]> code.delx.au - refind/blob - filesystems/fsw_ext4.c
Added meta_bg support
[refind] / filesystems / fsw_ext4.c
1 /**
2 * \file fsw_ext4.c
3 * ext4 file system driver code.
4 */
5
6 /*-
7 * Copyright (c) 2012 Stefan Agner
8 * Portions Copyright (c) 2006 Christoph Pfisterer
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 */
24
25 #include "fsw_ext4.h"
26
27
28 // functions
29
30 static fsw_status_t fsw_ext4_volume_mount(struct fsw_ext4_volume *vol);
31 static void fsw_ext4_volume_free(struct fsw_ext4_volume *vol);
32 static fsw_status_t fsw_ext4_volume_stat(struct fsw_ext4_volume *vol, struct fsw_volume_stat *sb);
33
34 static fsw_status_t fsw_ext4_dnode_fill(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno);
35 static void fsw_ext4_dnode_free(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno);
36 static fsw_status_t fsw_ext4_dnode_stat(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
37 struct fsw_dnode_stat *sb);
38 static fsw_status_t fsw_ext4_get_extent(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
39 struct fsw_extent *extent);
40 static fsw_status_t fsw_ext4_get_by_blkaddr(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
41 struct fsw_extent *extent);
42 static fsw_status_t fsw_ext4_get_by_extent(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
43 struct fsw_extent *extent);
44
45 static fsw_status_t fsw_ext4_dir_lookup(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
46 struct fsw_string *lookup_name, struct fsw_ext4_dnode **child_dno);
47 static fsw_status_t fsw_ext4_dir_read(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
48 struct fsw_shandle *shand, struct fsw_ext4_dnode **child_dno);
49 static fsw_status_t fsw_ext4_read_dentry(struct fsw_shandle *shand, struct ext4_dir_entry *entry);
50
51 static fsw_status_t fsw_ext4_readlink(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
52 struct fsw_string *link);
53
54 //
55 // Dispatch Table
56 //
57
58 struct fsw_fstype_table FSW_FSTYPE_TABLE_NAME(ext4) = {
59 { FSW_STRING_TYPE_ISO88591, 4, 4, "ext4" },
60 sizeof(struct fsw_ext4_volume),
61 sizeof(struct fsw_ext4_dnode),
62
63 fsw_ext4_volume_mount,
64 fsw_ext4_volume_free,
65 fsw_ext4_volume_stat,
66 fsw_ext4_dnode_fill,
67 fsw_ext4_dnode_free,
68 fsw_ext4_dnode_stat,
69 fsw_ext4_get_extent,
70 fsw_ext4_dir_lookup,
71 fsw_ext4_dir_read,
72 fsw_ext4_readlink,
73 };
74
75
76 static inline int test_root(fsw_u32 a, int b)
77 {
78 int num = b;
79
80 while (a > num)
81 num *= b;
82 return num == a;
83 }
84
85 static int fsw_ext4_group_sparse(fsw_u32 group)
86 {
87 if (group <= 1)
88 return 1;
89 if (!(group & 1))
90 return 0;
91 return (test_root(group, 7) || test_root(group, 5) ||
92 test_root(group, 3));
93 }
94
95 /* calculate the first block number of the group */
96 static inline fsw_u32
97 fsw_ext4_group_first_block_no(struct ext4_super_block *sb, fsw_u32 group_no)
98 {
99 return group_no * (fsw_u32)EXT4_BLOCKS_PER_GROUP(sb) +
100 sb->s_first_data_block;
101 }
102
103 /**
104 * Mount an ext4 volume. Reads the superblock and constructs the
105 * root directory dnode.
106 */
107
108 static fsw_status_t fsw_ext4_volume_mount(struct fsw_ext4_volume *vol)
109 {
110 fsw_status_t status;
111 void *buffer;
112 fsw_u32 blocksize;
113 fsw_u32 groupcnt, groupno, gdesc_per_block, gdesc_bno, gdesc_index, metabg_of_gdesc;
114 struct ext4_group_desc *gdesc;
115 int i;
116 struct fsw_string s;
117
118 // allocate memory to keep the superblock around
119 status = fsw_alloc(sizeof(struct ext4_super_block), &vol->sb);
120 if (status)
121 return status;
122
123 // read the superblock into its buffer
124 fsw_set_blocksize(vol, EXT4_SUPERBLOCK_BLOCKSIZE, EXT4_SUPERBLOCK_BLOCKSIZE);
125 status = fsw_block_get(vol, EXT4_SUPERBLOCK_BLOCKNO, 0, &buffer);
126 if (status)
127 return status;
128 fsw_memcpy(vol->sb, buffer, sizeof(struct ext4_super_block));
129 fsw_block_release(vol, EXT4_SUPERBLOCK_BLOCKNO, buffer);
130
131 // check the superblock
132 if (vol->sb->s_magic != EXT4_SUPER_MAGIC)
133 return FSW_UNSUPPORTED;
134 if (vol->sb->s_rev_level != EXT4_GOOD_OLD_REV &&
135 vol->sb->s_rev_level != EXT4_DYNAMIC_REV)
136 return FSW_UNSUPPORTED;
137
138 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_volume_mount: Incompat flag %x\n"), vol->sb->s_feature_incompat));
139
140 if (vol->sb->s_rev_level == EXT4_DYNAMIC_REV &&
141 (vol->sb->s_feature_incompat & ~(EXT4_FEATURE_INCOMPAT_FILETYPE | EXT4_FEATURE_INCOMPAT_RECOVER |
142 EXT4_FEATURE_INCOMPAT_EXTENTS | EXT4_FEATURE_INCOMPAT_FLEX_BG |
143 EXT4_FEATURE_INCOMPAT_META_BG)))
144 return FSW_UNSUPPORTED;
145
146
147 if (vol->sb->s_rev_level == EXT4_DYNAMIC_REV &&
148 (vol->sb->s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER))
149 {
150 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_volume_mount: This ext3 file system needs recovery\n")));
151 // Print(L"Ext4 WARNING: This file system needs recovery, trying to use it anyway.\n");
152 }
153
154 blocksize = EXT4_BLOCK_SIZE(vol->sb);
155 if (blocksize < EXT4_MIN_BLOCK_SIZE || blocksize > EXT4_MAX_BLOCK_SIZE)
156 return FSW_UNSUPPORTED;
157
158 // set real blocksize
159 fsw_set_blocksize(vol, blocksize, blocksize);
160
161 // get other info from superblock
162 vol->ind_bcnt = EXT4_ADDR_PER_BLOCK(vol->sb);
163 vol->dind_bcnt = vol->ind_bcnt * vol->ind_bcnt;
164 vol->inode_size = vol->sb->s_inode_size;//EXT4_INODE_SIZE(vol->sb);
165
166 for (i = 0; i < 16; i++)
167 if (vol->sb->s_volume_name[i] == 0)
168 break;
169 s.type = FSW_STRING_TYPE_ISO88591;
170 s.size = s.len = i;
171 s.data = vol->sb->s_volume_name;
172 status = fsw_strdup_coerce(&vol->g.label, vol->g.host_string_type, &s);
173 if (status)
174 return status;
175
176 // size of group descriptor depends on feature....
177 if (!(vol->sb->s_feature_incompat & EXT4_FEATURE_INCOMPAT_64BIT)) {
178 // Default minimal group descriptor size... (this might not be set in old ext2 filesystems, therefor set it!)
179 vol->sb->s_desc_size = EXT4_MIN_DESC_SIZE;
180 }
181
182 // Calculate group descriptor count the way the kernel does it...
183 groupcnt = (vol->sb->s_blocks_count_lo - vol->sb->s_first_data_block +
184 vol->sb->s_blocks_per_group - 1) / vol->sb->s_blocks_per_group;
185
186 // Descriptors in one block... s_desc_size needs to be set! (Usually 128 since normal block
187 // descriptors are 32 byte and block size is 4096)
188 gdesc_per_block = EXT4_DESC_PER_BLOCK(vol->sb);
189
190 // Read the group descriptors to get inode table offsets
191 status = fsw_alloc(sizeof(fsw_u32) * groupcnt, &vol->inotab_bno);
192 if (status)
193 return status;
194
195 // Loop through all block group descriptors in order to get inode table locations
196 for (groupno = 0; groupno < groupcnt; groupno++) {
197
198 // Calculate the block number which contains the block group descriptor we look for
199 if(vol->sb->s_feature_incompat & EXT4_FEATURE_INCOMPAT_META_BG && groupno >= vol->sb->s_first_meta_bg)
200 {
201 // If option meta_bg is set, the block group descriptor is in meta block group...
202 metabg_of_gdesc = (fsw_u32)(groupno / gdesc_per_block) * gdesc_per_block;
203 gdesc_bno = fsw_ext4_group_first_block_no(vol->sb, metabg_of_gdesc);
204 // We need to know if the block group in questition has a super block, if yes, the
205 // block group descriptors are in the next block number
206 if(!(vol->sb->s_feature_ro_compat & EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) || fsw_ext4_group_sparse(metabg_of_gdesc))
207 gdesc_bno += 1;
208 }
209 else
210 {
211 // All group descriptors follow the super block (+1)
212 gdesc_bno = (vol->sb->s_first_data_block + 1) + groupno / gdesc_per_block;
213 }
214 gdesc_index = groupno % gdesc_per_block;
215
216 // Get block if necessary...
217 status = fsw_block_get(vol, gdesc_bno, 1, (void **)&buffer);
218 if (status)
219 return status;
220
221 // Get group descriptor table and block number of inode table...
222 gdesc = (struct ext4_group_desc *)(buffer + gdesc_index * vol->sb->s_desc_size);
223 vol->inotab_bno[groupno] = gdesc->bg_inode_table_lo;
224
225 fsw_block_release(vol, gdesc_bno, buffer);
226 }
227
228 // setup the root dnode
229 status = fsw_dnode_create_root(vol, EXT4_ROOT_INO, &vol->g.root);
230 if (status)
231 return status;
232
233 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_volume_mount: success, blocksize %d\n"), blocksize));
234
235 return FSW_SUCCESS;
236 }
237
238 /**
239 * Free the volume data structure. Called by the core after an unmount or after
240 * an unsuccessful mount to release the memory used by the file system type specific
241 * part of the volume structure.
242 */
243
244 static void fsw_ext4_volume_free(struct fsw_ext4_volume *vol)
245 {
246 if (vol->sb)
247 fsw_free(vol->sb);
248 if (vol->inotab_bno)
249 fsw_free(vol->inotab_bno);
250 }
251
252 /**
253 * Get in-depth information on a volume.
254 */
255
256 static fsw_status_t fsw_ext4_volume_stat(struct fsw_ext4_volume *vol, struct fsw_volume_stat *sb)
257 {
258 sb->total_bytes = (fsw_u64)vol->sb->s_blocks_count_lo * vol->g.log_blocksize;
259 sb->free_bytes = (fsw_u64)vol->sb->s_free_blocks_count_lo * vol->g.log_blocksize;
260 return FSW_SUCCESS;
261 }
262
263 /**
264 * Get full information on a dnode from disk. This function is called by the core
265 * whenever it needs to access fields in the dnode structure that may not
266 * be filled immediately upon creation of the dnode. In the case of ext4, we
267 * delay fetching of the inode structure until dnode_fill is called. The size and
268 * type fields are invalid until this function has been called.
269 */
270
271 static fsw_status_t fsw_ext4_dnode_fill(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno)
272 {
273 fsw_status_t status;
274 fsw_u32 groupno, ino_in_group, ino_bno, ino_index;
275 fsw_u8 *buffer;
276
277 if (dno->raw)
278 return FSW_SUCCESS;
279
280
281 // read the inode block
282 groupno = (dno->g.dnode_id - 1) / vol->sb->s_inodes_per_group;
283 ino_in_group = (dno->g.dnode_id - 1) % vol->sb->s_inodes_per_group;
284 ino_bno = vol->inotab_bno[groupno] +
285 ino_in_group / (vol->g.phys_blocksize / vol->inode_size);
286 ino_index = ino_in_group % (vol->g.phys_blocksize / vol->inode_size);
287 status = fsw_block_get(vol, ino_bno, 2, (void **)&buffer);
288
289 if (status)
290 return status;
291
292 // keep our inode around
293 status = fsw_memdup((void **)&dno->raw, buffer + ino_index * vol->inode_size, vol->inode_size);
294 fsw_block_release(vol, ino_bno, buffer);
295 if (status)
296 return status;
297
298 // get info from the inode
299 dno->g.size = dno->raw->i_size_lo; // TODO: check docs for 64-bit sized files
300
301 if (S_ISREG(dno->raw->i_mode))
302 dno->g.type = FSW_DNODE_TYPE_FILE;
303 else if (S_ISDIR(dno->raw->i_mode))
304 dno->g.type = FSW_DNODE_TYPE_DIR;
305 else if (S_ISLNK(dno->raw->i_mode))
306 dno->g.type = FSW_DNODE_TYPE_SYMLINK;
307 else
308 dno->g.type = FSW_DNODE_TYPE_SPECIAL;
309
310 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_dnode_fill: inode flags %x\n"), dno->raw->i_flags));
311 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_dnode_fill: i_mode %x\n"), dno->raw->i_mode));
312 return FSW_SUCCESS;
313 }
314
315 /**
316 * Free the dnode data structure. Called by the core when deallocating a dnode
317 * structure to release the memory used by the file system type specific part
318 * of the dnode structure.
319 */
320
321 static void fsw_ext4_dnode_free(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno)
322 {
323 if (dno->raw)
324 fsw_free(dno->raw);
325 }
326
327 /**
328 * Get in-depth information on a dnode. The core makes sure that fsw_ext4_dnode_fill
329 * has been called on the dnode before this function is called. Note that some
330 * data is not directly stored into the structure, but passed to a host-specific
331 * callback that converts it to the host-specific format.
332 */
333
334 static fsw_status_t fsw_ext4_dnode_stat(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
335 struct fsw_dnode_stat *sb)
336 {
337 sb->used_bytes = dno->raw->i_blocks_lo * EXT4_BLOCK_SIZE(vol->sb); // very, very strange...
338 sb->store_time_posix(sb, FSW_DNODE_STAT_CTIME, dno->raw->i_ctime);
339 sb->store_time_posix(sb, FSW_DNODE_STAT_ATIME, dno->raw->i_atime);
340 sb->store_time_posix(sb, FSW_DNODE_STAT_MTIME, dno->raw->i_mtime);
341 sb->store_attr_posix(sb, dno->raw->i_mode);
342
343 return FSW_SUCCESS;
344 }
345
346 /**
347 * Retrieve file data mapping information. This function is called by the core when
348 * fsw_shandle_read needs to know where on the disk the required piece of the file's
349 * data can be found. The core makes sure that fsw_ext4_dnode_fill has been called
350 * on the dnode before. Our task here is to get the physical disk block number for
351 * the requested logical block number.
352 *
353 * The ext4 file system usually uses extents do to store those disk block numbers.
354 * However, since ext4 is backward compatible, depending on inode flags the old direct
355 * and indirect addressing scheme can still be in place...
356 */
357
358 static fsw_status_t fsw_ext4_get_extent(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
359 struct fsw_extent *extent)
360 {
361 // Preconditions: The caller has checked that the requested logical block
362 // is within the file's size. The dnode has complete information, i.e.
363 // fsw_ext4_dnode_read_info was called successfully on it.
364 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_get_extent: inode %d, block %d\n"), dno->g.dnode_id, extent->log_start));
365 extent->type = FSW_EXTENT_TYPE_PHYSBLOCK;
366 extent->log_count = 1;
367
368 if(dno->raw->i_flags & 1 << EXT4_INODE_EXTENTS)
369 {
370 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_get_extent: inode %d uses extents\n"), dno->g.dnode_id));
371 return fsw_ext4_get_by_extent(vol, dno, extent);
372 }
373 else
374 {
375 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_get_extent: inode %d uses direct/indirect block addressing\n"),
376 dno->g.dnode_id));
377 return fsw_ext4_get_by_blkaddr(vol, dno, extent);
378 }
379 }
380
381 /**
382 * New ext4 extents...
383 */
384 static fsw_status_t fsw_ext4_get_by_extent(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
385 struct fsw_extent *extent)
386 {
387 fsw_status_t status;
388 fsw_u32 bno, release_bno, buf_bcnt, buf_offset, file_bcnt;
389 int ext_cnt;
390 int ext_depth;
391 void *buffer;
392
393 struct ext4_extent_header *ext4_extent_header;
394 struct ext4_extent_idx *ext4_extent_idx;
395 struct ext4_extent *ext4_extent;
396
397 // Logical block requested by core...
398 bno = extent->log_start;
399
400 // First buffer is the i_block field from inode...
401 buffer = (void *)dno->raw->i_block;
402 buf_bcnt = EXT4_NDIR_BLOCKS;
403 buf_offset = 0;
404 while(1) {
405 ext4_extent_header = (struct ext4_extent_header *)buffer + buf_offset;
406 buf_offset += sizeof(struct ext4_extent_header);
407 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_get_by_extent: extent header with %d entries\n"),
408 ext4_extent_header->eh_entries));
409 if(ext4_extent_header->eh_magic != EXT4_EXT_MAGIC)
410 return FSW_VOLUME_CORRUPTED;
411
412 for(ext_cnt = 0;ext_cnt < ext4_extent_header->eh_entries;ext_cnt++)
413 {
414 if(ext4_extent_header->eh_depth == 0)
415 {
416 // Leaf node, the header follows actual extents
417 ext4_extent = (struct ext4_extent *)(buffer + buf_offset);
418 buf_offset += sizeof(struct ext4_extent);
419 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_get_by_extent: extent node cover %d...\n"), ext4_extent->ee_block));
420
421 // Is the requested block in this extent?
422 if(bno >= ext4_extent->ee_block && bno < ext4_extent->ee_block + ext4_extent->ee_len)
423 {
424 extent->phys_start = ext4_extent->ee_start_lo + (bno - ext4_extent->ee_block);
425 extent->log_count = ext4_extent->ee_len - (bno - ext4_extent->ee_block);
426 return FSW_SUCCESS;
427 }
428 }
429 else
430 {
431 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_get_by_extent: index extents, depth %d\n"),
432 ext4_extent_header->eh_depth));
433 ext4_extent_idx = (struct ext4_extent_idx *)(buffer + buf_offset);
434 buf_offset += sizeof(struct ext4_extent_idx);
435
436 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_get_by_extent: index node covers block %d...\n"),
437 ext4_extent_idx->ei_block));
438 if(bno >= ext4_extent_idx->ei_block)
439 {
440 // Follow extent tree...
441 status = fsw_block_get(vol, ext4_extent_idx->ei_leaf_lo, 1, (void **)&buffer);
442 if (status)
443 return status;
444 buf_offset = 0;
445 break;
446 }
447 }
448 }
449 }
450
451 return FSW_NOT_FOUND;
452 }
453
454 /**
455 * The ext2/ext3 file system does not use extents, but stores a list of block numbers
456 * using the usual direct, indirect, double-indirect, triple-indirect scheme. To
457 * optimize access, this function checks if the following file blocks are mapped
458 * to consecutive disk blocks and returns a combined extent if possible.
459 */
460 static fsw_status_t fsw_ext4_get_by_blkaddr(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
461 struct fsw_extent *extent)
462 {
463 fsw_status_t status;
464 fsw_u32 bno, release_bno, buf_bcnt, file_bcnt;
465 int path[5], i;
466 fsw_u32 *buffer;
467 bno = extent->log_start;
468
469 // try direct block pointers in the inode
470 if (bno < EXT4_NDIR_BLOCKS) {
471 path[0] = bno;
472 path[1] = -1;
473 } else {
474 bno -= EXT4_NDIR_BLOCKS;
475
476 // try indirect block
477 if (bno < vol->ind_bcnt) {
478 path[0] = EXT4_IND_BLOCK;
479 path[1] = bno;
480 path[2] = -1;
481 } else {
482 bno -= vol->ind_bcnt;
483
484 // try double-indirect block
485 if (bno < vol->dind_bcnt) {
486 path[0] = EXT4_DIND_BLOCK;
487 path[1] = bno / vol->ind_bcnt;
488 path[2] = bno % vol->ind_bcnt;
489 path[3] = -1;
490 } else {
491 bno -= vol->dind_bcnt;
492
493 // use the triple-indirect block
494 path[0] = EXT4_TIND_BLOCK;
495 path[1] = bno / vol->dind_bcnt;
496 path[2] = (bno / vol->ind_bcnt) % vol->ind_bcnt;
497 path[3] = bno % vol->ind_bcnt;
498 path[4] = -1;
499 }
500 }
501 }
502
503 // follow the indirection path
504 buffer = dno->raw->i_block;
505 buf_bcnt = EXT4_NDIR_BLOCKS;
506 release_bno = 0;
507 for (i = 0; ; i++) {
508 bno = buffer[path[i]];
509 if (bno == 0) {
510 extent->type = FSW_EXTENT_TYPE_SPARSE;
511 if (release_bno)
512 fsw_block_release(vol, release_bno, buffer);
513 return FSW_SUCCESS;
514 }
515 if (path[i+1] < 0)
516 break;
517
518 if (release_bno)
519 fsw_block_release(vol, release_bno, buffer);
520 status = fsw_block_get(vol, bno, 1, (void **)&buffer);
521 if (status)
522 return status;
523 release_bno = bno;
524 buf_bcnt = vol->ind_bcnt;
525 }
526 extent->phys_start = bno;
527
528 // check if the following blocks can be aggregated into one extent
529 file_bcnt = (fsw_u32)((dno->g.size + vol->g.log_blocksize - 1) & (vol->g.log_blocksize - 1));
530 while (path[i] + extent->log_count < buf_bcnt && // indirect block has more block pointers
531 extent->log_start + extent->log_count < file_bcnt) { // file has more blocks
532 if (buffer[path[i] + extent->log_count] == buffer[path[i] + extent->log_count - 1] + 1)
533 extent->log_count++;
534 else
535 break;
536 }
537
538 if (release_bno)
539 fsw_block_release(vol, release_bno, buffer);
540 return FSW_SUCCESS;
541 }
542
543 /**
544 * Lookup a directory's child dnode by name. This function is called on a directory
545 * to retrieve the directory entry with the given name. A dnode is constructed for
546 * this entry and returned. The core makes sure that fsw_ext4_dnode_fill has been called
547 * and the dnode is actually a directory.
548 */
549
550 static fsw_status_t fsw_ext4_dir_lookup(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
551 struct fsw_string *lookup_name, struct fsw_ext4_dnode **child_dno_out)
552 {
553 fsw_status_t status;
554 struct fsw_shandle shand;
555 fsw_u32 child_ino;
556 struct ext4_dir_entry entry;
557 struct fsw_string entry_name;
558
559 // Preconditions: The caller has checked that dno is a directory node.
560
561 entry_name.type = FSW_STRING_TYPE_ISO88591;
562
563 // setup handle to read the directory
564 status = fsw_shandle_open(dno, &shand);
565 if (status)
566 return status;
567
568 // scan the directory for the file
569 child_ino = 0;
570 while (child_ino == 0) {
571 // read next entry
572 status = fsw_ext4_read_dentry(&shand, &entry);
573 if (status)
574 goto errorexit;
575 if (entry.inode == 0) {
576 // end of directory reached
577 status = FSW_NOT_FOUND;
578 goto errorexit;
579 }
580
581 // compare name
582 entry_name.len = entry_name.size = entry.name_len;
583 entry_name.data = entry.name;
584 if (fsw_streq(lookup_name, &entry_name)) {
585 child_ino = entry.inode;
586 break;
587 }
588 }
589
590 // setup a dnode for the child item
591 status = fsw_dnode_create(dno, child_ino, FSW_DNODE_TYPE_UNKNOWN, &entry_name, child_dno_out);
592
593 errorexit:
594 fsw_shandle_close(&shand);
595 return status;
596 }
597
598 /**
599 * Get the next directory entry when reading a directory. This function is called during
600 * directory iteration to retrieve the next directory entry. A dnode is constructed for
601 * the entry and returned. The core makes sure that fsw_ext4_dnode_fill has been called
602 * and the dnode is actually a directory. The shandle provided by the caller is used to
603 * record the position in the directory between calls.
604 */
605
606 static fsw_status_t fsw_ext4_dir_read(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
607 struct fsw_shandle *shand, struct fsw_ext4_dnode **child_dno_out)
608 {
609 fsw_status_t status;
610 struct ext4_dir_entry entry;
611 struct fsw_string entry_name;
612
613 // Preconditions: The caller has checked that dno is a directory node. The caller
614 // has opened a storage handle to the directory's storage and keeps it around between
615 // calls.
616 FSW_MSG_DEBUG((FSW_MSGSTR("fsw_ext4_dir_read: started reading dir\n")));
617
618 while (1) {
619 // read next entry
620 status = fsw_ext4_read_dentry(shand, &entry);
621 if (status)
622 return status;
623 if (entry.inode == 0) // end of directory
624 return FSW_NOT_FOUND;
625
626 // skip . and ..
627 if ((entry.name_len == 1 && entry.name[0] == '.') ||
628 (entry.name_len == 2 && entry.name[0] == '.' && entry.name[1] == '.'))
629 continue;
630 break;
631 }
632
633 // setup name
634 entry_name.type = FSW_STRING_TYPE_ISO88591;
635 entry_name.len = entry_name.size = entry.name_len;
636 entry_name.data = entry.name;
637
638 // setup a dnode for the child item
639 status = fsw_dnode_create(dno, entry.inode, FSW_DNODE_TYPE_UNKNOWN, &entry_name, child_dno_out);
640
641 return status;
642 }
643
644 /**
645 * Read a directory entry from the directory's raw data. This internal function is used
646 * to read a raw ext2 directory entry into memory. The shandle's position pointer is adjusted
647 * to point to the next entry.
648 */
649
650 static fsw_status_t fsw_ext4_read_dentry(struct fsw_shandle *shand, struct ext4_dir_entry *entry)
651 {
652 fsw_status_t status;
653 fsw_u32 buffer_size;
654
655 while (1) {
656 // read dir_entry header (fixed length)
657 buffer_size = 8;
658 status = fsw_shandle_read(shand, &buffer_size, entry);
659 if (status)
660 return status;
661
662 if (buffer_size < 8 || entry->rec_len == 0) {
663 // end of directory reached
664 entry->inode = 0;
665 return FSW_SUCCESS;
666 }
667 if (entry->rec_len < 8)
668 return FSW_VOLUME_CORRUPTED;
669 if (entry->inode != 0) {
670 // this entry is used
671 if (entry->rec_len < 8 + entry->name_len)
672 return FSW_VOLUME_CORRUPTED;
673 break;
674 }
675
676 // valid, but unused entry, skip it
677 shand->pos += entry->rec_len - 8;
678 }
679
680 // read file name (variable length)
681 buffer_size = entry->name_len;
682 status = fsw_shandle_read(shand, &buffer_size, entry->name);
683 if (status)
684 return status;
685 if (buffer_size < entry->name_len)
686 return FSW_VOLUME_CORRUPTED;
687
688 // skip any remaining padding
689 shand->pos += entry->rec_len - (8 + entry->name_len);
690
691 return FSW_SUCCESS;
692 }
693
694 /**
695 * Get the target path of a symbolic link. This function is called when a symbolic
696 * link needs to be resolved. The core makes sure that the fsw_ext4_dnode_fill has been
697 * called on the dnode and that it really is a symlink.
698 *
699 * For ext4, the target path can be stored inline in the inode structure (in the space
700 * otherwise occupied by the block pointers) or in the inode's data. There is no flag
701 * indicating this, only the number of blocks entry (i_blocks) can be used as an
702 * indication. The check used here comes from the Linux kernel.
703 */
704
705 static fsw_status_t fsw_ext4_readlink(struct fsw_ext4_volume *vol, struct fsw_ext4_dnode *dno,
706 struct fsw_string *link_target)
707 {
708 fsw_status_t status;
709 int ea_blocks;
710 struct fsw_string s;
711
712 if (dno->g.size > FSW_PATH_MAX)
713 return FSW_VOLUME_CORRUPTED;
714
715 /* Linux kernels ext4_inode_is_fast_symlink... */
716 ea_blocks = dno->raw->i_file_acl_lo ? (vol->g.log_blocksize >> 9) : 0;
717
718 if (dno->raw->i_blocks_lo - ea_blocks == 0) {
719 // "fast" symlink, path is stored inside the inode
720 s.type = FSW_STRING_TYPE_ISO88591;
721 s.size = s.len = (int)dno->g.size;
722 s.data = dno->raw->i_block;
723 status = fsw_strdup_coerce(link_target, vol->g.host_string_type, &s);
724 } else {
725 // "slow" symlink, path is stored in normal inode data
726 status = fsw_dnode_readlink_data(dno, link_target);
727 }
728
729 return status;
730 }
731
732 // EOF