integer;
2047 Lisp_Object object;
2048 } data[SAVE_VALUE_SLOTS];
2049 };
2050
2051 /* Return the type of V's Nth saved value. */
2052 INLINE int
2053 save_type (struct Lisp_Save_Value *v, int n)
2054 {
2055 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2056 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2057 }
2058
2059 /* Get and set the Nth saved pointer. */
2060
2061 INLINE void *
2062 XSAVE_POINTER (Lisp_Object obj, int n)
2063 {
2064 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2065 return XSAVE_VALUE (obj)->data[n].pointer;
2066 }
2067 INLINE void
2068 set_save_pointer (Lisp_Object obj, int n, void *val)
2069 {
2070 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2071 XSAVE_VALUE (obj)->data[n].pointer = val;
2072 }
2073 INLINE voidfuncptr
2074 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2075 {
2076 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2077 return XSAVE_VALUE (obj)->data[n].funcpointer;
2078 }
2079
2080 /* Likewise for the saved integer. */
2081
2082 INLINE ptrdiff_t
2083 XSAVE_INTEGER (Lisp_Object obj, int n)
2084 {
2085 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2086 return XSAVE_VALUE (obj)->data[n].integer;
2087 }
2088 INLINE void
2089 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2090 {
2091 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2092 XSAVE_VALUE (obj)->data[n].integer = val;
2093 }
2094
2095 /* Extract Nth saved object. */
2096
2097 INLINE Lisp_Object
2098 XSAVE_OBJECT (Lisp_Object obj, int n)
2099 {
2100 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2101 return XSAVE_VALUE (obj)->data[n].object;
2102 }
2103
2104 /* A miscellaneous object, when it's on the free list. */
2105 struct Lisp_Free
2106 {
2107 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2108 bool_bf gcmarkbit : 1;
2109 unsigned spacer : 15;
2110 union Lisp_Misc *chain;
2111 };
2112
2113 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2114 It uses one of these struct subtypes to get the type field. */
2115
2116 union Lisp_Misc
2117 {
2118 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2119 struct Lisp_Free u_free;
2120 struct Lisp_Marker u_marker;
2121 struct Lisp_Overlay u_overlay;
2122 struct Lisp_Save_Value u_save_value;
2123 };
2124
2125 INLINE union Lisp_Misc *
2126 XMISC (Lisp_Object a)
2127 {
2128 return XUNTAG (a, Lisp_Misc);
2129 }
2130
2131 INLINE struct Lisp_Misc_Any *
2132 XMISCANY (Lisp_Object a)
2133 {
2134 eassert (MISCP (a));
2135 return & XMISC (a)->u_any;
2136 }
2137
2138 INLINE enum Lisp_Misc_Type
2139 XMISCTYPE (Lisp_Object a)
2140 {
2141 return XMISCANY (a)->type;
2142 }
2143
2144 INLINE struct Lisp_Marker *
2145 XMARKER (Lisp_Object a)
2146 {
2147 eassert (MARKERP (a));
2148 return & XMISC (a)->u_marker;
2149 }
2150
2151 INLINE struct Lisp_Overlay *
2152 XOVERLAY (Lisp_Object a)
2153 {
2154 eassert (OVERLAYP (a));
2155 return & XMISC (a)->u_overlay;
2156 }
2157
2158 INLINE struct Lisp_Save_Value *
2159 XSAVE_VALUE (Lisp_Object a)
2160 {
2161 eassert (SAVE_VALUEP (a));
2162 return & XMISC (a)->u_save_value;
2163 }
2164 \f
2165 /* Forwarding pointer to an int variable.
2166 This is allowed only in the value cell of a symbol,
2167 and it means that the symbol's value really lives in the
2168 specified int variable. */
2169 struct Lisp_Intfwd
2170 {
2171 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2172 EMACS_INT *intvar;
2173 };
2174
2175 /* Boolean forwarding pointer to an int variable.
2176 This is like Lisp_Intfwd except that the ostensible
2177 "value" of the symbol is t if the bool variable is true,
2178 nil if it is false. */
2179 struct Lisp_Boolfwd
2180 {
2181 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2182 bool *boolvar;
2183 };
2184
2185 /* Forwarding pointer to a Lisp_Object variable.
2186 This is allowed only in the value cell of a symbol,
2187 and it means that the symbol's value really lives in the
2188 specified variable. */
2189 struct Lisp_Objfwd
2190 {
2191 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2192 Lisp_Object *objvar;
2193 };
2194
2195 /* Like Lisp_Objfwd except that value lives in a slot in the
2196 current buffer. Value is byte index of slot within buffer. */
2197 struct Lisp_Buffer_Objfwd
2198 {
2199 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2200 int offset;
2201 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2202 Lisp_Object predicate;
2203 };
2204
2205 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2206 the symbol has buffer-local or frame-local bindings. (Exception:
2207 some buffer-local variables are built-in, with their values stored
2208 in the buffer structure itself. They are handled differently,
2209 using struct Lisp_Buffer_Objfwd.)
2210
2211 The `realvalue' slot holds the variable's current value, or a
2212 forwarding pointer to where that value is kept. This value is the
2213 one that corresponds to the loaded binding. To read or set the
2214 variable, you must first make sure the right binding is loaded;
2215 then you can access the value in (or through) `realvalue'.
2216
2217 `buffer' and `frame' are the buffer and frame for which the loaded
2218 binding was found. If those have changed, to make sure the right
2219 binding is loaded it is necessary to find which binding goes with
2220 the current buffer and selected frame, then load it. To load it,
2221 first unload the previous binding, then copy the value of the new
2222 binding into `realvalue' (or through it). Also update
2223 LOADED-BINDING to point to the newly loaded binding.
2224
2225 `local_if_set' indicates that merely setting the variable creates a
2226 local binding for the current buffer. Otherwise the latter, setting
2227 the variable does not do that; only make-local-variable does that. */
2228
2229 struct Lisp_Buffer_Local_Value
2230 {
2231 /* True means that merely setting the variable creates a local
2232 binding for the current buffer. */
2233 bool_bf local_if_set : 1;
2234 /* True means this variable can have frame-local bindings, otherwise, it is
2235 can have buffer-local bindings. The two cannot be combined. */
2236 bool_bf frame_local : 1;
2237 /* True means that the binding now loaded was found.
2238 Presumably equivalent to (defcell!=valcell). */
2239 bool_bf found : 1;
2240 /* If non-NULL, a forwarding to the C var where it should also be set. */
2241 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2242 /* The buffer or frame for which the loaded binding was found. */
2243 Lisp_Object where;
2244 /* A cons cell that holds the default value. It has the form
2245 (SYMBOL . DEFAULT-VALUE). */
2246 Lisp_Object defcell;
2247 /* The cons cell from `where's parameter alist.
2248 It always has the form (SYMBOL . VALUE)
2249 Note that if `forward' is non-nil, VALUE may be out of date.
2250 Also if the currently loaded binding is the default binding, then
2251 this is `eq'ual to defcell. */
2252 Lisp_Object valcell;
2253 };
2254
2255 /* Like Lisp_Objfwd except that value lives in a slot in the
2256 current kboard. */
2257 struct Lisp_Kboard_Objfwd
2258 {
2259 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2260 int offset;
2261 };
2262
2263 union Lisp_Fwd
2264 {
2265 struct Lisp_Intfwd u_intfwd;
2266 struct Lisp_Boolfwd u_boolfwd;
2267 struct Lisp_Objfwd u_objfwd;
2268 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2269 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2270 };
2271
2272 INLINE enum Lisp_Fwd_Type
2273 XFWDTYPE (union Lisp_Fwd *a)
2274 {
2275 return a->u_intfwd.type;
2276 }
2277
2278 INLINE struct Lisp_Buffer_Objfwd *
2279 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2280 {
2281 eassert (BUFFER_OBJFWDP (a));
2282 return &a->u_buffer_objfwd;
2283 }
2284 \f
2285 /* Lisp floating point type. */
2286 struct Lisp_Float
2287 {
2288 union
2289 {
2290 double data;
2291 struct Lisp_Float *chain;
2292 } u;
2293 };
2294
2295 INLINE double
2296 XFLOAT_DATA (Lisp_Object f)
2297 {
2298 return XFLOAT (f)->u.data;
2299 }
2300
2301 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2302 representations, have infinities and NaNs, and do not trap on
2303 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2304 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2305 wanted here, but is not quite right because Emacs does not require
2306 all the features of C11 Annex F (and does not require C11 at all,
2307 for that matter). */
2308 enum
2309 {
2310 IEEE_FLOATING_POINT
2311 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2312 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2313 };
2314
2315 /* A character, declared with the following typedef, is a member
2316 of some character set associated with the current buffer. */
2317 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2318 #define _UCHAR_T
2319 typedef unsigned char UCHAR;
2320 #endif
2321
2322 /* Meanings of slots in a Lisp_Compiled: */
2323
2324 enum Lisp_Compiled
2325 {
2326 COMPILED_ARGLIST = 0,
2327 COMPILED_BYTECODE = 1,
2328 COMPILED_CONSTANTS = 2,
2329 COMPILED_STACK_DEPTH = 3,
2330 COMPILED_DOC_STRING = 4,
2331 COMPILED_INTERACTIVE = 5
2332 };
2333
2334 /* Flag bits in a character. These also get used in termhooks.h.
2335 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2336 (MUlti-Lingual Emacs) might need 22 bits for the character value
2337 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2338 enum char_bits
2339 {
2340 CHAR_ALT = 0x0400000,
2341 CHAR_SUPER = 0x0800000,
2342 CHAR_HYPER = 0x1000000,
2343 CHAR_SHIFT = 0x2000000,
2344 CHAR_CTL = 0x4000000,
2345 CHAR_META = 0x8000000,
2346
2347 CHAR_MODIFIER_MASK =
2348 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2349
2350 /* Actually, the current Emacs uses 22 bits for the character value
2351 itself. */
2352 CHARACTERBITS = 22
2353 };
2354 \f
2355 /* Data type checking. */
2356
2357 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2358
2359 INLINE bool
2360 NUMBERP (Lisp_Object x)
2361 {
2362 return INTEGERP (x) || FLOATP (x);
2363 }
2364 INLINE bool
2365 NATNUMP (Lisp_Object x)
2366 {
2367 return INTEGERP (x) && 0 <= XINT (x);
2368 }
2369
2370 INLINE bool
2371 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2372 {
2373 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2374 }
2375
2376 #define TYPE_RANGED_INTEGERP(type, x) \
2377 (INTEGERP (x) \
2378 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2379 && XINT (x) <= TYPE_MAXIMUM (type))
2380
2381 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2382 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2383 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2384 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2385 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2386 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2387 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2388
2389 INLINE bool
2390 STRINGP (Lisp_Object x)
2391 {
2392 return XTYPE (x) == Lisp_String;
2393 }
2394 INLINE bool
2395 VECTORP (Lisp_Object x)
2396 {
2397 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2398 }
2399 INLINE bool
2400 OVERLAYP (Lisp_Object x)
2401 {
2402 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2403 }
2404 INLINE bool
2405 SAVE_VALUEP (Lisp_Object x)
2406 {
2407 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2408 }
2409
2410 INLINE bool
2411 AUTOLOADP (Lisp_Object x)
2412 {
2413 return CONSP (x) && EQ (Qautoload, XCAR (x));
2414 }
2415
2416 INLINE bool
2417 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2418 {
2419 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2420 }
2421
2422 INLINE bool
2423 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2424 {
2425 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2426 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2427 }
2428
2429 /* True if A is a pseudovector whose code is CODE. */
2430 INLINE bool
2431 PSEUDOVECTORP (Lisp_Object a, int code)
2432 {
2433 if (! VECTORLIKEP (a))
2434 return false;
2435 else
2436 {
2437 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2438 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2439 return PSEUDOVECTOR_TYPEP (h, code);
2440 }
2441 }
2442
2443
2444 /* Test for specific pseudovector types. */
2445
2446 INLINE bool
2447 WINDOW_CONFIGURATIONP (Lisp_Object a)
2448 {
2449 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2450 }
2451
2452 INLINE bool
2453 PROCESSP (Lisp_Object a)
2454 {
2455 return PSEUDOVECTORP (a, PVEC_PROCESS);
2456 }
2457
2458 INLINE bool
2459 WINDOWP (Lisp_Object a)
2460 {
2461 return PSEUDOVECTORP (a, PVEC_WINDOW);
2462 }
2463
2464 INLINE bool
2465 TERMINALP (Lisp_Object a)
2466 {
2467 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2468 }
2469
2470 INLINE bool
2471 SUBRP (Lisp_Object a)
2472 {
2473 return PSEUDOVECTORP (a, PVEC_SUBR);
2474 }
2475
2476 INLINE bool
2477 COMPILEDP (Lisp_Object a)
2478 {
2479 return PSEUDOVECTORP (a, PVEC_COMPILED);
2480 }
2481
2482 INLINE bool
2483 BUFFERP (Lisp_Object a)
2484 {
2485 return PSEUDOVECTORP (a, PVEC_BUFFER);
2486 }
2487
2488 INLINE bool
2489 CHAR_TABLE_P (Lisp_Object a)
2490 {
2491 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2492 }
2493
2494 INLINE bool
2495 SUB_CHAR_TABLE_P (Lisp_Object a)
2496 {
2497 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2498 }
2499
2500 INLINE bool
2501 BOOL_VECTOR_P (Lisp_Object a)
2502 {
2503 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2504 }
2505
2506 INLINE bool
2507 FRAMEP (Lisp_Object a)
2508 {
2509 return PSEUDOVECTORP (a, PVEC_FRAME);
2510 }
2511
2512 /* Test for image (image . spec) */
2513 INLINE bool
2514 IMAGEP (Lisp_Object x)
2515 {
2516 return CONSP (x) && EQ (XCAR (x), Qimage);
2517 }
2518
2519 /* Array types. */
2520 INLINE bool
2521 ARRAYP (Lisp_Object x)
2522 {
2523 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2524 }
2525 \f
2526 INLINE void
2527 CHECK_LIST (Lisp_Object x)
2528 {
2529 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2530 }
2531
2532 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2533 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2534 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2535
2536 INLINE void
2537 CHECK_STRING (Lisp_Object x)
2538 {
2539 CHECK_TYPE (STRINGP (x), Qstringp, x);
2540 }
2541 INLINE void
2542 CHECK_STRING_CAR (Lisp_Object x)
2543 {
2544 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2545 }
2546 INLINE void
2547 CHECK_CONS (Lisp_Object x)
2548 {
2549 CHECK_TYPE (CONSP (x), Qconsp, x);
2550 }
2551 INLINE void
2552 CHECK_VECTOR (Lisp_Object x)
2553 {
2554 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2555 }
2556 INLINE void
2557 CHECK_BOOL_VECTOR (Lisp_Object x)
2558 {
2559 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2560 }
2561 /* This is a bit special because we always need size afterwards. */
2562 INLINE ptrdiff_t
2563 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2564 {
2565 if (VECTORP (x))
2566 return ASIZE (x);
2567 if (STRINGP (x))
2568 return SCHARS (x);
2569 wrong_type_argument (Qarrayp, x);
2570 }
2571 INLINE void
2572 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2573 {
2574 CHECK_TYPE (ARRAYP (x), predicate, x);
2575 }
2576 INLINE void
2577 CHECK_BUFFER (Lisp_Object x)
2578 {
2579 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2580 }
2581 INLINE void
2582 CHECK_WINDOW (Lisp_Object x)
2583 {
2584 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2585 }
2586 #ifdef subprocesses
2587 INLINE void
2588 CHECK_PROCESS (Lisp_Object x)
2589 {
2590 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2591 }
2592 #endif
2593 INLINE void
2594 CHECK_NATNUM (Lisp_Object x)
2595 {
2596 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2597 }
2598
2599 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2600 do { \
2601 CHECK_NUMBER (x); \
2602 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2603 args_out_of_range_3 \
2604 (x, \
2605 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2606 ? MOST_NEGATIVE_FIXNUM \
2607 : (lo)), \
2608 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2609 } while (false)
2610 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2611 do { \
2612 if (TYPE_SIGNED (type)) \
2613 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2614 else \
2615 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2616 } while (false)
2617
2618 #define CHECK_NUMBER_COERCE_MARKER(x) \
2619 do { \
2620 if (MARKERP ((x))) \
2621 XSETFASTINT (x, marker_position (x)); \
2622 else \
2623 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2624 } while (false)
2625
2626 INLINE double
2627 XFLOATINT (Lisp_Object n)
2628 {
2629 return extract_float (n);
2630 }
2631
2632 INLINE void
2633 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2634 {
2635 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2636 }
2637
2638 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2639 do { \
2640 if (MARKERP (x)) \
2641 XSETFASTINT (x, marker_position (x)); \
2642 else \
2643 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2644 } while (false)
2645
2646 /* Since we can't assign directly to the CAR or CDR fields of a cons
2647 cell, use these when checking that those fields contain numbers. */
2648 INLINE void
2649 CHECK_NUMBER_CAR (Lisp_Object x)
2650 {
2651 Lisp_Object tmp = XCAR (x);
2652 CHECK_NUMBER (tmp);
2653 XSETCAR (x, tmp);
2654 }
2655
2656 INLINE void
2657 CHECK_NUMBER_CDR (Lisp_Object x)
2658 {
2659 Lisp_Object tmp = XCDR (x);
2660 CHECK_NUMBER (tmp);
2661 XSETCDR (x, tmp);
2662 }
2663 \f
2664 /* Define a built-in function for calling from Lisp.
2665 `lname' should be the name to give the function in Lisp,
2666 as a null-terminated C string.
2667 `fnname' should be the name of the function in C.
2668 By convention, it starts with F.
2669 `sname' should be the name for the C constant structure
2670 that records information on this function for internal use.
2671 By convention, it should be the same as `fnname' but with S instead of F.
2672 It's too bad that C macros can't compute this from `fnname'.
2673 `minargs' should be a number, the minimum number of arguments allowed.
2674 `maxargs' should be a number, the maximum number of arguments allowed,
2675 or else MANY or UNEVALLED.
2676 MANY means pass a vector of evaluated arguments,
2677 in the form of an integer number-of-arguments
2678 followed by the address of a vector of Lisp_Objects
2679 which contains the argument values.
2680 UNEVALLED means pass the list of unevaluated arguments
2681 `intspec' says how interactive arguments are to be fetched.
2682 If the string starts with a `(', `intspec' is evaluated and the resulting
2683 list is the list of arguments.
2684 If it's a string that doesn't start with `(', the value should follow
2685 the one of the doc string for `interactive'.
2686 A null string means call interactively with no arguments.
2687 `doc' is documentation for the user. */
2688
2689 /* This version of DEFUN declares a function prototype with the right
2690 arguments, so we can catch errors with maxargs at compile-time. */
2691 #ifdef _MSC_VER
2692 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2693 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2694 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2695 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2696 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2697 { (Lisp_Object (__cdecl *)(void))fnname }, \
2698 minargs, maxargs, lname, intspec, 0}; \
2699 Lisp_Object fnname
2700 #else /* not _MSC_VER */
2701 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2702 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2703 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2704 { .a ## maxargs = fnname }, \
2705 minargs, maxargs, lname, intspec, 0}; \
2706 Lisp_Object fnname
2707 #endif
2708
2709 /* Note that the weird token-substitution semantics of ANSI C makes
2710 this work for MANY and UNEVALLED. */
2711 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2712 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2713 #define DEFUN_ARGS_0 (void)
2714 #define DEFUN_ARGS_1 (Lisp_Object)
2715 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2716 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2717 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2718 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2719 Lisp_Object)
2720 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2721 Lisp_Object, Lisp_Object)
2722 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2723 Lisp_Object, Lisp_Object, Lisp_Object)
2724 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2725 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2726
2727 /* True if OBJ is a Lisp function. */
2728 INLINE bool
2729 FUNCTIONP (Lisp_Object obj)
2730 {
2731 return functionp (obj);
2732 }
2733
2734 /* defsubr (Sname);
2735 is how we define the symbol for function `name' at start-up time. */
2736 extern void defsubr (struct Lisp_Subr *);
2737
2738 enum maxargs
2739 {
2740 MANY = -2,
2741 UNEVALLED = -1
2742 };
2743
2744 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2745 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2746 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2747 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2748 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2749
2750 /* Macros we use to define forwarded Lisp variables.
2751 These are used in the syms_of_FILENAME functions.
2752
2753 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2754 lisp variable is actually a field in `struct emacs_globals'. The
2755 field's name begins with "f_", which is a convention enforced by
2756 these macros. Each such global has a corresponding #define in
2757 globals.h; the plain name should be used in the code.
2758
2759 E.g., the global "cons_cells_consed" is declared as "int
2760 f_cons_cells_consed" in globals.h, but there is a define:
2761
2762 #define cons_cells_consed globals.f_cons_cells_consed
2763
2764 All C code uses the `cons_cells_consed' name. This is all done
2765 this way to support indirection for multi-threaded Emacs. */
2766
2767 #define DEFVAR_LISP(lname, vname, doc) \
2768 do { \
2769 static struct Lisp_Objfwd o_fwd; \
2770 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2771 } while (false)
2772 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2773 do { \
2774 static struct Lisp_Objfwd o_fwd; \
2775 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2776 } while (false)
2777 #define DEFVAR_BOOL(lname, vname, doc) \
2778 do { \
2779 static struct Lisp_Boolfwd b_fwd; \
2780 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2781 } while (false)
2782 #define DEFVAR_INT(lname, vname, doc) \
2783 do { \
2784 static struct Lisp_Intfwd i_fwd; \
2785 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2786 } while (false)
2787
2788 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2789 do { \
2790 static struct Lisp_Objfwd o_fwd; \
2791 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2792 } while (false)
2793
2794 #define DEFVAR_KBOARD(lname, vname, doc) \
2795 do { \
2796 static struct Lisp_Kboard_Objfwd ko_fwd; \
2797 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2798 } while (false)
2799 \f
2800 /* Save and restore the instruction and environment pointers,
2801 without affecting the signal mask. */
2802
2803 #ifdef HAVE__SETJMP
2804 typedef jmp_buf sys_jmp_buf;
2805 # define sys_setjmp(j) _setjmp (j)
2806 # define sys_longjmp(j, v) _longjmp (j, v)
2807 #elif defined HAVE_SIGSETJMP
2808 typedef sigjmp_buf sys_jmp_buf;
2809 # define sys_setjmp(j) sigsetjmp (j, 0)
2810 # define sys_longjmp(j, v) siglongjmp (j, v)
2811 #else
2812 /* A platform that uses neither _longjmp nor siglongjmp; assume
2813 longjmp does not affect the sigmask. */
2814 typedef jmp_buf sys_jmp_buf;
2815 # define sys_setjmp(j) setjmp (j)
2816 # define sys_longjmp(j, v) longjmp (j, v)
2817 #endif
2818
2819 \f
2820 /* Elisp uses several stacks:
2821 - the C stack.
2822 - the bytecode stack: used internally by the bytecode interpreter.
2823 Allocated from the C stack.
2824 - The specpdl stack: keeps track of active unwind-protect and
2825 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2826 managed stack.
2827 - The handler stack: keeps track of active catch tags and condition-case
2828 handlers. Allocated in a manually managed stack implemented by a
2829 doubly-linked list allocated via xmalloc and never freed. */
2830
2831 /* Structure for recording Lisp call stack for backtrace purposes. */
2832
2833 /* The special binding stack holds the outer values of variables while
2834 they are bound by a function application or a let form, stores the
2835 code to be executed for unwind-protect forms.
2836
2837 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2838 used all over the place, needs to be fast, and needs to know the size of
2839 union specbinding. But only eval.c should access it. */
2840
2841 enum specbind_tag {
2842 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2843 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2844 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2845 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2846 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2847 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2848 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2849 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2850 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2851 };
2852
2853 union specbinding
2854 {
2855 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2856 struct {
2857 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2858 void (*func) (Lisp_Object);
2859 Lisp_Object arg;
2860 } unwind;
2861 struct {
2862 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2863 void (*func) (void *);
2864 void *arg;
2865 } unwind_ptr;
2866 struct {
2867 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2868 void (*func) (int);
2869 int arg;
2870 } unwind_int;
2871 struct {
2872 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2873 void (*func) (void);
2874 } unwind_void;
2875 struct {
2876 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2877 /* `where' is not used in the case of SPECPDL_LET. */
2878 Lisp_Object symbol, old_value, where;
2879 } let;
2880 struct {
2881 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2882 bool_bf debug_on_exit : 1;
2883 Lisp_Object function;
2884 Lisp_Object *args;
2885 ptrdiff_t nargs;
2886 } bt;
2887 };
2888
2889 extern union specbinding *specpdl;
2890 extern union specbinding *specpdl_ptr;
2891 extern ptrdiff_t specpdl_size;
2892
2893 INLINE ptrdiff_t
2894 SPECPDL_INDEX (void)
2895 {
2896 return specpdl_ptr - specpdl;
2897 }
2898
2899 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2900 control structures. A struct handler contains all the information needed to
2901 restore the state of the interpreter after a non-local jump.
2902
2903 handler structures are chained together in a doubly linked list; the `next'
2904 member points to the next outer catchtag and the `nextfree' member points in
2905 the other direction to the next inner element (which is typically the next
2906 free element since we mostly use it on the deepest handler).
2907
2908 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2909 member is TAG, and then unbinds to it. The `val' member is used to
2910 hold VAL while the stack is unwound; `val' is returned as the value
2911 of the catch form.
2912
2913 All the other members are concerned with restoring the interpreter
2914 state.
2915
2916 Members are volatile if their values need to survive _longjmp when
2917 a 'struct handler' is a local variable. */
2918
2919 enum handlertype { CATCHER, CONDITION_CASE };
2920
2921 struct handler
2922 {
2923 enum handlertype type;
2924 Lisp_Object tag_or_ch;
2925 Lisp_Object val;
2926 struct handler *next;
2927 struct handler *nextfree;
2928
2929 /* The bytecode interpreter can have several handlers active at the same
2930 time, so when we longjmp to one of them, it needs to know which handler
2931 this was and what was the corresponding internal state. This is stored
2932 here, and when we longjmp we make sure that handlerlist points to the
2933 proper handler. */
2934 Lisp_Object *bytecode_top;
2935 int bytecode_dest;
2936
2937 /* Most global vars are reset to their value via the specpdl mechanism,
2938 but a few others are handled by storing their value here. */
2939 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2940 struct gcpro *gcpro;
2941 #endif
2942 sys_jmp_buf jmp;
2943 EMACS_INT lisp_eval_depth;
2944 ptrdiff_t pdlcount;
2945 int poll_suppress_count;
2946 int interrupt_input_blocked;
2947 struct byte_stack *byte_stack;
2948 };
2949
2950 /* Fill in the components of c, and put it on the list. */
2951 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2952 if (handlerlist->nextfree) \
2953 (c) = handlerlist->nextfree; \
2954 else \
2955 { \
2956 (c) = xmalloc (sizeof (struct handler)); \
2957 (c)->nextfree = NULL; \
2958 handlerlist->nextfree = (c); \
2959 } \
2960 (c)->type = (handlertype); \
2961 (c)->tag_or_ch = (tag_ch_val); \
2962 (c)->val = Qnil; \
2963 (c)->next = handlerlist; \
2964 (c)->lisp_eval_depth = lisp_eval_depth; \
2965 (c)->pdlcount = SPECPDL_INDEX (); \
2966 (c)->poll_suppress_count = poll_suppress_count; \
2967 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2968 (c)->gcpro = gcprolist; \
2969 (c)->byte_stack = byte_stack_list; \
2970 handlerlist = (c);
2971
2972
2973 extern Lisp_Object memory_signal_data;
2974
2975 /* An address near the bottom of the stack.
2976 Tells GC how to save a copy of the stack. */
2977 extern char *stack_bottom;
2978
2979 /* Check quit-flag and quit if it is non-nil.
2980 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2981 So the program needs to do QUIT at times when it is safe to quit.
2982 Every loop that might run for a long time or might not exit
2983 ought to do QUIT at least once, at a safe place.
2984 Unless that is impossible, of course.
2985 But it is very desirable to avoid creating loops where QUIT is impossible.
2986
2987 Exception: if you set immediate_quit to true,
2988 then the handler that responds to the C-g does the quit itself.
2989 This is a good thing to do around a loop that has no side effects
2990 and (in particular) cannot call arbitrary Lisp code.
2991
2992 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2993 a request to exit Emacs when it is safe to do. */
2994
2995 extern void process_pending_signals (void);
2996 extern bool volatile pending_signals;
2997
2998 extern void process_quit_flag (void);
2999 #define QUIT \
3000 do { \
3001 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3002 process_quit_flag (); \
3003 else if (pending_signals) \
3004 process_pending_signals (); \
3005 } while (false)
3006
3007
3008 /* True if ought to quit now. */
3009
3010 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3011 \f
3012 extern Lisp_Object Vascii_downcase_table;
3013 extern Lisp_Object Vascii_canon_table;
3014 \f
3015 /* Structure for recording stack slots that need marking. */
3016
3017 /* This is a chain of structures, each of which points at a Lisp_Object
3018 variable whose value should be marked in garbage collection.
3019 Normally every link of the chain is an automatic variable of a function,
3020 and its `val' points to some argument or local variable of the function.
3021 On exit to the function, the chain is set back to the value it had on entry.
3022 This way, no link remains in the chain when the stack frame containing the
3023 link disappears.
3024
3025 Every function that can call Feval must protect in this fashion all
3026 Lisp_Object variables whose contents will be used again. */
3027
3028 extern struct gcpro *gcprolist;
3029
3030 struct gcpro
3031 {
3032 struct gcpro *next;
3033
3034 /* Address of first protected variable. */
3035 volatile Lisp_Object *var;
3036
3037 /* Number of consecutive protected variables. */
3038 ptrdiff_t nvars;
3039
3040 #ifdef DEBUG_GCPRO
3041 int level;
3042 #endif
3043 };
3044
3045 /* Values of GC_MARK_STACK during compilation:
3046
3047 0 Use GCPRO as before
3048 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3049 2 Mark the stack, and check that everything GCPRO'd is
3050 marked.
3051 3 Mark using GCPRO's, mark stack last, and count how many
3052 dead objects are kept alive.
3053
3054 Formerly, method 0 was used. Currently, method 1 is used unless
3055 otherwise specified by hand when building, e.g.,
3056 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3057 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3058
3059 #define GC_USE_GCPROS_AS_BEFORE 0
3060 #define GC_MAKE_GCPROS_NOOPS 1
3061 #define GC_MARK_STACK_CHECK_GCPROS 2
3062 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3063
3064 #ifndef GC_MARK_STACK
3065 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3066 #endif
3067
3068 /* Whether we do the stack marking manually. */
3069 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3070 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3071
3072
3073 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3074
3075 /* Do something silly with gcproN vars just so gcc shuts up. */
3076 /* You get warnings from MIPSPro... */
3077
3078 #define GCPRO1(varname) ((void) gcpro1)
3079 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3080 #define GCPRO3(varname1, varname2, varname3) \
3081 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3082 #define GCPRO4(varname1, varname2, varname3, varname4) \
3083 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3084 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3085 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3086 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3087 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3088 (void) gcpro1)
3089 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3090 #define UNGCPRO ((void) 0)
3091
3092 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3093
3094 #ifndef DEBUG_GCPRO
3095
3096 #define GCPRO1(varname) \
3097 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3098 gcprolist = &gcpro1; }
3099
3100 #define GCPRO2(varname1, varname2) \
3101 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3102 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3103 gcprolist = &gcpro2; }
3104
3105 #define GCPRO3(varname1, varname2, varname3) \
3106 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3107 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3108 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3109 gcprolist = &gcpro3; }
3110
3111 #define GCPRO4(varname1, varname2, varname3, varname4) \
3112 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3113 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3114 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3115 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3116 gcprolist = &gcpro4; }
3117
3118 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3119 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3120 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3121 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3122 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3123 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3124 gcprolist = &gcpro5; }
3125
3126 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3127 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3128 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3129 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3130 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3131 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3132 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3133 gcprolist = &gcpro6; }
3134
3135 #define GCPRO7(a, b, c, d, e, f, g) \
3136 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3137 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3138 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3139 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3140 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3141 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3142 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3143 gcprolist = &gcpro7; }
3144
3145 #define UNGCPRO (gcprolist = gcpro1.next)
3146
3147 #else
3148
3149 extern int gcpro_level;
3150
3151 #define GCPRO1(varname) \
3152 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3153 gcpro1.level = gcpro_level++; \
3154 gcprolist = &gcpro1; }
3155
3156 #define GCPRO2(varname1, varname2) \
3157 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3158 gcpro1.level = gcpro_level; \
3159 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3160 gcpro2.level = gcpro_level++; \
3161 gcprolist = &gcpro2; }
3162
3163 #define GCPRO3(varname1, varname2, varname3) \
3164 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3165 gcpro1.level = gcpro_level; \
3166 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3167 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3168 gcpro3.level = gcpro_level++; \
3169 gcprolist = &gcpro3; }
3170
3171 #define GCPRO4(varname1, varname2, varname3, varname4) \
3172 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3173 gcpro1.level = gcpro_level; \
3174 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3175 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3176 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3177 gcpro4.level = gcpro_level++; \
3178 gcprolist = &gcpro4; }
3179
3180 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3181 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3182 gcpro1.level = gcpro_level; \
3183 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3184 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3185 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3186 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3187 gcpro5.level = gcpro_level++; \
3188 gcprolist = &gcpro5; }
3189
3190 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3191 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3192 gcpro1.level = gcpro_level; \
3193 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3194 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3195 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3196 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3197 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3198 gcpro6.level = gcpro_level++; \
3199 gcprolist = &gcpro6; }
3200
3201 #define GCPRO7(a, b, c, d, e, f, g) \
3202 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3203 gcpro1.level = gcpro_level; \
3204 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3205 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3206 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3207 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3208 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3209 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3210 gcpro7.level = gcpro_level++; \
3211 gcprolist = &gcpro7; }
3212
3213 #define UNGCPRO \
3214 (--gcpro_level != gcpro1.level \
3215 ? emacs_abort () \
3216 : (void) (gcprolist = gcpro1.next))
3217
3218 #endif /* DEBUG_GCPRO */
3219 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3220
3221
3222 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3223 #define RETURN_UNGCPRO(expr) \
3224 do \
3225 { \
3226 Lisp_Object ret_ungc_val; \
3227 ret_ungc_val = (expr); \
3228 UNGCPRO; \
3229 return ret_ungc_val; \
3230 } \
3231 while (false)
3232
3233 /* Call staticpro (&var) to protect static variable `var'. */
3234
3235 void staticpro (Lisp_Object *);
3236 \f
3237 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3238 meaning as in the DEFUN macro, and is used to construct a prototype. */
3239 /* We can use the same trick as in the DEFUN macro to generate the
3240 appropriate prototype. */
3241 #define EXFUN(fnname, maxargs) \
3242 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3243
3244 #include "globals.h"
3245
3246 /* Forward declarations for prototypes. */
3247 struct window;
3248 struct frame;
3249
3250 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3251
3252 INLINE void
3253 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3254 {
3255 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3256 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3257 }
3258
3259 /* Functions to modify hash tables. */
3260
3261 INLINE void
3262 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3263 {
3264 gc_aset (h->key_and_value, 2 * idx, val);
3265 }
3266
3267 INLINE void
3268 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3269 {
3270 gc_aset (h->key_and_value, 2 * idx + 1, val);
3271 }
3272
3273 /* Use these functions to set Lisp_Object
3274 or pointer slots of struct Lisp_Symbol. */
3275
3276 INLINE void
3277 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3278 {
3279 XSYMBOL (sym)->function = function;
3280 }
3281
3282 INLINE void
3283 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3284 {
3285 XSYMBOL (sym)->plist = plist;
3286 }
3287
3288 INLINE void
3289 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3290 {
3291 XSYMBOL (sym)->next = next;
3292 }
3293
3294 /* Buffer-local (also frame-local) variable access functions. */
3295
3296 INLINE int
3297 blv_found (struct Lisp_Buffer_Local_Value *blv)
3298 {
3299 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3300 return blv->found;
3301 }
3302
3303 /* Set overlay's property list. */
3304
3305 INLINE void
3306 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3307 {
3308 XOVERLAY (overlay)->plist = plist;
3309 }
3310
3311 /* Get text properties of S. */
3312
3313 INLINE INTERVAL
3314 string_intervals (Lisp_Object s)
3315 {
3316 return XSTRING (s)->intervals;
3317 }
3318
3319 /* Set text properties of S to I. */
3320
3321 INLINE void
3322 set_string_intervals (Lisp_Object s, INTERVAL i)
3323 {
3324 XSTRING (s)->intervals = i;
3325 }
3326
3327 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3328 of setting slots directly. */
3329
3330 INLINE void
3331 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3332 {
3333 XCHAR_TABLE (table)->defalt = val;
3334 }
3335 INLINE void
3336 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3337 {
3338 XCHAR_TABLE (table)->purpose = val;
3339 }
3340
3341 /* Set different slots in (sub)character tables. */
3342
3343 INLINE void
3344 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3345 {
3346 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3347 XCHAR_TABLE (table)->extras[idx] = val;
3348 }
3349
3350 INLINE void
3351 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3352 {
3353 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3354 XCHAR_TABLE (table)->contents[idx] = val;
3355 }
3356
3357 INLINE void
3358 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3359 {
3360 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3361 }
3362
3363 /* Defined in data.c. */
3364 extern Lisp_Object Qquote, Qunbound;
3365 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3366 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3367 extern Lisp_Object Qvoid_variable, Qvoid_function;
3368 extern Lisp_Object Qinvalid_read_syntax;
3369 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3370 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3371 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3372 extern Lisp_Object Qtext_read_only;
3373 extern Lisp_Object Qinteractive_form;
3374 extern Lisp_Object Qcircular_list;
3375 extern Lisp_Object Qsequencep;
3376 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3377 extern Lisp_Object Qfboundp;
3378
3379 extern Lisp_Object Qcdr;
3380
3381 extern Lisp_Object Qrange_error, Qoverflow_error;
3382
3383 extern Lisp_Object Qnumber_or_marker_p;
3384
3385 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3386
3387 /* Defined in data.c. */
3388 extern Lisp_Object indirect_function (Lisp_Object);
3389 extern Lisp_Object find_symbol_value (Lisp_Object);
3390 enum Arith_Comparison {
3391 ARITH_EQUAL,
3392 ARITH_NOTEQUAL,
3393 ARITH_LESS,
3394 ARITH_GRTR,
3395 ARITH_LESS_OR_EQUAL,
3396 ARITH_GRTR_OR_EQUAL
3397 };
3398 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3399 enum Arith_Comparison comparison);
3400
3401 /* Convert the integer I to an Emacs representation, either the integer
3402 itself, or a cons of two or three integers, or if all else fails a float.
3403 I should not have side effects. */
3404 #define INTEGER_TO_CONS(i) \
3405 (! FIXNUM_OVERFLOW_P (i) \
3406 ? make_number (i) \
3407 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3408 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3409 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3410 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3411 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3412 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3413 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3414 ? Fcons (make_number ((i) >> 16 >> 24), \
3415 Fcons (make_number ((i) >> 16 & 0xffffff), \
3416 make_number ((i) & 0xffff))) \
3417 : make_float (i))
3418
3419 /* Convert the Emacs representation CONS back to an integer of type
3420 TYPE, storing the result the variable VAR. Signal an error if CONS
3421 is not a valid representation or is out of range for TYPE. */
3422 #define CONS_TO_INTEGER(cons, type, var) \
3423 (TYPE_SIGNED (type) \
3424 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3425 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3426 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3427 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3428
3429 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3430 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3431 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3432 Lisp_Object);
3433 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3434 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3435 extern void syms_of_data (void);
3436 extern void swap_in_global_binding (struct Lisp_Symbol *);
3437
3438 /* Defined in cmds.c */
3439 extern void syms_of_cmds (void);
3440 extern void keys_of_cmds (void);
3441
3442 /* Defined in coding.c. */
3443 extern Lisp_Object Qcharset;
3444 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3445 ptrdiff_t, bool, bool, Lisp_Object);
3446 extern void init_coding (void);
3447 extern void init_coding_once (void);
3448 extern void syms_of_coding (void);
3449
3450 /* Defined in character.c. */
3451 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3452 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3453 extern void syms_of_character (void);
3454
3455 /* Defined in charset.c. */
3456 extern void init_charset (void);
3457 extern void init_charset_once (void);
3458 extern void syms_of_charset (void);
3459 /* Structure forward declarations. */
3460 struct charset;
3461
3462 /* Defined in syntax.c. */
3463 extern void init_syntax_once (void);
3464 extern void syms_of_syntax (void);
3465
3466 /* Defined in fns.c. */
3467 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3468 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3469 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3470 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3471 extern void sweep_weak_hash_tables (void);
3472 extern Lisp_Object Qcursor_in_echo_area;
3473 extern Lisp_Object Qstring_lessp;
3474 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3475 EMACS_UINT hash_string (char const *, ptrdiff_t);
3476 EMACS_UINT sxhash (Lisp_Object, int);
3477 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3478 Lisp_Object, Lisp_Object);
3479 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3480 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3481 EMACS_UINT);
3482 extern struct hash_table_test hashtest_eql, hashtest_equal;
3483 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3484 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3485 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3486 ptrdiff_t, ptrdiff_t);
3487 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3488 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3489 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3490 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3491 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3492 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3493 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3494 extern void clear_string_char_byte_cache (void);
3495 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3496 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3497 extern Lisp_Object string_to_multibyte (Lisp_Object);
3498 extern Lisp_Object string_make_unibyte (Lisp_Object);
3499 extern void syms_of_fns (void);
3500
3501 /* Defined in floatfns.c. */
3502 extern void syms_of_floatfns (void);
3503 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3504
3505 /* Defined in fringe.c. */
3506 extern void syms_of_fringe (void);
3507 extern void init_fringe (void);
3508 #ifdef HAVE_WINDOW_SYSTEM
3509 extern void mark_fringe_data (void);
3510 extern void init_fringe_once (void);
3511 #endif /* HAVE_WINDOW_SYSTEM */
3512
3513 /* Defined in image.c. */
3514 extern Lisp_Object QCascent, QCmargin, QCrelief;
3515 extern Lisp_Object QCconversion;
3516 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3517 extern void reset_image_types (void);
3518 extern void syms_of_image (void);
3519
3520 /* Defined in insdel.c. */
3521 extern Lisp_Object Qinhibit_modification_hooks;
3522 extern Lisp_Object Qregion_extract_function;
3523 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3524 extern _Noreturn void buffer_overflow (void);
3525 extern void make_gap (ptrdiff_t);
3526 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3527 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3528 ptrdiff_t, bool, bool);
3529 extern int count_combining_before (const unsigned char *,
3530 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3531 extern int count_combining_after (const unsigned char *,
3532 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3533 extern void insert (const char *, ptrdiff_t);
3534 extern void insert_and_inherit (const char *, ptrdiff_t);
3535 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3536 bool, bool, bool);
3537 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3538 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3539 ptrdiff_t, ptrdiff_t, bool);
3540 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3541 extern void insert_char (int);
3542 extern void insert_string (const char *);
3543 extern void insert_before_markers (const char *, ptrdiff_t);
3544 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3545 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3546 ptrdiff_t, ptrdiff_t,
3547 ptrdiff_t, bool);
3548 extern void del_range (ptrdiff_t, ptrdiff_t);
3549 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3550 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3551 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3552 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3553 ptrdiff_t, ptrdiff_t, bool);
3554 extern void modify_text (ptrdiff_t, ptrdiff_t);
3555 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3556 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3557 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3558 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3559 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3560 ptrdiff_t, ptrdiff_t);
3561 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3562 ptrdiff_t, ptrdiff_t);
3563 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3564 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3565 const char *, ptrdiff_t, ptrdiff_t, bool);
3566 extern void syms_of_insdel (void);
3567
3568 /* Defined in dispnew.c. */
3569 #if (defined PROFILING \
3570 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3571 _Noreturn void __executable_start (void);
3572 #endif
3573 extern Lisp_Object Vwindow_system;
3574 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3575
3576 /* Defined in xdisp.c. */
3577 extern Lisp_Object Qinhibit_point_motion_hooks;
3578 extern Lisp_Object Qinhibit_redisplay;
3579 extern Lisp_Object Qmenu_bar_update_hook;
3580 extern Lisp_Object Qwindow_scroll_functions;
3581 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3582 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3583 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3584 extern Lisp_Object Qbar, Qhbar, Qhollow;
3585 extern Lisp_Object Qleft_margin, Qright_margin;
3586 extern Lisp_Object QCdata, QCfile;
3587 extern Lisp_Object QCmap;
3588 extern Lisp_Object Qrisky_local_variable;
3589 extern bool noninteractive_need_newline;
3590 extern Lisp_Object echo_area_buffer[2];
3591 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3592 extern void check_message_stack (void);
3593 extern void setup_echo_area_for_printing (int);
3594 extern bool push_message (void);
3595 extern void pop_message_unwind (void);
3596 extern Lisp_Object restore_message_unwind (Lisp_Object);
3597 extern void restore_message (void);
3598 extern Lisp_Object current_message (void);
3599 extern void clear_message (bool, bool);
3600 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3601 extern void message1 (const char *);
3602 extern void message1_nolog (const char *);
3603 extern void message3 (Lisp_Object);
3604 extern void message3_nolog (Lisp_Object);
3605 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3606 extern void message_with_string (const char *, Lisp_Object, int);
3607 extern void message_log_maybe_newline (void);
3608 extern void update_echo_area (void);
3609 extern void truncate_echo_area (ptrdiff_t);
3610 extern void redisplay (void);
3611
3612 void set_frame_cursor_types (struct frame *, Lisp_Object);
3613 extern void syms_of_xdisp (void);
3614 extern void init_xdisp (void);
3615 extern Lisp_Object safe_eval (Lisp_Object);
3616 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3617 int *, int *, int *, int *, int *);
3618
3619 /* Defined in xsettings.c. */
3620 extern void syms_of_xsettings (void);
3621
3622 /* Defined in vm-limit.c. */
3623 extern void memory_warnings (void *, void (*warnfun) (const char *));
3624
3625 /* Defined in alloc.c. */
3626 extern void check_pure_size (void);
3627 extern void free_misc (Lisp_Object);
3628 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3629 extern void malloc_warning (const char *);
3630 extern _Noreturn void memory_full (size_t);
3631 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3632 extern bool survives_gc_p (Lisp_Object);
3633 extern void mark_object (Lisp_Object);
3634 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3635 extern void refill_memory_reserve (void);
3636 #endif
3637 extern const char *pending_malloc_warning;
3638 extern Lisp_Object zero_vector;
3639 extern Lisp_Object *stack_base;
3640 extern EMACS_INT consing_since_gc;
3641 extern EMACS_INT gc_relative_threshold;
3642 extern EMACS_INT memory_full_cons_threshold;
3643 extern Lisp_Object list1 (Lisp_Object);
3644 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3645 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3646 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3647 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3648 Lisp_Object);
3649 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3650 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3651
3652 /* Build a frequently used 2/3/4-integer lists. */
3653
3654 INLINE Lisp_Object
3655 list2i (EMACS_INT x, EMACS_INT y)
3656 {
3657 return list2 (make_number (x), make_number (y));
3658 }
3659
3660 INLINE Lisp_Object
3661 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3662 {
3663 return list3 (make_number (x), make_number (y), make_number (w));
3664 }
3665
3666 INLINE Lisp_Object
3667 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3668 {
3669 return list4 (make_number (x), make_number (y),
3670 make_number (w), make_number (h));
3671 }
3672
3673 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3674 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3675 extern _Noreturn void string_overflow (void);
3676 extern Lisp_Object make_string (const char *, ptrdiff_t);
3677 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3678 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3679 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3680
3681 /* Make unibyte string from C string when the length isn't known. */
3682
3683 INLINE Lisp_Object
3684 build_unibyte_string (const char *str)
3685 {
3686 return make_unibyte_string (str, strlen (str));
3687 }
3688
3689 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3690 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3691 extern Lisp_Object make_uninit_string (EMACS_INT);
3692 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3693 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3694 extern Lisp_Object make_specified_string (const char *,
3695 ptrdiff_t, ptrdiff_t, bool);
3696 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3697 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3698
3699 /* Make a string allocated in pure space, use STR as string data. */
3700
3701 INLINE Lisp_Object
3702 build_pure_c_string (const char *str)
3703 {
3704 return make_pure_c_string (str, strlen (str));
3705 }
3706
3707 /* Make a string from the data at STR, treating it as multibyte if the
3708 data warrants. */
3709
3710 INLINE Lisp_Object
3711 build_string (const char *str)
3712 {
3713 return make_string (str, strlen (str));
3714 }
3715
3716 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3717 extern void make_byte_code (struct Lisp_Vector *);
3718 extern Lisp_Object Qautomatic_gc;
3719 extern Lisp_Object Qchar_table_extra_slots;
3720 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3721
3722 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3723 be sure that GC cannot happen until the vector is completely
3724 initialized. E.g. the following code is likely to crash:
3725
3726 v = make_uninit_vector (3);
3727 ASET (v, 0, obj0);
3728 ASET (v, 1, Ffunction_can_gc ());
3729 ASET (v, 2, obj1); */
3730
3731 INLINE Lisp_Object
3732 make_uninit_vector (ptrdiff_t size)
3733 {
3734 Lisp_Object v;
3735 struct Lisp_Vector *p;
3736
3737 p = allocate_vector (size);
3738 XSETVECTOR (v, p);
3739 return v;
3740 }
3741
3742 /* Like above, but special for sub char-tables. */
3743
3744 INLINE Lisp_Object
3745 make_uninit_sub_char_table (int depth, int min_char)
3746 {
3747 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3748 Lisp_Object v = make_uninit_vector (slots);
3749
3750 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3751 XSUB_CHAR_TABLE (v)->depth = depth;
3752 XSUB_CHAR_TABLE (v)->min_char = min_char;
3753 return v;
3754 }
3755
3756 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3757 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3758 ((typ*) \
3759 allocate_pseudovector \
3760 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3761 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3762 extern struct window *allocate_window (void);
3763 extern struct frame *allocate_frame (void);
3764 extern struct Lisp_Process *allocate_process (void);
3765 extern struct terminal *allocate_terminal (void);
3766 extern bool gc_in_progress;
3767 extern bool abort_on_gc;
3768 extern Lisp_Object make_float (double);
3769 extern void display_malloc_warning (void);
3770 extern ptrdiff_t inhibit_garbage_collection (void);
3771 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3772 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3773 Lisp_Object, Lisp_Object);
3774 extern Lisp_Object make_save_ptr (void *);
3775 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3776 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3777 extern Lisp_Object make_save_int_obj (ptrdiff_t, Lisp_Object);
3778 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3779 Lisp_Object);
3780 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3781 extern void free_save_value (Lisp_Object);
3782 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3783 extern void free_marker (Lisp_Object);
3784 extern void free_cons (struct Lisp_Cons *);
3785 extern void init_alloc_once (void);
3786 extern void init_alloc (void);
3787 extern void syms_of_alloc (void);
3788 extern struct buffer * allocate_buffer (void);
3789 extern int valid_lisp_object_p (Lisp_Object);
3790 extern int relocatable_string_data_p (const char *);
3791 #ifdef GC_CHECK_CONS_LIST
3792 extern void check_cons_list (void);
3793 #else
3794 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3795 #endif
3796
3797 #ifdef REL_ALLOC
3798 /* Defined in ralloc.c. */
3799 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3800 extern void r_alloc_free (void **);
3801 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3802 extern void r_alloc_reset_variable (void **, void **);
3803 extern void r_alloc_inhibit_buffer_relocation (int);
3804 #endif
3805
3806 /* Defined in chartab.c. */
3807 extern Lisp_Object copy_char_table (Lisp_Object);
3808 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3809 int *, int *);
3810 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3811 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3812 Lisp_Object),
3813 Lisp_Object, Lisp_Object, Lisp_Object);
3814 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3815 Lisp_Object, Lisp_Object,
3816 Lisp_Object, struct charset *,
3817 unsigned, unsigned);
3818 extern Lisp_Object uniprop_table (Lisp_Object);
3819 extern void syms_of_chartab (void);
3820
3821 /* Defined in print.c. */
3822 extern Lisp_Object Vprin1_to_string_buffer;
3823 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3824 extern Lisp_Object Qstandard_output;
3825 extern Lisp_Object Qexternal_debugging_output;
3826 extern void temp_output_buffer_setup (const char *);
3827 extern int print_level;
3828 extern Lisp_Object Qprint_escape_newlines;
3829 extern void write_string (const char *, int);
3830 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3831 Lisp_Object);
3832 extern Lisp_Object internal_with_output_to_temp_buffer
3833 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3834 #define FLOAT_TO_STRING_BUFSIZE 350
3835 extern int float_to_string (char *, double);
3836 extern void init_print_once (void);
3837 extern void syms_of_print (void);
3838
3839 /* Defined in doprnt.c. */
3840 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3841 va_list);
3842 extern ptrdiff_t esprintf (char *, char const *, ...)
3843 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3844 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3845 char const *, ...)
3846 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3847 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3848 char const *, va_list)
3849 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3850
3851 /* Defined in lread.c. */
3852 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3853 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3854 extern Lisp_Object Qlexical_binding;
3855 extern Lisp_Object check_obarray (Lisp_Object);
3856 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3857 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3858 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3859 INLINE void
3860 LOADHIST_ATTACH (Lisp_Object x)
3861 {
3862 if (initialized)
3863 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3864 }
3865 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3866 Lisp_Object *, Lisp_Object, bool);
3867 extern Lisp_Object string_to_number (char const *, int, bool);
3868 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3869 Lisp_Object);
3870 extern void dir_warning (const char *, Lisp_Object);
3871 extern void init_obarray (void);
3872 extern void init_lread (void);
3873 extern void syms_of_lread (void);
3874
3875 INLINE Lisp_Object
3876 intern (const char *str)
3877 {
3878 return intern_1 (str, strlen (str));
3879 }
3880
3881 INLINE Lisp_Object
3882 intern_c_string (const char *str)
3883 {
3884 return intern_c_string_1 (str, strlen (str));
3885 }
3886
3887 /* Defined in eval.c. */
3888 extern EMACS_INT lisp_eval_depth;
3889 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3890 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3891 extern Lisp_Object Qand_rest;
3892 extern Lisp_Object Vautoload_queue;
3893 extern Lisp_Object Vsignaling_function;
3894 extern Lisp_Object inhibit_lisp_code;
3895 extern struct handler *handlerlist;
3896
3897 /* To run a normal hook, use the appropriate function from the list below.
3898 The calling convention:
3899
3900 if (!NILP (Vrun_hooks))
3901 call1 (Vrun_hooks, Qmy_funny_hook);
3902
3903 should no longer be used. */
3904 extern Lisp_Object Vrun_hooks;
3905 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3906 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3907 Lisp_Object (*funcall)
3908 (ptrdiff_t nargs, Lisp_Object *args));
3909 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3910 extern _Noreturn void xsignal0 (Lisp_Object);
3911 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3912 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3913 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3914 Lisp_Object);
3915 extern _Noreturn void signal_error (const char *, Lisp_Object);
3916 extern Lisp_Object eval_sub (Lisp_Object form);
3917 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3918 extern Lisp_Object call0 (Lisp_Object);
3919 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3920 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3921 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3922 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3923 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3924 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3925 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3926 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3927 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3928 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3929 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3930 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3931 extern Lisp_Object internal_condition_case_n
3932 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3933 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3934 extern void specbind (Lisp_Object, Lisp_Object);
3935 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3936 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3937 extern void record_unwind_protect_int (void (*) (int), int);
3938 extern void record_unwind_protect_void (void (*) (void));
3939 extern void record_unwind_protect_nothing (void);
3940 extern void clear_unwind_protect (ptrdiff_t);
3941 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3942 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3943 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3944 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3945 extern _Noreturn void verror (const char *, va_list)
3946 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3947 extern void un_autoload (Lisp_Object);
3948 extern Lisp_Object call_debugger (Lisp_Object arg);
3949 extern void init_eval_once (void);
3950 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3951 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3952 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern void init_eval (void);
3954 extern void syms_of_eval (void);
3955 extern void unwind_body (Lisp_Object);
3956 extern void record_in_backtrace (Lisp_Object function,
3957 Lisp_Object *args, ptrdiff_t nargs);
3958 extern void mark_specpdl (void);
3959 extern void get_backtrace (Lisp_Object array);
3960 Lisp_Object backtrace_top_function (void);
3961 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3962 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3963
3964
3965 /* Defined in editfns.c. */
3966 extern Lisp_Object Qfield;
3967 extern void insert1 (Lisp_Object);
3968 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3969 extern Lisp_Object save_excursion_save (void);
3970 extern Lisp_Object save_restriction_save (void);
3971 extern void save_excursion_restore (Lisp_Object);
3972 extern void save_restriction_restore (Lisp_Object);
3973 extern _Noreturn void time_overflow (void);
3974 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3975 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3976 ptrdiff_t, bool);
3977 extern void init_editfns (void);
3978 extern void syms_of_editfns (void);
3979 extern void set_time_zone_rule (const char *);
3980
3981 /* Defined in buffer.c. */
3982 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3983 extern _Noreturn void nsberror (Lisp_Object);
3984 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3985 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3986 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3987 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3988 Lisp_Object, Lisp_Object, Lisp_Object);
3989 extern bool overlay_touches_p (ptrdiff_t);
3990 extern Lisp_Object other_buffer_safely (Lisp_Object);
3991 extern Lisp_Object get_truename_buffer (Lisp_Object);
3992 extern void init_buffer_once (void);
3993 extern void init_buffer (int);
3994 extern void syms_of_buffer (void);
3995 extern void keys_of_buffer (void);
3996
3997 /* Defined in marker.c. */
3998
3999 extern ptrdiff_t marker_position (Lisp_Object);
4000 extern ptrdiff_t marker_byte_position (Lisp_Object);
4001 extern void clear_charpos_cache (struct buffer *);
4002 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4003 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4004 extern void unchain_marker (struct Lisp_Marker *marker);
4005 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4006 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4007 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4008 ptrdiff_t, ptrdiff_t);
4009 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4010 extern void syms_of_marker (void);
4011
4012 /* Defined in fileio.c. */
4013
4014 extern Lisp_Object Qfile_error;
4015 extern Lisp_Object Qfile_notify_error;
4016 extern Lisp_Object Qfile_exists_p;
4017 extern Lisp_Object Qfile_directory_p;
4018 extern Lisp_Object Qinsert_file_contents;
4019 extern Lisp_Object Qfile_name_history;
4020 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4021 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4022 Lisp_Object, Lisp_Object, Lisp_Object,
4023 Lisp_Object, int);
4024 extern void close_file_unwind (int);
4025 extern void fclose_unwind (void *);
4026 extern void restore_point_unwind (Lisp_Object);
4027 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4028 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4029 extern bool internal_delete_file (Lisp_Object);
4030 extern Lisp_Object emacs_readlinkat (int, const char *);
4031 extern bool file_directory_p (const char *);
4032 extern bool file_accessible_directory_p (Lisp_Object);
4033 extern void init_fileio (void);
4034 extern void syms_of_fileio (void);
4035 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4036 extern Lisp_Object Qdelete_file;
4037
4038 /* Defined in search.c. */
4039 extern void shrink_regexp_cache (void);
4040 extern void restore_search_regs (void);
4041 extern void record_unwind_save_match_data (void);
4042 struct re_registers;
4043 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4044 struct re_registers *,
4045 Lisp_Object, bool, bool);
4046 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4047 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4048 ptrdiff_t);
4049 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4050 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4051 ptrdiff_t, ptrdiff_t, Lisp_Object);
4052 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4053 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4054 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4055 ptrdiff_t, bool);
4056 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4057 ptrdiff_t, ptrdiff_t *);
4058 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4059 ptrdiff_t, ptrdiff_t *);
4060 extern void syms_of_search (void);
4061 extern void clear_regexp_cache (void);
4062
4063 /* Defined in minibuf.c. */
4064
4065 extern Lisp_Object Qcompletion_ignore_case;
4066 extern Lisp_Object Vminibuffer_list;
4067 extern Lisp_Object last_minibuf_string;
4068 extern Lisp_Object get_minibuffer (EMACS_INT);
4069 extern void init_minibuf_once (void);
4070 extern void syms_of_minibuf (void);
4071
4072 /* Defined in callint.c. */
4073
4074 extern Lisp_Object Qminus, Qplus;
4075 extern Lisp_Object Qprogn;
4076 extern Lisp_Object Qwhen;
4077 extern Lisp_Object Qmouse_leave_buffer_hook;
4078 extern void syms_of_callint (void);
4079
4080 /* Defined in casefiddle.c. */
4081
4082 extern Lisp_Object Qidentity;
4083 extern void syms_of_casefiddle (void);
4084 extern void keys_of_casefiddle (void);
4085
4086 /* Defined in casetab.c. */
4087
4088 extern void init_casetab_once (void);
4089 extern void syms_of_casetab (void);
4090
4091 /* Defined in keyboard.c. */
4092
4093 extern Lisp_Object echo_message_buffer;
4094 extern struct kboard *echo_kboard;
4095 extern void cancel_echoing (void);
4096 extern Lisp_Object Qdisabled, QCfilter;
4097 extern Lisp_Object Qup, Qdown;
4098 extern Lisp_Object last_undo_boundary;
4099 extern bool input_pending;
4100 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4101 extern sigjmp_buf return_to_command_loop;
4102 #endif
4103 extern Lisp_Object menu_bar_items (Lisp_Object);
4104 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4105 extern void discard_mouse_events (void);
4106 #ifdef USABLE_SIGIO
4107 void handle_input_available_signal (int);
4108 #endif
4109 extern Lisp_Object pending_funcalls;
4110 extern bool detect_input_pending (void);
4111 extern bool detect_input_pending_ignore_squeezables (void);
4112 extern bool detect_input_pending_run_timers (bool);
4113 extern void safe_run_hooks (Lisp_Object);
4114 extern void cmd_error_internal (Lisp_Object, const char *);
4115 extern Lisp_Object command_loop_1 (void);
4116 extern Lisp_Object read_menu_command (void);
4117 extern Lisp_Object recursive_edit_1 (void);
4118 extern void record_auto_save (void);
4119 extern void force_auto_save_soon (void);
4120 extern void init_keyboard (void);
4121 extern void syms_of_keyboard (void);
4122 extern void keys_of_keyboard (void);
4123
4124 /* Defined in indent.c. */
4125 extern ptrdiff_t current_column (void);
4126 extern void invalidate_current_column (void);
4127 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4128 extern void syms_of_indent (void);
4129
4130 /* Defined in frame.c. */
4131 extern Lisp_Object Qonly, Qnone;
4132 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4133 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4134 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4135 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4136 extern void frames_discard_buffer (Lisp_Object);
4137 extern void syms_of_frame (void);
4138
4139 /* Defined in emacs.c. */
4140 extern char **initial_argv;
4141 extern int initial_argc;
4142 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4143 extern bool display_arg;
4144 #endif
4145 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4146 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4147 extern Lisp_Object Qfile_name_handler_alist;
4148 extern _Noreturn void terminate_due_to_signal (int, int);
4149 extern Lisp_Object Qkill_emacs;
4150 #ifdef WINDOWSNT
4151 extern Lisp_Object Vlibrary_cache;
4152 #endif
4153 #if HAVE_SETLOCALE
4154 void fixup_locale (void);
4155 void synchronize_system_messages_locale (void);
4156 void synchronize_system_time_locale (void);
4157 #else
4158 INLINE void fixup_locale (void) {}
4159 INLINE void synchronize_system_messages_locale (void) {}
4160 INLINE void synchronize_system_time_locale (void) {}
4161 #endif
4162 extern void shut_down_emacs (int, Lisp_Object);
4163
4164 /* True means don't do interactive redisplay and don't change tty modes. */
4165 extern bool noninteractive;
4166
4167 /* True means remove site-lisp directories from load-path. */
4168 extern bool no_site_lisp;
4169
4170 /* Pipe used to send exit notification to the daemon parent at
4171 startup. */
4172 extern int daemon_pipe[2];
4173 #define IS_DAEMON (daemon_pipe[1] != 0)
4174
4175 /* True if handling a fatal error already. */
4176 extern bool fatal_error_in_progress;
4177
4178 /* True means don't do use window-system-specific display code. */
4179 extern bool inhibit_window_system;
4180 /* True means that a filter or a sentinel is running. */
4181 extern bool running_asynch_code;
4182
4183 /* Defined in process.c. */
4184 extern Lisp_Object QCtype, Qlocal;
4185 extern void kill_buffer_processes (Lisp_Object);
4186 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4187 struct Lisp_Process *, int);
4188 /* Max value for the first argument of wait_reading_process_output. */
4189 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4190 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4191 The bug merely causes a bogus warning, but the warning is annoying. */
4192 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4193 #else
4194 # define WAIT_READING_MAX INTMAX_MAX
4195 #endif
4196 #ifdef HAVE_TIMERFD
4197 extern void add_timer_wait_descriptor (int);
4198 #endif
4199 extern void add_keyboard_wait_descriptor (int);
4200 extern void delete_keyboard_wait_descriptor (int);
4201 #ifdef HAVE_GPM
4202 extern void add_gpm_wait_descriptor (int);
4203 extern void delete_gpm_wait_descriptor (int);
4204 #endif
4205 extern void init_process_emacs (void);
4206 extern void syms_of_process (void);
4207 extern void setup_process_coding_systems (Lisp_Object);
4208
4209 /* Defined in callproc.c. */
4210 #ifndef DOS_NT
4211 _Noreturn
4212 #endif
4213 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4214 extern void init_callproc_1 (void);
4215 extern void init_callproc (void);
4216 extern void set_initial_environment (void);
4217 extern void syms_of_callproc (void);
4218
4219 /* Defined in doc.c. */
4220 extern Lisp_Object Qfunction_documentation;
4221 extern Lisp_Object read_doc_string (Lisp_Object);
4222 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4223 extern void syms_of_doc (void);
4224 extern int read_bytecode_char (bool);
4225
4226 /* Defined in bytecode.c. */
4227 extern void syms_of_bytecode (void);
4228 extern struct byte_stack *byte_stack_list;
4229 #if BYTE_MARK_STACK
4230 extern void mark_byte_stack (void);
4231 #endif
4232 extern void unmark_byte_stack (void);
4233 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4234 Lisp_Object, ptrdiff_t, Lisp_Object *);
4235
4236 /* Defined in macros.c. */
4237 extern void init_macros (void);
4238 extern void syms_of_macros (void);
4239
4240 /* Defined in undo.c. */
4241 extern Lisp_Object Qapply;
4242 extern Lisp_Object Qinhibit_read_only;
4243 extern void truncate_undo_list (struct buffer *);
4244 extern void record_insert (ptrdiff_t, ptrdiff_t);
4245 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4246 extern void record_first_change (void);
4247 extern void record_change (ptrdiff_t, ptrdiff_t);
4248 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4249 Lisp_Object, Lisp_Object,
4250 Lisp_Object);
4251 extern void syms_of_undo (void);
4252 /* Defined in textprop.c. */
4253 extern Lisp_Object Qmouse_face;
4254 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4255 extern Lisp_Object Qminibuffer_prompt;
4256
4257 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4258
4259 /* Defined in menu.c. */
4260 extern void syms_of_menu (void);
4261
4262 /* Defined in xmenu.c. */
4263 extern void syms_of_xmenu (void);
4264
4265 /* Defined in termchar.h. */
4266 struct tty_display_info;
4267
4268 /* Defined in termhooks.h. */
4269 struct terminal;
4270
4271 /* Defined in sysdep.c. */
4272 #ifndef HAVE_GET_CURRENT_DIR_NAME
4273 extern char *get_current_dir_name (void);
4274 #endif
4275 extern void stuff_char (char c);
4276 extern void init_foreground_group (void);
4277 extern void sys_subshell (void);
4278 extern void sys_suspend (void);
4279 extern void discard_tty_input (void);
4280 extern void init_sys_modes (struct tty_display_info *);
4281 extern void reset_sys_modes (struct tty_display_info *);
4282 extern void init_all_sys_modes (void);
4283 extern void reset_all_sys_modes (void);
4284 extern void child_setup_tty (int);
4285 extern void setup_pty (int);
4286 extern int set_window_size (int, int, int);
4287 extern EMACS_INT get_random (void);
4288 extern void seed_random (void *, ptrdiff_t);
4289 extern void init_random (void);
4290 extern void emacs_backtrace (int);
4291 extern _Noreturn void emacs_abort (void) NO_INLINE;
4292 extern int emacs_open (const char *, int, int);
4293 extern int emacs_pipe (int[2]);
4294 extern int emacs_close (int);
4295 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4296 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4297 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4298 extern void emacs_perror (char const *);
4299
4300 extern void unlock_all_files (void);
4301 extern void lock_file (Lisp_Object);
4302 extern void unlock_file (Lisp_Object);
4303 extern void unlock_buffer (struct buffer *);
4304 extern void syms_of_filelock (void);
4305 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4306
4307 /* Defined in sound.c. */
4308 extern void syms_of_sound (void);
4309
4310 /* Defined in category.c. */
4311 extern void init_category_once (void);
4312 extern Lisp_Object char_category_set (int);
4313 extern void syms_of_category (void);
4314
4315 /* Defined in ccl.c. */
4316 extern void syms_of_ccl (void);
4317
4318 /* Defined in dired.c. */
4319 extern void syms_of_dired (void);
4320 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4321 Lisp_Object, Lisp_Object,
4322 bool, Lisp_Object);
4323
4324 /* Defined in term.c. */
4325 extern int *char_ins_del_vector;
4326 extern void syms_of_term (void);
4327 extern _Noreturn void fatal (const char *msgid, ...)
4328 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4329
4330 /* Defined in terminal.c. */
4331 extern void syms_of_terminal (void);
4332
4333 /* Defined in font.c. */
4334 extern void syms_of_font (void);
4335 extern void init_font (void);
4336
4337 #ifdef HAVE_WINDOW_SYSTEM
4338 /* Defined in fontset.c. */
4339 extern void syms_of_fontset (void);
4340
4341 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4342 extern Lisp_Object Qfont_param;
4343 #endif
4344
4345 /* Defined in gfilenotify.c */
4346 #ifdef HAVE_GFILENOTIFY
4347 extern void globals_of_gfilenotify (void);
4348 extern void syms_of_gfilenotify (void);
4349 #endif
4350
4351 /* Defined in inotify.c */
4352 #ifdef HAVE_INOTIFY
4353 extern void syms_of_inotify (void);
4354 #endif
4355
4356 #ifdef HAVE_W32NOTIFY
4357 /* Defined on w32notify.c. */
4358 extern void syms_of_w32notify (void);
4359 #endif
4360
4361 /* Defined in xfaces.c. */
4362 extern Lisp_Object Qdefault, Qfringe;
4363 extern Lisp_Object Qscroll_bar, Qcursor;
4364 extern Lisp_Object Qmode_line_inactive;
4365 extern Lisp_Object Qface;
4366 extern Lisp_Object Qnormal;
4367 extern Lisp_Object QCfamily, QCweight, QCslant;
4368 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4369 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4370 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4371 extern Lisp_Object Qoblique, Qitalic;
4372 extern Lisp_Object Vface_alternative_font_family_alist;
4373 extern Lisp_Object Vface_alternative_font_registry_alist;
4374 extern void syms_of_xfaces (void);
4375
4376 #ifdef HAVE_X_WINDOWS
4377 /* Defined in xfns.c. */
4378 extern void syms_of_xfns (void);
4379
4380 /* Defined in xsmfns.c. */
4381 extern void syms_of_xsmfns (void);
4382
4383 /* Defined in xselect.c. */
4384 extern void syms_of_xselect (void);
4385
4386 /* Defined in xterm.c. */
4387 extern void syms_of_xterm (void);
4388 #endif /* HAVE_X_WINDOWS */
4389
4390 #ifdef HAVE_WINDOW_SYSTEM
4391 /* Defined in xterm.c, nsterm.m, w32term.c. */
4392 extern char *x_get_keysym_name (int);
4393 #endif /* HAVE_WINDOW_SYSTEM */
4394
4395 #ifdef HAVE_LIBXML2
4396 /* Defined in xml.c. */
4397 extern void syms_of_xml (void);
4398 extern void xml_cleanup_parser (void);
4399 #endif
4400
4401 #ifdef HAVE_ZLIB
4402 /* Defined in decompress.c. */
4403 extern void syms_of_decompress (void);
4404 #endif
4405
4406 #ifdef HAVE_DBUS
4407 /* Defined in dbusbind.c. */
4408 void syms_of_dbusbind (void);
4409 #endif
4410
4411
4412 /* Defined in profiler.c. */
4413 extern bool profiler_memory_running;
4414 extern void malloc_probe (size_t);
4415 extern void syms_of_profiler (void);
4416
4417
4418 #ifdef DOS_NT
4419 /* Defined in msdos.c, w32.c. */
4420 extern char *emacs_root_dir (void);
4421 #endif /* DOS_NT */
4422
4423 /* Defined in lastfile.c. */
4424 extern char my_edata[];
4425 extern char my_endbss[];
4426 extern char *my_endbss_static;
4427
4428 /* True means ^G can quit instantly. */
4429 extern bool immediate_quit;
4430
4431 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4432 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4433 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4434 extern void xfree (void *);
4435 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4436 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4437 ATTRIBUTE_ALLOC_SIZE ((2,3));
4438 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4439
4440 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4441 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4442 extern void dupstring (char **, char const *);
4443 extern void xputenv (const char *);
4444
4445 extern char *egetenv_internal (const char *, ptrdiff_t);
4446
4447 INLINE char *
4448 egetenv (const char *var)
4449 {
4450 /* When VAR is a string literal, strlen can be optimized away. */
4451 return egetenv_internal (var, strlen (var));
4452 }
4453
4454 /* Copy Lisp string to temporary (allocated on stack) C string. */
4455
4456 #define xlispstrdupa(string) \
4457 memcpy (alloca (SBYTES (string) + 1), \
4458 SSDATA (string), SBYTES (string) + 1)
4459
4460 /* Set up the name of the machine we're running on. */
4461 extern void init_system_name (void);
4462
4463 /* Return the absolute value of X. X should be a signed integer
4464 expression without side effects, and X's absolute value should not
4465 exceed the maximum for its promoted type. This is called 'eabs'
4466 because 'abs' is reserved by the C standard. */
4467 #define eabs(x) ((x) < 0 ? -(x) : (x))
4468
4469 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4470 fixnum. */
4471
4472 #define make_fixnum_or_float(val) \
4473 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4474
4475 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4476 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4477
4478 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4479
4480 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4481
4482 #define USE_SAFE_ALLOCA \
4483 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4484
4485 /* SAFE_ALLOCA allocates a simple buffer. */
4486
4487 #define SAFE_ALLOCA(size) ((size) < MAX_ALLOCA \
4488 ? alloca (size) \
4489 : (sa_must_free = true, record_xmalloc (size)))
4490
4491 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4492 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4493 positive. The code is tuned for MULTIPLIER being a constant. */
4494
4495 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4496 do { \
4497 if ((nitems) <= MAX_ALLOCA / sizeof *(buf) / (multiplier)) \
4498 (buf) = alloca (sizeof *(buf) * (multiplier) * (nitems)); \
4499 else \
4500 { \
4501 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4502 sa_must_free = true; \
4503 record_unwind_protect_ptr (xfree, buf); \
4504 } \
4505 } while (false)
4506
4507 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4508
4509 #define SAFE_FREE() \
4510 do { \
4511 if (sa_must_free) { \
4512 sa_must_free = false; \
4513 unbind_to (sa_count, Qnil); \
4514 } \
4515 } while (false)
4516
4517
4518 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4519
4520 #define SAFE_ALLOCA_LISP(buf, nelt) \
4521 do { \
4522 if ((nelt) < MAX_ALLOCA / word_size) \
4523 (buf) = alloca ((nelt) * word_size); \
4524 else if ((nelt) < min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4525 { \
4526 Lisp_Object arg_; \
4527 (buf) = xmalloc ((nelt) * word_size); \
4528 arg_ = make_save_memory (buf, nelt); \
4529 sa_must_free = true; \
4530 record_unwind_protect (free_save_value, arg_); \
4531 } \
4532 else \
4533 memory_full (SIZE_MAX); \
4534 } while (false)
4535
4536 /* Loop over all tails of a list, checking for cycles.
4537 FIXME: Make tortoise and n internal declarations.
4538 FIXME: Unroll the loop body so we don't need `n'. */
4539 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4540 for ((tortoise) = (hare) = (list), (n) = true; \
4541 CONSP (hare); \
4542 (hare = XCDR (hare), (n) = !(n), \
4543 ((n) \
4544 ? (EQ (hare, tortoise) \
4545 ? xsignal1 (Qcircular_list, list) \
4546 : (void) 0) \
4547 /* Move tortoise before the next iteration, in case */ \
4548 /* the next iteration does an Fsetcdr. */ \
4549 : (void) ((tortoise) = XCDR (tortoise)))))
4550
4551 /* Do a `for' loop over alist values. */
4552
4553 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4554 for ((list_var) = (head_var); \
4555 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4556 (list_var) = XCDR (list_var))
4557
4558 /* Check whether it's time for GC, and run it if so. */
4559
4560 INLINE void
4561 maybe_gc (void)
4562 {
4563 if ((consing_since_gc > gc_cons_threshold
4564 && consing_since_gc > gc_relative_threshold)
4565 || (!NILP (Vmemory_full)
4566 && consing_since_gc > memory_full_cons_threshold))
4567 Fgarbage_collect ();
4568 }
4569
4570 INLINE bool
4571 functionp (Lisp_Object object)
4572 {
4573 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4574 {
4575 object = Findirect_function (object, Qt);
4576
4577 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4578 {
4579 /* Autoloaded symbols are functions, except if they load
4580 macros or keymaps. */
4581 int i;
4582 for (i = 0; i < 4 && CONSP (object); i++)
4583 object = XCDR (object);
4584
4585 return ! (CONSP (object) && !NILP (XCAR (object)));
4586 }
4587 }
4588
4589 if (SUBRP (object))
4590 return XSUBR (object)->max_args != UNEVALLED;
4591 else if (COMPILEDP (object))
4592 return true;
4593 else if (CONSP (object))
4594 {
4595 Lisp_Object car = XCAR (object);
4596 return EQ (car, Qlambda) || EQ (car, Qclosure);
4597 }
4598 else
4599 return false;
4600 }
4601
4602 INLINE_HEADER_END
4603
4604 #endif /* EMACS_LISP_H */