]> code.delx.au - pulseaudio/blob - src/modules/module-equalizer-sink.c
module-equalizer-sink added
[pulseaudio] / src / modules / module-equalizer-sink.c
1
2
3 #ifdef HAVE_CONFIG_H
4 #include <config.h>
5 #endif
6
7 #include <stdio.h>
8 #include <math.h>
9 #include <fftw3.h>
10 #include <float.h>
11
12
13 #include <pulse/xmalloc.h>
14 #include <pulse/i18n.h>
15
16 #include <pulsecore/core-error.h>
17 #include <pulsecore/namereg.h>
18 #include <pulsecore/sink.h>
19 #include <pulsecore/module.h>
20 #include <pulsecore/core-util.h>
21 #include <pulsecore/modargs.h>
22 #include <pulsecore/log.h>
23 #include <pulsecore/thread.h>
24 #include <pulsecore/thread-mq.h>
25 #include <pulsecore/rtpoll.h>
26 #include <pulsecore/sample-util.h>
27 #include <pulsecore/ltdl-helper.h>
28 #include <liboil/liboilfuncs.h>
29 #include <liboil/liboil.h>
30
31
32 #include <stdint.h>
33 #include <time.h>
34
35
36 #include "module-equalizer-sink-symdef.h"
37
38 PA_MODULE_AUTHOR("Jason Newton");
39 PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
40 PA_MODULE_VERSION(PACKAGE_VERSION);
41 PA_MODULE_LOAD_ONCE(FALSE);
42 PA_MODULE_USAGE(_("sink=<sink to connect to> "));
43
44 #define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
45
46 struct userdata {
47 pa_core *core;
48 pa_module *module;
49 pa_sink *sink, *master;
50 pa_sink_input *sink_input;
51
52 size_t channels;
53 size_t fft_size; //length (res) of fft
54 size_t window_size;//even!
55 size_t overlap_size;
56 size_t samples_gathered;
57 size_t n_buffered_output;
58 size_t max_output;
59 float *H;//frequency response filter (magnitude based)
60 float *W;//windowing function (time domain)
61 float *work_buffer,**input,**overlap_accum,**output_buffer;
62 fftwf_complex *output_window;
63 fftwf_plan forward_plan,inverse_plan;
64
65 pa_memblockq *memblockq;
66 };
67
68 static const char* const valid_modargs[] = {
69 "sink_name",
70 "sink_properties",
71 "master",
72 "format",
73 "rate",
74 "channels",
75 "channel_map",
76 NULL
77 };
78
79 uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
80 {
81 return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) -
82 ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec);
83 }
84
85 void hanning_normalized_window(float *W,size_t window_size){
86 //h = sqrt(2)/2 * (1+cos(t*pi)) ./ sqrt( 1+cos(t*pi).^2 )
87 float c;
88 for(size_t i=0;i<window_size;++i){
89 c=cos(M_PI*i/(window_size-1));
90 W[i]=sqrt(2.0)/2.0*(1.0+c) / sqrt(1.0+c*c);
91 }
92 }
93 void hanning_window(float *W,size_t window_size){
94 //h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
95 for(size_t i=0;i<window_size;++i){
96 W[i]=.5*(1-cos(2*M_PI*i/(window_size+1)));
97 }
98 }
99 void hamming_window(float *W,size_t window_size){
100 //h=.54-.46*cos(2*pi*j/(window_size-1))
101 //COLA for R=(M-1)/2,(M-1)/4 etc when endpoints are divided by 2
102 //or one endpoint is zeroed
103 float m;
104 for(size_t i=0;i<window_size;++i){
105 m=i;
106 m/=(window_size-1);
107 W[i]=.54-.46*cos(2*M_PI*m);
108 }
109 W[0]/=2;
110 W[window_size-1]/=2;
111 }
112 void blackman_window(float *W,size_t window_size){
113 //h=.42-.5*cos(2*pi*m)+.08*cos(4*pi*m), m=(0:W-1)/(W-1)
114 //COLA for R=(M-1)/3 when M is odd and R is an integer
115 //R=M/3 when M is even and R is an integer
116 float m;
117 for(size_t i=0;i<window_size;++i){
118 m=i;
119 m/=(window_size-1);
120 W[i]=.42-.5*cos(2*M_PI*m)+.08*cos(4*M_PI*m);
121 }
122 }
123
124
125 void sin_window(float *W,size_t window_size){
126 //h = (cos(t*pi)+1)/2 .* float(abs(t)<1);
127 for(size_t i=0;i<window_size;++i){
128 W[i]=sin(M_PI*i/(window_size-1));
129 }
130 }
131
132
133 void array_out(const char *name,float *a,size_t length){
134 FILE *p=fopen(name,"w");
135 for(size_t i=0;i<length;++i){
136 fprintf(p,"%e,",a[i]);
137 //if(i%1000==0){
138 // fprintf(p,"\n");
139 //}
140 }
141 fprintf(p,"\n");
142 fclose(p);
143 }
144
145
146 /* Called from I/O thread context */
147 static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
148 struct userdata *u = PA_SINK(o)->userdata;
149
150 switch (code) {
151
152 case PA_SINK_MESSAGE_GET_LATENCY: {
153 pa_usec_t usec = 0;
154 pa_sample_spec *ss=&u->sink->sample_spec;
155
156 /* Get the latency of the master sink */
157 if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
158 usec = 0;
159
160 usec+=pa_bytes_to_usec(u->n_buffered_output*pa_frame_size(ss),ss);
161 /* Add the latency internal to our sink input on top */
162 usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
163 *((pa_usec_t*) data) = usec;
164 return 0;
165 }
166 }
167
168 return pa_sink_process_msg(o, code, data, offset, chunk);
169 }
170
171
172 /* Called from main context */
173 static int sink_set_state(pa_sink *s, pa_sink_state_t state) {
174 struct userdata *u;
175
176 pa_sink_assert_ref(s);
177 pa_assert_se(u = s->userdata);
178
179 if (PA_SINK_IS_LINKED(state) &&
180 u->sink_input &&
181 PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
182
183 pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
184
185 return 0;
186 }
187
188 /* Called from I/O thread context */
189 static void sink_request_rewind(pa_sink *s) {
190 struct userdata *u;
191
192 pa_sink_assert_ref(s);
193 pa_assert_se(u = s->userdata);
194
195 /* Just hand this one over to the master sink */
196 pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE);
197 }
198
199 /* Called from I/O thread context */
200 static void sink_update_requested_latency(pa_sink *s) {
201 struct userdata *u;
202
203 pa_sink_assert_ref(s);
204 pa_assert_se(u = s->userdata);
205
206 /* Just hand this one over to the master sink */
207 pa_sink_input_set_requested_latency_within_thread(
208 u->sink_input,
209 pa_sink_get_requested_latency_within_thread(s));
210 }
211
212 /* Called from I/O thread context */
213 static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
214 struct userdata *u;
215 float *src, *dst;
216 size_t c;
217 pa_memchunk tchunk;
218 pa_sink_input_assert_ref(i);
219 pa_assert(chunk);
220 pa_assert_se(u = i->userdata);
221 size_t fs = pa_frame_size(&u->sink->sample_spec);
222 size_t ss=pa_sample_size(&u->sink->sample_spec);
223 size_t fe = fs/ss;
224
225 if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
226 return -1;
227
228 //output any buffered outputs first
229 if(u->n_buffered_output>0){
230 //pa_log("outputing %ld buffered samples",u->n_buffered_output);
231 chunk->index = 0;
232 size_t n_outputable=PA_MIN(u->n_buffered_output,nbytes/fs);
233 chunk->length = n_outputable*fs;
234 chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
235 pa_memblockq_drop(u->memblockq, chunk->length);
236 dst = (float*) pa_memblock_acquire(chunk->memblock);
237 for(size_t j=0;j<u->channels;++j){
238 pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+j, fs, u->output_buffer[j], sizeof(float),n_outputable);
239 memmove(u->output_buffer[j],u->output_buffer[j]+n_outputable,(u->n_buffered_output-n_outputable)*sizeof(float));
240 }
241 u->n_buffered_output-=n_outputable;
242 pa_memblock_release(chunk->memblock);
243 return 0;
244 }
245 pa_assert_se(u->n_buffered_output==0);
246
247 //collect the minimum number of samples
248 while(u->samples_gathered < (u->window_size-u->overlap_size)){
249 //render some new fragments to our memblockq
250 //size_t desired_samples=PA_MIN(u->min_input-samples_gathered,u->max_output);
251 size_t desired_samples=PA_MIN((u->window_size-u->overlap_size)-u->samples_gathered,u->max_output);
252 while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
253 pa_memchunk nchunk;
254
255 pa_sink_render(u->sink, desired_samples*fs, &nchunk);
256 pa_memblockq_push(u->memblockq, &nchunk);
257 pa_memblock_unref(nchunk.memblock);
258 }
259 if(tchunk.length/fs!=desired_samples){
260 pa_log("got %ld samples, asked for %ld",tchunk.length/fs,desired_samples);
261 }
262 size_t n_samples=PA_MIN(tchunk.length/fs,u->window_size-u->overlap_size-u->samples_gathered);
263 //TODO: figure out what to do with rest of the samples when there's too many (rare?)
264 src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index);
265 for (size_t c=0;c<u->channels;c++) {
266 pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float), src+c, fs, n_samples);
267 }
268
269 u->samples_gathered+=n_samples;
270 pa_memblock_release(tchunk.memblock);
271 pa_memblock_unref(tchunk.memblock);
272 }
273 //IT should be this guy if we're buffering like how its supposed to
274 //size_t n_outputable=PA_MIN(u->window_size-u->overlap_size,nbytes/fs);
275 //This one takes into account the actual data gathered but then the dsp
276 //stuff is wrong when the buffer "underruns"
277 size_t n_outputable=PA_MIN(u->samples_gathered,nbytes/fs);
278 /*
279 //debugging: tests if immediate release of freshly buffered data
280 //plays ok and prevents any other processing
281 chunk->index=0;
282 chunk->length=n_outputable*fs;
283 chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
284 pa_memblockq_drop(u->memblockq, chunk->length);
285 dst = (float*) pa_memblock_acquire(chunk->memblock);;
286 for (size_t c=0;c<u->channels;c++) {
287 pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->input[c]+u->overlap_size, sizeof(float),n_outputable);
288 }
289 u->samples_gathered=0;
290 pa_memblock_release(chunk->memblock);
291 return 0;
292 */
293
294 //pa_log("%ld dequed samples",u->samples_gathered);
295
296 chunk->index=0;
297 chunk->length=n_outputable*fs;
298 chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
299 pa_memblockq_drop(u->memblockq, chunk->length);
300 dst = (float*) pa_memblock_acquire(chunk->memblock);
301 //pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input, sizeof(float), src+c, fs, samples);
302 //pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c,fs, u->input, sizeof(float), samples);
303
304 /*
305 struct timespec start, end;
306 uint64_t elapsed;
307 clock_gettime(CLOCK_MONOTONIC, &start);
308 */
309 //use a zero-phase sliding dft and overlap-add method
310
311 pa_assert_se(u->fft_size>=u->window_size);
312 //pa_assert_se(u->window_size%2==0);
313 pa_assert_se(u->overlap_size<u->window_size);
314 pa_assert_se(u->samples_gathered>=u->window_size-u->overlap_size);
315 size_t sample_rem=u->window_size-u->overlap_size-n_outputable;
316 //size_t w_mid=u->window_size/2;
317 //pa_log("hello world a");
318 for (c=0;c<u->channels;c++) {
319 //center the data for zero phase
320 //zero-pad TODO: optimization if sure these zeros aren't overwritten
321 //memset(u->work_buffer+w_mid,0,(u->fft_size-u->window_size)*sizeof(float));
322 //memset(u->work_buffer,0,u->fft_size*sizeof(float));
323 /*
324 for(size_t j=0;j<u->window_size;++j){
325 u->work_buffer[j]=u->W[j]*u->input[c][j];
326 u->work_buffer[j]=u->input[c][j];
327 }
328 */
329 //zero padd the data, don't worry about zerophase, shouldn't really matter
330 memset(u->work_buffer+u->overlap_size,0,(u->fft_size-u->overlap_size)*sizeof(float));
331 //window the data
332 for(size_t j=0;j<u->window_size;++j){
333 u->work_buffer[j]=u->W[j]*u->input[c][j];
334 }
335 /*
336 //recenter for zero phase
337 for(size_t j=0;j<w_mid;++j){
338 float tmp=u->work_buffer[j];
339 u->work_buffer[j]=u->input[c][j+w_mid];
340 u->work_buffer[j+u->fft_size-w_mid]=tmp;
341 }
342 */
343 //pa_log("hello world b");
344
345 /*
346 //window and zero phase shift
347 for(size_t j=0;j<w_mid;++j){
348 //u->work_buffer[j]=u->input[c][j+w_mid];
349 //u->work_buffer[j+u->fft_size-w_mid]=u->input[c][j];
350 u->work_buffer[j]=u->W[j+w_mid]*u->input[c][j+w_mid];
351 u->work_buffer[j+u->fft_size-w_mid]=u->W[j]*u->input[c][j];
352 }*/
353 //Processing is done here!
354 //do fft
355 fftwf_execute_dft_r2c(u->forward_plan,u->work_buffer,u->output_window);
356 //perform filtering
357 for(size_t j=0;j<u->fft_size/2+1;++j){
358 ////identity transform (fft size)
359 //u->output_window[j][0]/=u->fft_size;
360 //u->output_window[j][1]/=u->fft_size;
361 ////identity transform (window size)
362 //u->output_window[j][0]/=u->window_size;
363 //u->output_window[j][1]/=u->window_size;
364 //filtered
365 u->output_window[j][0]*=u->H[j];
366 u->output_window[j][1]*=u->H[j];
367 }
368 //inverse fft
369 fftwf_execute_dft_c2r(u->inverse_plan,u->output_window,u->work_buffer);
370
371 /*
372 //uncenter the data
373 for(size_t j=0;j<w_mid;++j){
374 const float tmp=u->work_buffer[j];
375 u->work_buffer[j]=u->work_buffer[j+u->fft_size-w_mid];
376 u->work_buffer[j+w_mid]=tmp;
377 }
378 */
379 /*
380 //divide out fft gain (more stable here?)
381 for(size_t j=0;j<u->window_size;++j){
382 u->work_buffer[j]/=u->fft_size;
383 }
384 */
385 /*
386 //debug: tests overlaping add
387 //and negates ALL PREVIOUS processing
388 //yields a perfect reconstruction if COLA is held
389 for(size_t j=0;j<u->window_size;++j){
390 u->work_buffer[j]=u->W[j]*u->input[c][j];
391 }
392 */
393 /*
394 //debug: tests if basic buffering works
395 //shouldn't modify the signal AT ALL
396 for(size_t j=0;j<u->window_size;++j){
397 u->work_buffer[j]=u->input[c][j];
398 }
399 */
400
401 /*
402 //overlap add and preserve overlap component from this window (zero phase)
403 for(size_t j=0;j<u->overlap_size;++j){
404 u->work_buffer[j]+=u->overlap_accum[c][j];
405 u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j];
406 }
407 */
408 //overlap add and preserve overlap component from this window (linear phase)
409 for(size_t j=0;j<u->overlap_size;++j){
410 u->work_buffer[j]+=u->overlap_accum[c][j];
411 u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j];
412 }
413
414 //preseve the needed input for the next windows overlap
415 memmove(u->input[c],u->input[c]+u->overlap_size,(u->window_size-u->overlap_size)*sizeof(float));
416 //output the samples that are outputable now
417 pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->work_buffer, sizeof(float),n_outputable);
418 //buffer the rest of them
419 memcpy(u->output_buffer[c]+u->n_buffered_output,u->work_buffer+n_outputable,sample_rem*sizeof(float));
420 }
421 /*
422 clock_gettime(CLOCK_MONOTONIC, &end);
423 elapsed=time_diff(&end, &start);
424 pa_log("processed: %ld, time: %ld",u->samples_gathered,elapsed);
425 */
426 u->n_buffered_output+=sample_rem;
427 u->samples_gathered=0;
428
429
430 //pa_log("%ld samples queued",u->n_buffered_output);
431
432 pa_memblock_release(chunk->memblock);
433
434
435 return 0;
436 }
437
438 /* Called from I/O thread context */
439 static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
440 struct userdata *u;
441 size_t amount = 0;
442
443 pa_sink_input_assert_ref(i);
444 pa_assert_se(u = i->userdata);
445
446 if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
447 return;
448
449 if (u->sink->thread_info.rewind_nbytes > 0) {
450 size_t max_rewrite;
451
452 max_rewrite = nbytes + pa_memblockq_get_length(u->memblockq);
453 amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
454 u->sink->thread_info.rewind_nbytes = 0;
455
456 if (amount > 0) {
457 pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
458 pa_log_debug("Resetting equalizer");
459 }
460 }
461
462 pa_sink_process_rewind(u->sink, amount);
463 pa_memblockq_rewind(u->memblockq, nbytes);
464 }
465
466 /* Called from I/O thread context */
467 static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
468 struct userdata *u;
469
470 pa_sink_input_assert_ref(i);
471 pa_assert_se(u = i->userdata);
472
473 if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
474 return;
475
476 pa_memblockq_set_maxrewind(u->memblockq, nbytes);
477 pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
478 }
479
480 /* Called from I/O thread context */
481 static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
482 struct userdata *u;
483
484 pa_sink_input_assert_ref(i);
485 pa_assert_se(u = i->userdata);
486
487 if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
488 return;
489
490 pa_sink_set_max_request_within_thread(u->sink, nbytes);
491 }
492
493 /* Called from I/O thread context */
494 static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
495 struct userdata *u;
496
497 pa_sink_input_assert_ref(i);
498 pa_assert_se(u = i->userdata);
499
500 if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
501 return;
502
503 pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
504 }
505
506 /* Called from I/O thread context */
507 static void sink_input_detach_cb(pa_sink_input *i) {
508 struct userdata *u;
509
510 pa_sink_input_assert_ref(i);
511 pa_assert_se(u = i->userdata);
512
513 if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
514 return;
515
516 pa_sink_detach_within_thread(u->sink);
517 pa_sink_set_asyncmsgq(u->sink, NULL);
518 pa_sink_set_rtpoll(u->sink, NULL);
519 }
520
521 /* Called from I/O thread context */
522 static void sink_input_attach_cb(pa_sink_input *i) {
523 struct userdata *u;
524
525 pa_sink_input_assert_ref(i);
526 pa_assert_se(u = i->userdata);
527
528 if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
529 return;
530
531 pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq);
532 pa_sink_set_rtpoll(u->sink, i->sink->rtpoll);
533 pa_sink_attach_within_thread(u->sink);
534
535 pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency);
536 }
537
538 /* Called from main context */
539 static void sink_input_kill_cb(pa_sink_input *i) {
540 struct userdata *u;
541
542 pa_sink_input_assert_ref(i);
543 pa_assert_se(u = i->userdata);
544
545 pa_sink_unlink(u->sink);
546 pa_sink_input_unlink(u->sink_input);
547
548 pa_sink_unref(u->sink);
549 u->sink = NULL;
550 pa_sink_input_unref(u->sink_input);
551 u->sink_input = NULL;
552
553 pa_module_unload_request(u->module, TRUE);
554 }
555
556 /* Called from IO thread context */
557 static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
558 struct userdata *u;
559
560 pa_sink_input_assert_ref(i);
561 pa_assert_se(u = i->userdata);
562
563 /* If we are added for the first time, ask for a rewinding so that
564 * we are heard right-away. */
565 if (PA_SINK_INPUT_IS_LINKED(state) &&
566 i->thread_info.state == PA_SINK_INPUT_INIT) {
567 pa_log_debug("Requesting rewind due to state change.");
568 pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
569 }
570 }
571
572 /* Called from main context */
573 static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
574 struct userdata *u;
575
576 pa_sink_input_assert_ref(i);
577 pa_assert_se(u = i->userdata);
578
579 return u->sink != dest;
580 }
581
582 int pa__init(pa_module*m) {
583 struct userdata *u;
584 pa_sample_spec ss;
585 pa_channel_map map;
586 pa_modargs *ma;
587 const char *z;
588 pa_sink *master;
589 pa_sink_input_new_data sink_input_data;
590 pa_sink_new_data sink_data;
591 pa_bool_t *use_default = NULL;
592 size_t fs;
593
594 pa_assert(m);
595
596 if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
597 pa_log("Failed to parse module arguments.");
598 goto fail;
599 }
600
601 if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
602 pa_log("Master sink not found");
603 goto fail;
604 }
605
606 ss = master->sample_spec;
607 ss.format = PA_SAMPLE_FLOAT32;
608 map = master->channel_map;
609 if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
610 pa_log("Invalid sample format specification or channel map");
611 goto fail;
612 }
613 fs=pa_frame_size(&ss);
614
615 u = pa_xnew0(struct userdata, 1);
616 u->core = m->core;
617 u->module = m;
618 m->userdata = u;
619 u->master = master;
620 u->sink = NULL;
621 u->sink_input = NULL;
622 u->memblockq = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, 0, fs, 1, 1, 0, NULL);
623
624 //u->fft_size=44100;
625 //u->fft_size=48000;
626 //u->fft_size=1024;
627 u->channels=ss.channels;
628 u->fft_size=pow(2,ceil(log(ss.rate)/log(2)));
629 //u->fft_size=ss.rate;
630 //u->fft_size=65536;
631 pa_log("fft size: %ld",u->fft_size);
632 u->window_size=8001;
633 u->overlap_size=(u->window_size+1)/2;
634 //u->overlap_size=u->window_size/2;
635 //u->overlap_size=0;
636 u->samples_gathered=0;
637 u->n_buffered_output=0;
638 u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
639 u->H=(float*) fftwf_malloc((u->fft_size/2+1)*sizeof(float));
640 u->W=(float*) fftwf_malloc((u->window_size)*sizeof(float));
641 u->work_buffer=(float*) fftwf_malloc(u->fft_size*sizeof(float));
642 u->input=(float **)malloc(sizeof(float *)*u->channels);
643 u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels);
644 u->output_buffer=(float **)malloc(sizeof(float *)*u->channels);
645 for(size_t c=0;c<u->channels;++c){
646 u->input[c]=(float*) fftwf_malloc(u->window_size*sizeof(float));
647 memset(u->input[c],0,u->window_size*sizeof(float));
648 u->overlap_accum[c]=(float*) fftwf_malloc(u->overlap_size*sizeof(float));
649 memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float));
650 u->output_buffer[c]=(float*) fftwf_malloc(u->window_size*sizeof(float));
651 }
652 u->output_window = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * (u->fft_size/2+1));
653 u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE);
654 u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
655
656 /*
657 //rectangular window
658 for(size_t j=0;j<u->window_size;++j){
659 u->W[j]=1.0;
660 }
661 */
662 //hanning_normalized_window(u->W,u->window_size);
663 hanning_window(u->W,u->window_size);
664 //sin_window(u->W,u->window_size);
665 array_out("/home/jason/window.txt",u->W,u->window_size);
666 //u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output_window, FFTW_ESTIMATE);
667 //u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
668 //u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output, FFTW_MEASURE);
669 //u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output, u->input, FFTW_MEASURE);
670 const int freqs[]={0,25,50,100,200,300,400,800,1500,
671 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
672 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
673 const float coefficients[]={1,1,1,1,1,1,1,1,1,1,
674 1,1,1,1,1,1,1,1,
675 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
676 const size_t ncoefficients=sizeof(coefficients)/sizeof(float);
677 pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
678 float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients));
679 freq_translated[0]=1;
680 //Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
681 for(size_t i=1;i<ncoefficients-1;++i){
682 freq_translated[i]=((float)freqs[i]*u->fft_size)/ss.rate;
683 //pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]);
684 pa_assert_se(freq_translated[i]>=freq_translated[i-1]);
685 }
686 freq_translated[ncoefficients-1]=DBL_MAX;
687 //Interpolate the specified frequency band values
688 u->H[0]=1;
689 for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){
690 pa_assert_se(j<ncoefficients);
691 //max frequency range passed, consider the rest as one band
692 if(freq_translated[j+1]>=DBL_MAX){
693 for(;i<(u->fft_size/2+1);++i){
694 u->H[i]=coefficients[j];
695 }
696 break;
697 }
698 //pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]);
699 //pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]);
700 pa_assert_se(freq_translated[j]<freq_translated[j+1]);
701 pa_assert_se(i>=freq_translated[j]);
702 pa_assert_se(i<=freq_translated[j+1]);
703 //bilinear-inerpolation of coefficients specified
704 float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
705 pa_assert_se(c0>=0&&c0<=1.0);
706 u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
707 pa_assert_se(u->H[i]>0);
708 while(i>=floor(freq_translated[j+1])){
709 j++;
710 }
711 }
712 array_out("/home/jason/coffs.txt",u->H,u->fft_size/2+1);
713 //divide out the fft gain
714 for(int i=0;i<(u->fft_size/2+1);++i){
715 u->H[i]/=u->fft_size;
716 }
717 free(freq_translated);
718
719 /* Create sink */
720 pa_sink_new_data_init(&sink_data);
721 sink_data.driver = __FILE__;
722 sink_data.module = m;
723 if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
724 sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
725 sink_data.namereg_fail = FALSE;
726 pa_sink_new_data_set_sample_spec(&sink_data, &ss);
727 pa_sink_new_data_set_channel_map(&sink_data, &map);
728 z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
729 pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer");
730 pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
731 pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
732
733 if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
734 pa_log("Invalid properties");
735 pa_sink_new_data_done(&sink_data);
736 goto fail;
737 }
738
739 u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
740 pa_sink_new_data_done(&sink_data);
741
742 if (!u->sink) {
743 pa_log("Failed to create sink.");
744 goto fail;
745 }
746
747 u->sink->parent.process_msg = sink_process_msg;
748 u->sink->set_state = sink_set_state;
749 u->sink->update_requested_latency = sink_update_requested_latency;
750 u->sink->request_rewind = sink_request_rewind;
751 u->sink->userdata = u;
752
753 pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
754 pa_sink_set_rtpoll(u->sink, master->rtpoll);
755
756 /* Create sink input */
757 pa_sink_input_new_data_init(&sink_input_data);
758 sink_input_data.driver = __FILE__;
759 sink_input_data.module = m;
760 sink_input_data.sink = u->master;
761 pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
762 pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
763 pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
764 pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
765
766 pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE);
767 pa_sink_input_new_data_done(&sink_input_data);
768
769 if (!u->sink_input)
770 goto fail;
771
772 u->sink_input->pop = sink_input_pop_cb;
773 u->sink_input->process_rewind = sink_input_process_rewind_cb;
774 u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
775 u->sink_input->update_max_request = sink_input_update_max_request_cb;
776 u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
777 u->sink_input->kill = sink_input_kill_cb;
778 u->sink_input->attach = sink_input_attach_cb;
779 u->sink_input->detach = sink_input_detach_cb;
780 u->sink_input->state_change = sink_input_state_change_cb;
781 u->sink_input->may_move_to = sink_input_may_move_to_cb;
782 u->sink_input->userdata = u;
783
784 pa_sink_put(u->sink);
785 pa_sink_input_put(u->sink_input);
786
787 pa_modargs_free(ma);
788
789 pa_xfree(use_default);
790
791 return 0;
792
793 fail:
794 if (ma)
795 pa_modargs_free(ma);
796
797 pa_xfree(use_default);
798
799 pa__done(m);
800
801 return -1;
802 }
803
804 int pa__get_n_used(pa_module *m) {
805 struct userdata *u;
806
807 pa_assert(m);
808 pa_assert_se(u = m->userdata);
809
810 return pa_sink_linked_by(u->sink);
811 }
812
813 void pa__done(pa_module*m) {
814 struct userdata *u;
815
816 pa_assert(m);
817
818 if (!(u = m->userdata))
819 return;
820
821 if (u->sink) {
822 pa_sink_unlink(u->sink);
823 pa_sink_unref(u->sink);
824 }
825
826 if (u->sink_input) {
827 pa_sink_input_unlink(u->sink_input);
828 pa_sink_input_unref(u->sink_input);
829 }
830
831 if (u->memblockq)
832 pa_memblockq_free(u->memblockq);
833
834 fftwf_destroy_plan(u->inverse_plan);
835 fftwf_destroy_plan(u->forward_plan);
836 fftwf_free(u->output_window);
837 for(size_t c=0;c<u->channels;++c){
838 fftwf_free(u->output_buffer[c]);
839 fftwf_free(u->overlap_accum[c]);
840 fftwf_free(u->input[c]);
841 }
842 free(u->output_buffer);
843 free(u->overlap_accum);
844 free(u->input);
845 fftwf_free(u->work_buffer);
846 fftwf_free(u->W);
847 fftwf_free(u->H);
848
849 pa_xfree(u);
850 }